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Abstract RNA editing in the mitochondria of 
kinetoplastid protozoa describes the insertion and 
(or) deletion of precise numbers of uridines at precise 
locations in the transcribed RNA. Such genes are 
known as cryptogenes. We describe dynamic 
programming algorithms to search for unknown 
cryptogenes and for the sequences that template the 
editing, gRNAs. Results of applying the cryptogene- 
gRNA algorithm to known cryptogene sequences 
from Leishmania rarenrolae are presented. 
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- INTRODUCTION 

The nucleic acid sequence database is rapidly 
increasing, doubling approximately every two years. 
The GenBank release number 73 (Spring 1993) 
contains approximately 100 million nucleotides. The 
database is very useful for finding genes related by 
structure or evolutionary history. Much effort has 
gone into developing algorithms to rapidly (FASTA 
(Lipman & Pearson 1985) and BLAST (Altschul 
et.al. 1990)) or accurately (Smith & Waterman 1981) 
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search the database. In this article we will take this 
technology in a somewhat different direction. Our 
interest is in modifying existing algorithms so that 
we might gain insight into a newly discovered 
biological phenomena, RNA editing. 

The term RNA editing was introduced to describe 
the modification of mRNA sequences within coding 
regions (see Simpson & Shaw 1989 for a review). 
In the mitochondria of kinetoplastid protozoa, RNA 
editing involves the addition (and more rarely the 
deletion) of precise numbers of uridine (U) residues 
at a few or many locations, as otherwise the resulting 
mRNA would not encode the correct protein. A gene 
that undergoes editing is refered to as a cryptogene. 
RNA editing in kinetoplastid protozoa is more 
disruptive to the central dogma of the co-linearity 
of DNA and protein sequences than the phenomena 
of introns and exons. How does the mitochondria 
accomplish this intricate job of editing? 

The answer to the mystery of RNA editing lies 
in genes known as guide RNA (gRNA) genes. These 
genes are transcribed to small gRNAs that mediate 
or guide the editing process (Blum et. al. 1990). It 
has been determined that gRNAs form short helical 
or basepaired “anchor” regions immediately 
downstream (3’) of the pre-edited region, forming 
the first event of RNA editing. The remainder of 
the gRNA forms a perfectly paired region with the 
edited mRNA, given that we allow G.U basepairs. 
The idea is that the editing machinery proceeds 3’ 
to 5‘ on the gene (5’ to 3’ on the gRNA), moving 
past basepairs until a mispair is encountered. Then 
a U is inserted into the cryptogene to basepair with 
the unpaired G or A in the gRNA. Then the 
machinery continues. Several gRNA can be involved 
to give a mature mRNA. 

In this paper we describe and extend some of our 
earlier work (von Haeseler et al. 1992) where we 
developed computational methods for locating 
kinetoplastid cryptogenes. Our dynamic program- 
ming algorithms “detect” possible gRNA genes and 
cryptogenes among genomic DNA. A key insight is 
to allow free insertion of U into potential cryptogenes 
to increase the number of basepairs with the potential 



270 New Zealand Journal of Botany, 1993, Vol. 31 

gRNA. The algorithms are based on the algorithm 
for best subsequence alignment of Smith & 
Waterman (1981). 

CRYPTOGENE-gRNA ALGORITHMS 

The local similarity search algorithms as presented 
by Smith & Waterman (1981) is to find the best 
matching regions or segments between two 
sequences. Take x = x1 x2.. .x, and y = y1 y2 ...y,,, to 
be the two sequences. Define a similarity between 
the letters x and y to be s(x,y). It is convenient to 
require that s(x,y) take on both positive and negative 
values, and s(x,x) > 0 usually holds. Since we will 
not need to weight gaps other than proportional to 
length, it is sufficient to extend s(.,.) to handle these 
cases, so set s(-.y) = s(x,-) = -6 < 0 for all letters x 
and y. “-” represents the insertioddeletion of y or 
x, respectively, and there is a negative score of -6 
for each inserteddeleted letter. 

The global alignment of x and y is defined to be 

S(x,y) = max [E s ( x f ,  yf) : xfandy; are just x1 ... 
x, and y1 . . . y m  with “ -” inserted.} 
i>l 

S(x,y) is the maximum scoring alignment over all 

( ‘Tm) possible alignments, where all letters of x and 

y must be accounted for in the alignment. 
Now we define the local score by 

H(x,Y) = max( S(xSi+I. * * ~ i , ~ k ~ k + l .  . . ~ b  
:1 I i Ij Sn, 1 Sk I1 S m } .  

This is the maximum of the global alignment scores 
of all pairs of intervals from x and y. While H 

appears to be global alignment problems, 

there is an elementary O(nm) algorithm, known as 
the Smith-Waterman algorithm. Set H i j  = 0 if i j  = 
0. Then recursively find 

Hij = max {Hi-l j-1 + s(xi,yj), Hi-lj + s(x~,-), Hij.l+ 

It can be shown that H(x, y) = max [ Hij:  1 I i I n, 1 
I j I m ) .  

In Waterman 8z Eggert (1987), it is shown that a 
simple recalculation procedure allows us to compute 
the k-best alignments, which do not share a match 
or mismatch. This modification is important in 
practice but is not required for the algorithm we next 
present. 

Now we modify the Smith-Waterman algorithm 
to make a new algorithm suitable for finding 
cryptogenes. For definiteness let x = x1 . . . x, contain 

s(-,Yj),O 1 * 

the potential cryptogene and y = y1 ... y,,, contain 
potential gRNA sequences. The reason for employ- 
ing local algorithms such as Smith-Waterman is the 
unknown locations of cryptogenes and/or gRNAs. 

The changes are easy to make once the motivation 
is clear. We wish to use the basic algorithm presented 
above but with modified scoring. Basepairs must be 
rewarded, for example 

-00 otherwise 
Here non basepairs are not allowed by setting s(A,c) 
= -00, for example. 

These are just possible numbers that are motivated 
by the free energies of basepairs. Stacking energies 
can easily be added. It is not clear the free energy is 
the correct motivation for this scoring. Our results 
in practice do not seem to be very dependent on 
scoring. 

To cover the insertion of U, we need to set s(-,A) 
= s(-,G) = c > 4. In our program we used s(-,A) = 
s(-,G) = 0 for the “free” insertion of U’s. To prevent 
all other insertions we set 

s(-,IJ) = s(-,c) = - 
as we do 

s(x,-) = --oo for all x E (A,U,G,C}. 

It should be emphasised that the search here is 
for a precise molecular structure, that of the 
cryptogene-gRNA interaction. The motivations of 
evolutionary related subsequences is invalid here. 
If the precise basepair and insertion process does 
not take place, the resulting mRNA will not encode 
the correct amino-acid sequence. 

Tracebacks from the max Hij usually involve 
multiple “alignments” but for these gRNA problems 
the multiplicity is never an issue in practice. In 
addition, Waterman & Eggert (1987) describe a 
subtle algorithm to produce the k-best subsequence 
alignments that do not share any matches or 
mismatches. It did not turn out to be necessary to 
bring these ideas into producing the k-best candidate 
gRNA-cryptogene interactions. Generally the 
tracebacks are unambiguous and non-intersecting. 

- 

. 

. 

RESULTS 

To test the power and utility of our approach we 
considered the following problems. There are seven 
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gRNAs experimentally known to edit four crypto- 
genes (cytochrome b, Murf2, ND7, and COII) in 
Leishmania turentolae. Our test problem was to take 
these known cryptogenes and search the L. 
turentolae maxicircle (20 993 basepairs, both 
strands) and see what the algorithm produces. In 
Table 1 these results are shown and, except for the 
ND7-gRNA 5’ alignment, the results were not useful. 
Varying scoring did not improve the rankings. Then 
we studied the known examples of editing for useful 
(common) sequence patterns that could improve the 
search. Since each of the known gRNAs basepair 
with a different nucleic acid coding region, con- 
sensus methods are unlikely to give useful insights. 
Instead, our observations involved the numbers of 
bases and basepairs, features that might be employed 
by the editing machinery. Here are the features we 
imposed on our search: 
1. There must be at least five basepairs in the anchor. 
2. There cannot be more than three G.U basepairs 

in the anchor. 
3. There must be at least four adjacent Watson-Crick 

basepairs in the anchor. 
4. The number of adjacent inserted U’s cannot 

exceed eight. 
5 .  Between inserted U’s there cannot be more than 

three (non-edited) basepairs at the 5’ end of the 
cryptogene. 

These rules improve the results as seen in the last 
column of Table 1 but they are not good enough to 
suggest that we can find unknown cryptogene-gRNA 
pairs. 

To study why our results were so weak, we 
modelled the genome as a random sequence and we 
derived by Markov chains and Perron-Frobenius 

* 

theory the statistical distribution of the length of the 
longest candidate edited region. If Z is the length of 
a random editing event, we show that 

P(Z = t) = 0.0005(0.7666)‘ 

for the maxicircle sequence with pu  = 0.3835, p c  = 
0.1 160, p G  = 0.0949, and pA = 0.4056. Recall that 
the maxicircle sequence is 20 993 and that we search 
both strands, so m = 2 x 20 993. For a cryptogene n 
= 100, the “longest 2” should be approximately the 
solution of 

(100)(2 x 20 993)P(Z 2 t) = 1 

or t = 34.18. If n = 1O00, t = 43. Therefore, random 
genomic sequence gives potential gRNAs between 
35 and 45, just the sizes of the real gRNA sequences 
in Table 1. This statistical distribution explains the 
lack of power of our searches. 

PROTEIN-CRYPTOGENE SEARCHES 
A distinct approach is to see if a subsequence of x 
= x1x2 . . . x,, encodes a subsequence of a homologous 
protein z = zIz2 ... zm. We could, for example, use 
the cytochrome-b sequence from yeast for z. The 
computational algorithm is derived from asking if 
free insertion of U’s into x will encode a protein 
that is evolutionarily related to z. As usual we need 
to specify the scoring. Let s(xi xi+l xi+2, zj) be the 
similarity (e.g., as from the Dayhoff matrix) 
between the amino acid encoded by xi xi+l xi+2 and 
zj. Define Hii to be the best score of any (edited) 
subsequence ending at xi  and at zi, or 0, whichever 
is larger. We must allow for deletion of nucleotides 
(6,) or aminoacids ( 6A) as well as the free insertion 
of U’s. The resulting algorithm is 

Table 1 Ranking by score of known gRNAs when searching the maxicircle with four cryptogenes. 

Rank in 
the list of Rank after 

Cryptogene gRNA Length suboptimal gRNA applying rules 

cytochrome b gRNAI 32 27-30 3 
gRNAII 54 3 6 4 3  1 

ND7 gRNA-5’ 44 2 1 

Murf2 gRNAI 14 27 1-306 78-84 
gRNAII 46 1286-1 327 18-2 1 

g R N A - F S 19 92-93 8 
COII gRNA-FS 16 88-100 86-99 
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After the n x m matrix H = (Hi$ is calculated, 
then max{Hg : 1 I i I n, 1 I j I m) gives the best 
matching segment between possible cryptogenes 
encoded proteins in x and in the protein z. This 
method was not a success in practice for fairly 
obvious reasons. Namely, the sources of error in all 
possible cryptogenes and in the evolutionary 
distance to z dominate any biological matchings. 

Clearly the knowledge that the cryptogene must 
be edited to a coding sequence can be used, although 
it is not quite as straightforward as the above 
algorithms. The algorithm we give next has not 
appeared elsewhere. Let x be the potential crypto- 
gene sequence, y be the sequence containing 
potential gRNAs, and z be the potentially homol- 
ogous amino acid sequence. Among first approaches 
that might be considered is to run a three-sequence 
alignment algorithm with time and space complexity 
equal to the products of the three sequences. While 
the method we give does involve three-sequence 
alignment, it handles the cryptogene-gRNA 
alignment first and is a practical way to greatly limit 
the search, and should be much more powerful than 
the (Hg)  method described above. 

First we find all potential cryptogene-gRNA 
matches. Define FG = maximum number of amino 
acids encoded (by the genetic code) in the gRNA 
ending at y j  and in a cryptogene ending at xi.  Clearly 
we initialise the algorithm by Fg = 0 if i I 2 o r j  I 2. 
Let S = {A ,G) ,  the nucleotides that pair with inserted 
U’S. 

where T = set of terminator or stop codons. Notice 
that FV= 0 unless it starts or extends a cryptocoding 
segment. 

Each F ,  > 0 corresponds to FV amino acids 
encoded in the gRNA. Usually these will be only 
one path achieving F ,  but that is of course not 
necessarily the case. A simple modification of the 
algorithm for F gives the path that maximises the 
xi’s used in the alignment, which is equivalent to 
minimise the number of inserted U’s. This seems to 
us to be the most reasonable choice for the choice 
of cryptogene. 

Therefore, the DNA encodes possible protein 
sequence segments and we take only those with FU 
2 c,  that is, with at least c residues. It is elementary 
to maximally extend these possible coding intervals 
in x by adding triplets of nucleotides (codons) from 
x or from another coding interval, maintaining amino 
acid encoding. Adding a penalty for changing 
intervals is also easy to do. Two maximal extensions 
are either identical or disjoint. 

Now we match these extensions with z, the 
homologous protein sequence. The extension 
sequences can be indexed by the increasing sequence 
xil  xi2 ... xin when i, is the largest xi in the l-th 
“codon”. If this set is empty omit xjl  in the sequence. 
Define 
Gi,k = Best score aligning any segment of z, ending 

at residue zk, with any extension ending at xi. 
Then 

. 

’ 
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G .  . = ‘” < 

‘ Gi,k-l -6A 
Gi-l,k-l +s(y,zk ), all extensions using 

only xi to code y ,  

Gj-l,k-l -6N 3 

Gi-2,k-l +s (y , zk ) ,  all extensions using 
only xi-lxi  to code y ,  

Gj-2,k-l -26N-6,- 
Gi-3,k-l +s (y , zk ) ,  all extensions using 

only xj-2xi-lxj 
to code y, 

Gj-3,k-l -36N-6,4, 
0 

Our technique of putting intervals together to 
match a sequence has some history. Bement & 
Waterman (1977) analysed geological data with a 
related technique. Auger & Lawrence (1989) studied 
identification of segment neighbourhoods in protein 
sequences. Sankoff (1992) looked at a decom- 
position of a sequence into segments, each belonging 
to some template in an inventory. Here the set of 
maximal extensions can be viewed as his inventory. 
This method has not yet been tested on data. 
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