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Alignment algorithms to compare’ DNA or amino acid sequences are widely used tools in
molecular biology. The algorithms depend on the setting of various parameters, most
notably gap penalties. The effect that such parameters have on the resulting alignments is
still poorly understood. This paper begins by reviewing two recent advances in algorithms
and probability that enable us to take a new approach to this question. The first tool we
introduce is a newly developed method to delineate efficiently all optimal alignments arising
under all choices of parameters. The second tool comprises insights into the statistical
behavior of optimal alignment scores. From this we gain a better understanding of the
dependence of alignments on parameters in general. We propose novel criteria to detect
biologically good alignments and highlight some specific features about the interaction
between similarity matrices and gap penalties. To illustrate our analvsis we present a
detailed study of the comparison of two immunoglobulin sequences.
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1. Introduction

In the last decade the use of alignment programs
to compare DNA or amino acid sequences has
become a routine task. Computer programs to align
two sequences, search a database with a given
sequence or compare multiple sequences are readily
available. In spite of easy access to such resources
these programs often confuse the user by asking for
parameters.  How to  choose these parameters
remains guesswork to both the expert and the
novice. While some of the program parameters
influence how fast a program will run. the same
alignment program will frequently produce signifi-
cantly different alignments under different para-
meter settings. Here, we review local sequence
alignment (see Waterman. 19534) and studyv the
effect that parameter choice has on the resulting
alignments, We will review zome recent develop-
ments in computer science and statisties and apply
them to develop o better undeestanding of the para-
meter dependence of sequence alignments,

Thix problematie side of the otherwise easv-to-use
programs has sporadicadly attraeted the sttention of
hoth biolocical and mathemationl researchers, Fiveh
& Nuuthe (19s3) explivithy s ot 1o sudy s
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question for the comparison of coding DNA. They
calculated numbers of alignments until thev had
found all optimal alignments and could divide the
parameter space into regions with identical optimal
alignments within each region. In the context of
sequence alignment with long gaps Gotoh (1990)
also studied the results of his method under varia-
tion of the gap penaltizs. While of interest for its
own sake. pargngter dependence makes it ditlicult
to compare alignment programs. Baron &
Sternberg (1937) calculated tables of aliznment
scores under various gap penalties to prove the
superiority of their secondary structure dependent
alignment procedure. In a comparative studyv of
alighment methods Rechid ¢ al. (1989) tested
several choices of parameters in order to compare
the best results obtained with one method to the
hest results obtained with another one. In spite of
the awareness of the problem it iz still not under-
stood  how 1o
rationallv.
Alignment aleorithms come in different coiors and
shades. with variations of gap penalties arei <imi-

choose  alignment

patameters

lacvity matviees. v coanmon mnsunderstandinge,
however, ix 1o mistake & progeam that uses coiorent
paavameters (e diflerent mairi tar anes adeo
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rithm. An important distinction on the algorithmic
level is whether a program calculates a global or a
local alignment. The prototypic global algorithm is
the classic Needleman-Wunsch (Needleman &
Wunsch, 1970) algorithm. The Smith-Waterman
algorithm (Smith & Waterman, 1981). on the other
hand, is the best known local alignment algorithm.
Both use a gap penalty function that in most imple-
mentations is a linear function. In addition to the
gap penalty the algorithms may use a similarity or
distance matrix on the letters of the alphabet that is
used to represent the sequences. Here. we focus on
the local alignment algorithm due to Smith &
Waterman (1981). In cases where two sequences are
similar over their entire lengths. the local algo-
rithms should find this fact as well as the global
algorithm. When two sequences share only a limited
region of similarity only the local algorithm will
discover this.

The current paper approaches the problem of
parameter dependence of local alignment using
essentially two tools. One is a newly developed
algorithm to calculate the entire set of optimal
alignments under all choices of one or two para-
meters (Ferndndez-Baca & Srinivasan, 1991;
Gusfield et al.. 1992; Waterman et al.. 1992). More
parameters can be included but the results are hard
to visualize. The algorithm can. for example. be
applied to the study of the influence of initial and
extension gap penalties (under a linear gap penalty
function). The result will be a tesselation of the
plane spanned by the two parameters. Each region
in this tesselation describes the set of parameters
that, when used to align the given sequences, result
in the same set of optimal alignments.

Another tool we use to study alignments is the
statistical behavior of optimal alignment scoves.
These scores behave statistically quite differently
for very small gap penalties as opposed to very large
gap penalties. The theory of a phase transition in
growth of alignment score with sequence length was
developed by Waterman et al. {(1987) and Arratia &
Waterman (unpublished results). The next section
reviews both the parametric alignment algorithm
{section (b)) and the statistical theory (section (¢)).

The first application of these methods will be to
DNA. For DNA the parameters we are interested in
are the values for match. mismatch and a gap
penalty. The influence of these parameters will be
illustrated for random sequences. The example will
also illustrate the importance of the statistical
behavior of local alignment score as a function of
sequence length for a specific comparison. Certain
key features can be observed in the DNA studies
that carry over to protein sequence alignment.

The emphasiz of this paper hes on the comparizon
of proteins. For many proteins the three-dimen-
stonal structures are known and structural super-
position supplies us with a standard of truth for the
alignment. We will focus on the comparison of two
mmunovlobubin scquences that. bhoth on structural
and on sequence levels: have heen caretully studied.
This cnables us o anadyvze how the optimal adien-

ments change under changes of gap penalties and
how alignment quality is influenced by the para-
meter changes. Interestingly, the statistical phase
transition in the parameter space has implications
with respect to the choice of parameters and its
understanding should make it easier to locate a
good alignment.

2. Review of Concepts
(a) Local aligiunent and ils parameters

As pointed out above we will concentrate on the
local alignment algorithm (Smith & Waterman,
1981). A local alignment is one that matches a
contiguous subsequence of the first sequence with a
contiguous subsequence of the second sequence. The
Smith-Waterman algorithm is motivated by scoring
syvstems where scores for matches and mismatches
have different signs. i.e. where matches increase the
overall score of an alignment whereas mismatches
decrease it. A good alignment then has a positive
score and a poor alignment a negative score. The
local algorithm finds an alignment with the highest
score by considering only alignments that score
positive and picking the best one from those. The
algorithm is a dyvnamic programming algorithm.
For the comparison of DNA, it requires setting a
gap penalty (0 = 0) in addition to the score for a
match or identity (that we keep at 1) and the
penalty for a mismatch (u>0). Let the two
sequences be a =«,a,...a, and b=5b,b,...5,.
The algorithm then is:

H; .+, ifa;=b;

Hi_yio1—u, ifa; #0b;
H;=max { H;,_, ;—8,

H.,.,—9,

0

With an initial assignment of If; o = [y ; =0 for
l<i<n 1 <j<m. the desired local alignment
score is the maximum value of /1, ; over the entire
matrix:

max{fl ;-1 <i<n, 1 <j<m}

When applied to proteins one uses a similarity
matrjx that attributes a score to each possible
residug pair. The score should be positive for desir-
able residue pairs and negative for dizsimilar residue
pairs in order to ensure meaningful local alignments.
Gaps are usually penalized using a linear gap func-
tion that assigns an initial penalty for a gap opening
and extension gap penalty for each deleted or
inserted residue increasing the gap length.

(h) Calewdating all optimal aligronments

The score of a given DNA alignment can also he
deseribed by counting the number of matehes, the
number of mismatches, the number of insertions or
deletions. Then cach of these is multiplied by its
corresponding parameter values:

Novwmatelo <) — o x Nobwismateles)
— X NoSinserlions dilitions! (1)
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An optimal alignment is one that maximizes this
expression. For proteins, an analogous expression is
given by Smith et al. (1981).

Equation (1) for the score of an alignment shows
that the score is a linear function of the parameters
mismatch penalty ¢ and gap penalty §. We restrict
ourselves to such parameters that influence the
score linearly. Linearity then implies that every
alignment defines a plane in the space spanned by g
6 and the alignment score. An optimal alignment
has score described by the plane with score equal to
the maximal value over all alignments at the para-
meter-choice (g, 8). Note that there may be several
optimal alignments associated to a plane.

Unless a point (the parameter vector) is exactly
on the border between two alignments it will define
a neighborhood where the best alignment-plane and
with it the alignments remain unchanged with
respect to possible changes of the parameters. With
larger changes though a new set of optimal align-
ments (a plane) takes over. Figure 1(a) shows an
example of the tesselation produced by drawing all
the borderlines where another alignment plane takes
over. Each of the resulting regions contains those
parameters where one alignment-plane is optimal.
All alignments in one region therefore have the same
number of matches, mismatches and deletions.
Every region is a convex polygon (Waterman et al.,
1992). This picture is produced from the comparison
of two 400 bp long random DNA sequences under
variation of the mismatch penalty (horizontal axis)
and the gap penalty (vertical axis).

Recent advances (Fernandez-Baca & Srinivasan,
1991: Gusfield et al., 1992: Waterman et al.. 1992)
have made it possible to calculate this tesselation of
the plane in an efficient way. i.e. avoiding the calcu-
lation of large numbers of alignments. Linking this
program to a graphical display, M. Eggert at USC
built an environment that allows one to click with
the cursor to a region and see a representative

alignment. the score of which is given by the hyper-
plane in that region of the tesselation. In addition,
the alignment can be compared with a reference
alignment and the quality of every alignment in the
tesslation can be assessed. (lusfield and collabora-
tors are planning to release a user-friendly package.

(¢) Statistics and phase transition

Consider comparing two random DNA sequences.
Let a mateh score 41 a mismatch — % and gaps
have no penalty at all. The alignment algorithm s
then free to pick the maximal number of matches
that can be fit into an alicnment withont regard to
gaps. The result is what in the computer seience
terature ix known ax the longest common sub-
sequence (Apostolico & Guerea, 1987). Tt s intui-
tively clear that extending sech an adignment as the
sequences et longer s relatively easy. In fact,
probabilistic considerations show that the length of
stch an alignment grows lincarly ax the sequence
fenoth inercases (Chearad & Sankolf. 19750 We

eAPect stch o uli-;‘nmwm to contaan NNy gaps

(2)
81
H
0
i) u 8
(b)

Figure 1. (a) Tesselation for the comparison of two
400 bp long random DXNA sequences. The horizontal-axis
is the penalty for a mi=match (1) and the vertical axis the
gap penalty (d). (b) The phase transition curve that
separates the linear and the logarithmic region,

X\

that make it a rather untikely alignment from the
hiolagical point of view.

When the gap penalty is so high that no matching
region could Justifv a gap. the local alignment will
contain only contiguous matching regions. This
match will be chozen to optimize the sum over both
matches  and  mismatches. Naturallv. for twao
random sequences the length of this revion will he
small when mismatches are expensive. If. for
example. we make the mismateh penalte prohibiti-
velv expensive as above, the resulting alignment
contains onlyv the Joneest region of exact matches
and wvaids botlh mismatches and gap adtogether,
For these cases ionas beeen <hown that the seore of
the ddiuanent s proportiomal to the Tocarithom of
the Leneth of i
N o !

sepitenees  eine compared

TUNT L
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In this last case it is the local algorithm that
allows the alignment to “shrink” when a luager
alignment would involve paying high penalties. If,
however, one would deliberately misuse the local
algorithm by not penalizing mismatches (both the
scores for matches and mismatches are positive),
this shrinkage would not take place. Even under
high gap penalties optimal alignments would match
essentially the entire sequences. In such a case the
score would again grow linearly in spite of a high
gap penalty.

This example shows that it is not just the gap
penalty that is responsible for linear or logarithmic
growth of optimal alignment score. As determined
by R. Arratia & M. S. Waterman (unpublished
results), the statistical behavior associated with a
parameter choice is determined by the sign of the
expected score of a global alignment of two random
sequences of equal length. Their result says that if
the expected score of the global alignment is posi-
tive. then the local alignment score using the same
parameters grows linearly with the length of the
sequences. If the expected score of the global align-
ment is negative, then the local alignment score
using the same parameters grows with the logarithm
of the length of the sequences. When the expected
score of the global alignment is 0, there is a transi-
tion between these two statistical regimes.
Practically, one can approximate the expected score
by calculating a large number of alignments of
random sequences and average their scores. Figure
1(b) shows the transition curve for a DNA compari-
son where mismatch and gap penalty are varied.

The special cases sketched at the beginning of this
section of course fit into this framework. When gaps
and mismatches are free, a global alignment will
have positive score. Thus the local score will grow
linearly as described above. Similarly, when
mismatches are not penalized. the optimal global
alignment (for 2 sequences of equal length) will not
introduce a gap and always score positive. The local
alignment for such a parameter setting will conse-
quently grow linearly too. When both the penalties
for mx\nmt(hc\ and gaps are high then the global
alignment will score less than 0 and the local alwn-
ment will he in the true sense local. Its score will
grow logarithmically - with  the length of the
SCqUences,

(d) Scoring systems for proteins

When comparing amino acid sequences, additional
parameters determine the alignment. Instead of
scores for matehes and mismatches, a matrix is used
which scores every pair of amino acid residues, We
will assume that alignments are caleulated under
Davhoft’s PAM230 matrix (Davhoft ef al.. 1983).
This mateix gives positive values to identities and
conservative substitutions. Some adentical  pairs
receive very high scores. el matching two trepto-
phan residues vields + 17 or two evteine residues
vield #1120 Note that not all dentiead paars are
weighted cquallv, Rarve substitutions are given a

negative score and are therefore usually avoided by
the alignment algorithm. The lowest scoring substi-
tutions have score —8. When comparing proteins
we use a linear gap penalty function. and the initia-
tion and the extension of a gap are assigned
separate values. With an initial gap penalty of ¢,
and an extension gap penalty of g, a gap of length &
costs g, +¢g» x k.

When both of the gap penalty parameters are 0.
we have essentially the same situation as in the case
of DNA-alignment under 0 gap penalty. An align-
ment will then be long and, since it does not have to
pay for gap=. will jump freely from one good match
to the next one. Its score grows linearly with the
length of the sequences. Again, the entire region
around the origin is under the linear regime and
contains alignments that are long and tend -to
contain many gaps. When either or bot,h gap para-
meters are hlgh. any gap will be expensive and thus
avoided. Therefore, far away from the origin of this
parameter space, the algorithm will seek out a
possibly short well-matching (as described by the
score matrix) alignment. The score of such an align-
ment grows logarithmically with the length of
random sequences. As before. once the gap penalty
is high enough. the optimal alignment is the best-
scoring mat(hm(r region without gaps.

The Smith-Waterman algorithm explicitly uses
the O-level of the smnlanty matrix. A high overall
level of the matrix leads to longer alignments
hecause fewer residue pairs score less than 0. But
raising the overall level of a matrix in thiz wayv also
introduces an asvmmetry between deletions in the
shorter and the longer sequence (Dayhoff et al.,
1983). When a large value i is added to a matrix, the
meve number of residue pairs in an alignment is
more important than the placement of gaps. The
number of residue pairs, however. is maximized
when there iz no deletion in the shorter =equence.
Thus. deletions in the shorter sequence will be
avoided when the matrix average is verv high.

The matrix level influences the statistical
behavior too. When all matrix entries are positive
the score of the resulting alignments will grow
lincarly with the length of the sequences. To he
moreXprecize. we will introduce the expected score
for a &Jn(lmn residue pair =cored by a matrix. In
addition to the matrix, this requires taking into
account the distribution of the amino acids in the
sequences. The expected score of a residue pair ix
defined as the sum over all residue pairs ot the score
of a pair ax given by the matrix weighted by their
respective frequencies. Caleulating this for the
PAM250 matrix and the distribution of amino acids
given by McCaldon & Argos (1988) resultx in an
expected score of =031 1 this expected score s
positive for <ome matrix then the growth of the
seare of the local alignments is lincar even under
arbiirartly strong wap penalties. To see thiss con-
stder that the global adignment will ther pick out
only the main diagonad of the comparisan and the
expeected score along that one dineonal i~ positive,
Wi wape penalties are Jower. the score of the
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Figure 2. The phase transition in 3 dimensions. g, and g, are the penalties for initiating and extending a gap in a linear
gap penalty function and 7 is a constant that is added to every entry of the Dayvhoff matrix.

global alignment can only increase. Therefore. there
is no region of logarithmic growth nor a phase
transition in the space of gap penalties when a
matrix iz used that has a positive expected score.

When a matrix contains only a few positive
entries, then the local alignment score will grow
linearly only for very small gap penalties. For
matrices with most entries negative, growth will be
logarithmic because a global alignment will score
less than O in expectation. The expected value of
such a matrix will be negative for a biologically
reasonable distribution of amino acids. In the plane
spanned by the initial and extension gap penalties
one can therefore find a transition curve between
the two regimes. Upon raising the overall level of
the matrix the linear region grows in area and
slowly pushes the transition curve out. Figure 2
shows the surface that is described by the transition
curve as an increasing constant is added to every
element of the matrix. The (g,.¢,)-plane of the
Figure iz spanned by the two gap penalties and 0
added to the Dayvhoff matrix. The linear region in
this plane is tiny. Moving downwards the level of
the matrix rizes and the linear region grows.
Towards the bottom of the graph the linear region
takes over the entire plane and the logarithmie
region has dixappeaved. Note that the hattom plane
has 0-9475 added 1o the Dayvholl matrix. just
lightly more than necessary to make its average
positive,

3. Comparison of Two Random
DN A Sequences

Studving the tesselation we <ee o etleciion of the
<tatistical belhavior even o the camyputison of ane

~pectlic paie of seqiienees Fionre 1oy ~hows i tesse

lation of the plane for the comparison of two
random DXA sequences of length 100. The score for
a match iz kept at +1 and the penalties for
mismatches and gaps are varied along the g and
d-axis respectively. At the origin both u and J are 0.
Close to the origin we see a messy region. This part
of the parameter space is the linear region giving
essentially global alignments. Alignments change
very easily due to only small changes in the para-
meters because the alignment is long and for every
parameter choice there is a subtle equilibrium
between matches, mismatches and gaps. In
contrast, when mismatch and gap penalty are
higher. the alignments tend to be shorter and.
depending on the choice of parameters, have only
few to no gaps. This region is clearly under the
regime of logarithmic growth of score. The tessela-
tion there is much coarser than in the linear region.
In the outer region corresponding to large gap and
mismatch peyalgy the optimal alignment is the
longest region of consecutive exact matches. No
further increase of penalties can change the score.

There are several regular features in this tessela-
tion that demand to he explained.

(i) The bottom right part contains only horizon-

tal lines.

(i1) Straight lines through many regions near the

origin.

(111} Peneil of lines crossing the d-axis.

The horizontal lines above and parallel to the
fraxis are eastly explamed. Anyv mismateh (costing
@) can bhe avoided by a deletion tollowed by an
insertion (costing 20). Therefore, when a deletion
coxt= less than halt of 0 mismateh 1t is hetter to
avord mismatehes altogether, This holds for the paot
of the g O-plane under the tine d = ¢ 20 1t s i this
arvea that the misnadceh penalive @ tecomes derele
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vant and all dividing lines between regions are
horizontal, i.e. independent of u.

The fact that some dividing lines pass through
several regions is more interesting. Let the align-
ments in two adjacent regions, say A and B, have a
certain part of the alignment in common. Then
upon changing parameters in a certain way region A
will become A’ and region B will become B'. If both
the change between 4 and A’ and between B and &'
occurs in their common region in the same manner.
then the dividing line between 4 and 4 on the one
hand and B and B’ on the other hand will be a
straight line. This observation does not vield a
necessary explanation for the straight lines but sup-
plies us with a plausible sufficient answer.

It is very easyv to prove that the situation
described is compatible with straight lines between
regions. An analvtic description of the dividing line
between two adjacent regions can be obtained from
equating the formulae for their scores (eqn (1)). This
will result in a relationship between é and y. When
the two alignments from the adjacent regions
undergo the change described above the numbers of
matches, mismatches and insertions/deletions
change in the same way for them and the equation
of the dividing line remains unchanged.

Another. perhaps even more striking feature of
Figure 1, is that many of the straight lines through
the linear region seem to emanate from one point in
the third quadrant of the plane. For global align-
ments this feature has already been observed and
explained by Gusfield et al. (1992). The lines do in
fact meet in the point (—1. —1/2) and form a pencil
of lines. Values of —1 and —1/2 for mismatch and
gap penalties favor insertions, deletions and
mismatches. For a match-score of 1 (as is used in
this Figure) this choice of parameters implies that
every step through the comparison matrix receives
a score of 1. Therefore any alignment that uses the
entire sequences will be optimal, all having identical
scores. The global alignments and their close
relatives populate the linear region of the tessela-
tion. The lines emanating from (—1. —1/2) there-
fore appear to be the horderlines between global
alignments that are optimal at (—1. —1/2), and
moving away from (—1. —1/2) have undergone the
same changes in adjacent regions that leads to the
straight lines.

A close inspection of the overlav between the
tesselation in Figure 1(a) and the transition curve
(Fig. 1(b)) reveals that these pencil-lines extend
almost exactly until the transition curve. Note that
the transzition curve is a generic attribute of the
scoring  scheme and not of the two sequences
compared in the tesselation. The above analvsis
provides us with an explanation of this pheno-
menon. The pencil-lines extend as ong as the align-
ments involved are still essentially dlobal. This s
the case in the linear region that ends at the transi-
tion curve, Bevond that carve there s a dramatic
change of character of the alignments to genuine
local alignment=. Fven with this explanation the
till:lhlv\' of the comcidence hetween the combina.

torial structure of the tesselation and the statistical
phase transition remains re narkable.

The above analysis illustrates our approach to
understanding the tesselations. We try to explain
certain general features of the alignments. We
cannot always give necessary reasons, which means
we cannot claim that whenever a certain pattern
occurs it ahsolutely must be due to the reason we
give. Rather we present plausible circumstances
that are the sufficient and usual reason for the
pattern to occur and that we believe to be the
predominant explanation. This will also be the basis
of the following analysis of protein comparisons. We
will however not always reflect this limitation in the
wording of each explanation.

4. Comparison of Proteins
(a) Test case: immunoglobulins

We want to illustrate the above ideas with the
comparison of a well-studied pair of proteins. There
is of course a wide range of pairs of related protein
sequences going from very similar to very distant.
For two sequences that share a very high degree of
similarity the resulting alignment is almost indepen-
dent of the gap penalties under which it is calcu-
lated and studying it is therefore not of interest
here. On the other hand most sequence-pairs for
which relatedness was recognized only after the
structures were solved. resemble random compari-
sons too closely to teach us anything new. \We
therefore picked as our central example one that we
believe to be a good compromise between the
impossible and the obvious. and one that has been
well studied on the structural level. We will study
the comparison of two immunoglobulin sequences.
namely of heavy and light chain of the variable
domain of the Fab antibody. Amzel & Poljak (1979)
published a structural superposition relating these
two sequences. Each of them has two cysteine
residues in strands b and f. which form a disulfide
bridge. Another conserved residue that could guide
an alignment is a tryptophan residue in strand ¢ of
both sequences. The dificulty of the alignment
stemg mainly from a second tryptophan residue in
the hegvy chain 11 residues C-terminal from the
first one. which easily leads to misalignment. The
problem= in comparing these two sequences and
possible  remedies  using  secondary  structure
information have heen studied by  Barton &
Sternberg (1987).

Figure 3 shows the optimal and one suboptimal
local alignment of the two sequences in the form of a
dot-plot. The dot-plot was caleulated using an algo-
rithm to compute non-intersecting suboptimal local
alignments (Waterman & Fggert,  1987). The
aptimal adienment conneets diagonals labeled €1
WE 2 and d Diagonal We s found as the top
uboptimal alignment. Cand €2 are the diagonals
containing the correet evateine matehes and d s the
dingonal matehing beta <trandx ¢ from the two

sequences. Weand Weaee the diagonals containing
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Figure 3. The optimal (strong lines) and the top sub-
optimal (dotted lines) local alignments of the lizht and
heavy chain of an immunoglobulin variable domain (Fab
antibody).

the correct and false tryptophan matches. respec-
tivelv. The labeled regions are parts of certain
diagonals that will be éncountered again analyzing
tesselations. Table 1 lists the corresponding
matching regions. We will use these diagonals to
denote alignments made up of different combina-
tions of diagonals.

(b) Varying gap penalties when matrix average
18 negative

Figure 4 shows the tesselation for the two
immunoglobulins described above. The scoring
matrix used is Davhoff’'s PAM230 matrix. As
pointed out above (section 2(d)} its average is
around —0-81. We want to discuss these alignments
starting in the upper right corner. The outer region,
where any gap is highly penalized, contains the
alignment made up only of diagonal C2 from the
dot-plot. As one moves towards the origin. other

Table 1
Linportant matching regions (dingonalsj from
inmencenoglobin variable domain light (top seqausnce)
and heacy (bottom sequence ) chain

Cl:
QSVLTQFF SVIGAPGORVTISCTGSSENT
ot i1 !
QVQLEQSAF SLVRPSQTLSLTCTVS
We
AGHHVEWXY DDLEGTAPKLLIF
[
SNDYYTAVE IPPIRGLEWIGY
wi
AGNHVEW

4]

Figure 4. Tesselation for the comparison of the light
and heavy chain of an immunoglobulin variable domain
(Fab antibody). The horizontal axis is the initiating gap
penalty (g,) and the vertical axisz the extension gap-
penalty (g,). Values along the axes range from 0 to 40.
The unmodified PAM250 marrix is used.

diagonals come into play. For example. the C1-We
alignment region to the left of the C2 region has a
high extension gap penalty and starts next to the
y-axis where the initial gap penalty iz zero.
Accordingly. this alignment has one gap of only
length 1 (extending a gap is expensive). The next
adjacent region links the C2 diagonal to Wf. This
alignment has a wap of length 2. which is made
possible by the decreased extension gap penalty.
The other alignment that borders the C2 region
contains C1-\Wf-(2. Here the extension gap penalty
is so low that, in spite of a higher initial penalty,
two gaps of length 10 and 2 are allowed.

Going from this region (C1-Wf-C2) to the left
decreases the initial gap penalty. The next align-
ment attaches diagonal d. which results in the align-
ment C1-WE-C2.d. A biclogist looking for an
alignment matghing up the entire sequences and
containing only a moderate number of gaps would
easily believe this one alignment to be the correct
one. In addition it is found under the kind of gap
penalty choice that is usually recommended (high
initial. low extenzion penalty) and a rather large
region in the space of gap penalties gives this align-
ment. Nevertheless this is not the alignment «¢lozest
to the structural correspondence  bhetween  the
sequences. Tt as the alignment that is also easily
found using the :zlobal) Needleman-Wunsch aleo-
rithm and  that was criticized by Barton &
Sternberg (TO87),

Ao alignment that matehes the trvpiophan

resudines correctlv s present i our tesselation, The
shaded vegians ooch thas part of the S Henees
corveetiv. The diftorenee beaween the shaded cefls s

that o~ one moves rom -1t to Feht o the paras
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meter plane the initial gap becomes more expensive
and it is more “cost effective” to link the crucial
diagonals without an - further stops. When the
initial gap penalty is low the diagonals are
connected and between diagonals the alignment will
match additional residues. The vertical division
lines between the shaded regions are a reflection of
the fact that the alignments in these regions bridge
the same total number of gapped letters but distri-
buted into different numbers of gaps. We have
denoted all the alignments in the shaded region with
the abbreviation ('l-We¢ ~ C2-d where the ~ means
that the gap does not link We¢ and C2 directly but
has additional matches in between. This structure
of adjacent regions with vertical division lines is
encountered frequently, and we will call it a band of
regions. Closer to the origin from the shaded band
there is another band. This one however has too
many gaps and contains alignments not as good as
those in the shaded band. The innermost alignment
regions show no recognizable order and contain the
alignments with un-biologically low gap penalties.
In the statistical sense this clearly is in the linear
region.

(e} Positive and varying matriz average

As mentioned in the introduction, we change the
Davhoff matrix by addition of a constant to every
matrix entry. Interestingly, after adding a positive
constant to the matrix, our view of the good align-
ments in the tesselation improves. Figure 5 shows
the alignment regions for the same pair of immuno-
globulins but with 15 added to the entire matrix.

Now the alignments are generally longer because
the local alignment algorithm extends them further.
For example. the alignment in the outer region is
still based on the diagonal (2 but has increased
from 46 residue pairs to 85 residue pairs. Certain
alignments are essentially unchanged compared
with Figure 4. These comprise Wf-C2-d and
C1-W{-C2-d. Both of them only grew at the ends but
are unchanged internally. Specifically, the positions
of the gaps (the breakpoints where an alignment
skips from one diagonal to a subsequent one) are the
same as in the corresponding alignments from
Figure 47. The band of good alignments C1-We ~
(2-d (shaded) i= much clearer in Figure 5 than in
Figure 4. Tt now comprises more regions and has
grown in area too. Alignments like CH-(2 and
C1-C2-d are new to this plot. We conclude that
raising the matrix level allows C1 to be longer. thus
avoiding  the additional  gap-initiation  used to
include Wi in between C1 and (2. Toward the origin
the tesselation = considerably less messy. Only
immediately adjacent to the origin can the align-
ments with hich nnimbers of gaps survive.

FThe reason is ot o omattor what the gap penalty,
the pasint where oo g is intraduced is optimized <o as
taachieve the oo anm of seorex adong the 2

dicevnads

5]

Cl-wf-C2d

£

Figure 5. Tesselation for the comparison of the light
and heavy chain of an immunoglobulin variable domain
(Fab antibody). The horizontal axis is the initiating gap
penalty (g;) and the vertical axis the extension gap-
penalty (g.). Values along the axes range from 0 to 40. A
constant of 1'3 has been added to every entry in the
PAM250 matrix.

Note that due to the addition of a constant the
average value of the matrix is of course increased by
this constant and is now positive. This implies that
the average score of the global alignment between
two random sequences is positive even for high gap
penalties. Thus. the local alignment score grows
linearly. no matter how strongly gaps are penalized.
Consequently. in this case there is no phase
transition.

Figure 6 illustrates the result of adding a constant
to every matrix entry. The two gap penalties are
kept equal to each other and increase along the
vertical axis. For technical reasons in our plot the
constant added to the matrix (7) decreases along the
horizontal axis. The dark shaded region next to the
horizontal axis cantains the tine part of the tessela-
tion _Along the horizontal axis we highlighted where
0 is added to the PAM250 matrix (the siination of
Fig. 4). where 1-3 is added (the situation of Fig. 5)
and where -81 iz added, such that the average of
the resulting matrix is approximately 0. For
example. the alignments along a  vertical line
through the point where nothing is added to the
PAM250 matvix. correspond  to the alignments
along the main diagonal of Figure 4.

Vertical division lines in Figure 6 indicate growth
at the ends of an alicnment. The top Jabeled regions
are wll essentiadly the diagonal €20 which we have
already ~een to be the best lacal alignments without
aap=. Upon adding @ constant to the matrvix this
diagonal craws at the endss O the top rght the
aignment contains aniv the hestamatehing core of
distgonad 20 This ther srows toswards the feft (with

mereaxine matein feveloantih an the tap beft revtan
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C2{‘growing C2

g1=82
C2

core

C2d

WEC2d

x C1-wf-C2-d

Cl-Wce~C2-d

< Y

PAM250+1.5 av=l PAM250
Rgs Fg. 4

Figure 6. Tesselation for the comparison of the light and heavy chain of an immunoglobulin variable domain (Fab
antibody). The constant ; added to the Davhoff matrix increases along the horizontal axis towards the left. The vertical
axis represents simultaneous growth of initial and extension gap penalty.

the shorter sequence iz entirely fitted into the longer
one.

Similarly. the regions below. which are divided by
vertical lines. are alignments growing at the end in
the same manner. This allows linking some align-
ments from Figurex 4 and 5. For example. the
alignment WH-C2-d was contained in both Figures 4
and 5. differing only in how far the alignment
extends at the ends [n Figure 6 the alignment
fabeled WHEC2-d s part of a set of tour shaded cells
that show the growth of this alignment. The right-
maost of these shaded colls contains the Wi-C2.d
alignment exactly ax o oceurs in Fieure 4. The
vertical  division Hnes between the shaded cells
represent additions of a tew residues at a time at the
ends of the sdionmem  The WEC2 4 adiconment from
IFigure 5 was cadendatea with BS added 1o the
mtrin, a0 value that oo Figure 6 is exactly the

division line hetweon 1w revions,

A number of vegions on the upper left side of the
Figure are diwded by horizontal lines and are
unbounded towards the left. These alignments are
not influenced by a further increase in the constant
that is added to the matrix hecause they already
extend as far as possible. They start and end with
the N and C termini of one of the sequences. Further
below. the divi<ion lines between the region arve
tilted downwards (highlighted by an arrow) as the
matrix level increases. This means that these align-
ments will slowly disappear as one moves to the left.

The distinguishing feature of the upper. persistent.

alignments is that their leneth (number of aligned
pairs) s maximal because they have no deletions in
the sharter sequence. The number of adiened residue
pairs ix therefore given by the leneth of the shorter
scqutence, The dower ones have a deletion e the
shorter sequence Geeap of leneth 1 ta et from O o
Wy that decreases the nutmber of alivned residue
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82

L3}

Figure 7. One region of the tesselation from Fig. 5
extended into 3 dimensions by raising the constant y
(towards the front) that is added to the Dayhoff matrix.
The plane in the back corresponds to that shown in Fig. 5.
The region is the one shaded cell where the arrow in Fig. 5
ends.

pairs in the alignment. As pointed out in section
2(d), when the matrix level is raised a longer align-
ment will sooner or later score better than a shorter
one. This explains why the alignment regions on the
bottom left are slowly disappearing.

Figure 7 illustrates this bias against deletions in
the shorter sequence by following an alignment
region in three dimensions. The alignment in this
region is one of the C1-We ~ C2-d family. The three-
dimensional polytope has as its backside one of the
shaded regions from Figure 5 (with 1-5 added to the
Davhoff matrix). As one moves to the front the
constant added to the matrix increases. Due to the
one deletion in the shorter sequence (when the align-
ment links CI to We) raising the matrix makes this
alignment more and more disadvantageous. It is
thus slowly pushed out of sight.

() Other examples. specifically local alignments

The results of the above analysis of the compari-
son of two immunoglobulins is by no means
singular. Among the other cases that we looked at
were the comparison of human hemoglobin alpha-
chain and lupin leghemoglobin, and  Lactobacillus
casei and Escherichin coli dihvdrofolate reductases.
The tirst pair shares very little homology when
measuring the pereentage identical residues iy the
correet alicnment (only 162, and has frequently
been used to study and test alignment methods. All
the features described for the immunoglobulins can
also he seen in this comparison, including the fine
and coaese tesselation for weak and strong gap

penalties and the hand of regions containing goad

alignments. The other pair, the dihydrofolate
reductases, are considerably more similar.
Correspondingly, the tesselation is rather coarse and
most of the regions contain reasonable alignments.
As expected the choice of gap penalty is much less
crucial for such a simple example.

We also calculated the tesselation for a pair of
structurally related proteins that show very little
sequence similarity, namely azurin and plasto-
cyanin. In such a difficult case the resulting tessela-
tion is almost indistinguishable from the tesselation
produced by random sequences. Features that are
also inherent to random sequences like the fine
versus coarse tesselation remain. The band structure
that seems to be a distinguishing feature of similar
sequences is hardly discernible any more. Neither
could we draw any conclusions about the best choice
of gap penalties from such a case.

The examples discussed above all share similarity
over their entire length and therefore constitute test
cases that do not specifically address a local align-
ment algorithm. We therefore also studied examples
that are in the true sense local alignments. One such
case can be found in the proteins containing a helix-
turn-helix motif. We chose to compare phage
lambda repressor with the lambda Cro protein.
These two share a well-studied region of about 20
amino acid residues without gaps (Sauer et al.,
1982). Surprisingly. using the Dayhoff matrix the
correct alignment was not found at all. Only when
we tried other matrices (e.g. that proposed by
Gribskov & Burgess, 1986) were there gap penalties
under which the correct alignment was found. The
band structure is lost with this rather short align-
ment that comprises only one diagonal.

A second truly local example we studied was the
comparison of the E. coli CAP protein (which binds
cAMP) and a bovine cGMP-gated ion channel. Both
of these proteins contain the common binding site
for cAMP and ¢GMP. For computational reasons we
had to restrict the 690 amino acid residue ion
channel sequence to about 240 residues, which
contained the region of similarity to CAP.
According to Kaupp et al. (1992), alignment of the
approximately 190 residue site requires two gaps. In
this cgse using the Dayhoff matrix picks out the
first of e three regions of similarity under high gap
penalties. Upon lowering the penalties the second
diagonal is added. The third diagonal, however. is so
subtle that it is not found at all. As with the helix-
turn-helix comparison the good alignments are
found in the logarithmic region and in the linear
region longer. biologically irrelevant alignments
take over.

5. Discussion of Results
(#) Tesselation features

Depending on which parameters are studied we
find different svstematic features of the tesselation,

In the plots varving mismateh and insertion
deletion-penadiyv. we found the penal of lines char-
acterizing the global alicnments,
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In the plots varying the initiation and extension
gap penalties, bands of regions separated by vertical
lines indicate alignments that contain the same
number of insertions and deletion distributed over a
different number of gaps. This we interpret as an
indicator of well-matching regions defining the
outlines of an alignment.

In the plots varying the gap penalty and a
constant added to the score matrix, vertical lines
indicate growth of an alignment at the ends without
internal change.

With every set of parameters one expects to find
different features. Such syvstematic features reflect
the limitations in the change that alignments
undergo when these parameters vary. This clearly
contradicts our intuition of a confusing multitude of
optimal alignments.

(b) Role of the matrix

We also found it surprising that most of the
alignments corresponding to larger regions in
Figure 4 can be described in terms of only a few
diagonals. The fact that we compare biologically
related sequences seems to be responsible for this.
Their comparison shows diagonals most of which are
clearly above noise-level and are following each
other without huge gaps in between. Any reasonable
alignment will use the good diagonals and string
them together in a way that is determined by the
gap penalty. Where there are decisions to be made
as in our example between \Wf and We. the gap
penalty might decide whether the alignment
includes a good diagonal that requires a larger gap
or a less attractive one that might be easier to
veach. In this sense. the matrix defines the
“players™. Tt defines which diagonals will be con-
sidered by an alignment.

Our analysis is not aimed at judging how well a
certain matrix defines these diagonals. Other attei-
butes of a matrix seem to he more generic. Consider
Figure 6 where the average of the matrix decreases
along the horizontal axis. At the very right the
matrix average is around —2 and the C2 alignment
has taken over the entire logarithmic region. The
linear region (shaded region along the horizontal
axis) on the other hand iz populated only by bio-
logically meaningless alignments containing lots of
gaps. Following the good alignments coming from
the left. one sces that theyv are literally squeezed in
between the linear and the logarithmic regions. At
the end they either disappear entively or are reduced
to a tiny arca around the phase transition. We
conclude that the matrix average should be nega-
tive but not too negative,

(1) At the same time the matrix averase should
he kept nevative for the following reasons.

(1) A strongly positive malrix average antro-

duces a bias against deletions o the shorter
sequencee (REE <eetion '_’(1“).

(i) Statisties are better understood 1m0 the log-

arithmie recion than o the dinear region

extension gap penalty

(Arratia e al.. 1990; Karlin & Altschul, 1990;
C. Neuhauser. unpublished results).

{iv) A negative matrix average ensures the exist-
ence of a phase transition curve within the
parameter space spanned by the gap penal-
ties, and this in turn is helpful in locating
reasonable gap penalties (see below).

(c) Gap penalty cloice

Once a matrix is specified and fulfils the above
criterion of having its average xlightly under O, gap
penaities can be calibrated specitically for it. This
choice depends on the purpose one has in mind. The
main distrinction is between searching a database
and comparing two sequences. In the first case the
objective is the best contrast between sequences
related to the queryv and all others. In the latter case
the alignment shouild be as good and as complete as
possible. We speculate that good contrast will be
achieved rather with a few well-matching diagonals
than an overall comparison. This implies a gap
penalty choice well in the logarithmic region for the
purpose of database searching.

For the comparison of two szequences. however,
the strong “core -alignment must be extended to
encompass further matching regions. Tn the tessela-
tion this will typically happen az one moves from an
outer region towards the transition curve. This
suggests choosing gap penalties near the transition
curve when the objective is a good alignment of two
sequences. Figure 8 illustrates this point by over-
laying the transition curve for the PAM250 matrix
with some choices of gap penalties. The o denotes
the Wf-C2 alignment. * is the C'1-W{-C2-d alignment
and + is C1-We ~ (2-d.

phase transition for PAM250

7 T T ¥ T Y T T
o..Wt-C2
6F *...C1-wi-C2-d 1
+ ... C1-We~C2-d
5»
4—
3.
2»
L
i
|
0 . s . . . )
2 4 6 g 10 "z 14 16 18 20
initial gap penz
Figure 8. The plus tran=tticn v -he parameters initial
At extension wap peetalty for che PAMZNME mateix
tocether with the locamion ot certae dhicaments o denotes

e WHC? lionmens =< e O 20 abianeent and

1w O W e <~ C2 e
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As expected we are not able to say anything
systematic about the exact location of the qualita-
tively best alignments in the tesselation. The tradi-
tional choice of “large initial, small extension”
certainly does not suffice to find these regions. The
study of the entire tesselation and the identification
of the above-mentioned bands can aid in identifying
good alignments.

(d) Conclusion

The above analysis has helped us to understand
how parameters influence alignments and how we
can calibrate certain parameters. In addition, there
is the insight that there are many more systematic
(combinatorial and statistical) features about
optimal alignments than previously known that can
aid in searching for a biologically valid alignment.
On the other hand, one needs to avoid overinter-
preting the result of an alignment program. It may
well be that the feature that strikes the researcher’s
eve can be explained totally without recourse to
biology from the observations made above only. A
thorough knowledge of the systematic changes in
alignments should therefore help us not to be led
astray by essentially uninteresting consequences of
the mathematical model used.

We thank Mark Eggert for programming assistance and
preparation of several Figures. This work was supported
by the National Science Foundation (DMS 90-05833.
DMS 87-20208) and the National Institutes of Health
(GM36230).
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