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We prove two topological theorems in physical chemistry. Namely, we introduce 
a hybrid of transverse and tangential measures on train tracks to prove sphericity 
of various simplicial complexes which arise from certain idealized models of physi- 
cal chemistry. These complexes are at once identified with Thurston’s space of 
projective geodesic laminations on an ideal polygon and with the analogue of a 
compactification (described elsewhere) of the moduli space of a punctured Riemann 
surface. The physical structures we study are various sub-collections of the set of all 
possible planar chemical bonds among the sites of a linear macromolecule. Each 
such collection we consider has a natural partial ordering, and the geometric 
realizations of appropriate posets are shown to be topological spheres. Such a 
topological statement encodes a wealth of combinatorial data, as we briefly discuss. 
In fact, our primary motivation here is to study secondary structures on RNA. This 
imposes the further restriction that there can be at most one base-pair supported 
at a given site of underlying linear macromolecule, and imposing this restriction 
leads to the class of “binary macromolecules.” Our  main results here assert the 
sphericity of certain topological spaces of both arbitrary and binary macro- 
molecules, and it is the latter which we hope may have applications to RNA. Our 
techniques are largely elaborations of elementary topological techniques from 
Techmiiller theory and the theory of train tracks. 0 1993 Academic P~CSS. Inc 

1. MACROMOLECIII.~ AND RNA 

By the linear macromolecule M ,  of lengthm, we mean the interval 
[l ,  m ] c R  together with the specification of the m a  1 integral points 
[l ,  m ]  n Z. Each point of [ 1, m ]  n Z is called a site of M,,  and in our 
model below for RNA or DNA, the sites correspond to nucleotides. 
An unordered pair b =  (s, s’} CZ of (distinct) sites of M,, so that 
m - 1 > Is-s’J > 1 is called a bond on M,, and the bond fl  is said to be 
supported at the sites s, s‘. The usual terminology in biochemistry refers to 
fl  as a “base-pair,’’ which is realized by one or more hydrogen bonds; here 
we abuse this terminology and refer to fl itself as a bond. 
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FIGURE I 

By a secondary structure on M , ,  we mean a non-empty collection S of 
bonds with the property that if {sI,s’,}, { s ~ , s > } E S  where s1 <si and 
s2 < si, then sI <s2 <s‘, if and only if s, <s> <s‘,. This restriction on 
families of bonds will be explained momentarily. 

We require several different formulations of the. combinatorics of 
secondary structures in the sequel and begin by defining the “bond picture” 
of a secondary structure as follows. If S = {Si}:= I is a secondary structure 
on M,, then consider drawing a collection of n semi-circles in 
( W 2 ~ I W ~ M , ,  where to the bond Si= {si, s:}, we draw the upper semi- 
circle of the circle with endpoints si ,  s: and center in R c R2. To illustrate 
this definition, we draw in Fig. 1 the bond picture associated to the 
secondary structure S =  { {2,8},  {3,6}}  on the linear macromolecule Mlo. 
The restriction above on the bonds in a secondary structure guarantees 
that any two semi-circles in the associated bond picture intersect in a single 
site if at all. 

Define an arbitrary macromolecule to consist of a secondary structure 
S = {Si} 1- I on M, for some m 2 1 and n >, 1. One imagines collapsing to 
a point each semi-circle in the bond picture associated to a secondary 
structure S on M, in the natural way so as to obtain a planar diagram 
which is intended to model the “actual” chemical bonds determining a 
macromolecular structure. See Fig. 2 for this “collapsed bond picture” 
corresponding to the secondary structure considered in Fig. 1. 

FIGURE 2 
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A primary motivation for our investigations here is to study the secondary 
structures (in the sense of [StW, Wa]) on RNA, and in this situation, one 
should further restrict the allowed bonding for physical-chemical reasons as 
follows. We say that an arbitrary macromolecule S is binary provided that 
for each site s of M, there is at most one bond in S supported at s. 
By definition, the secondary structures considered on RNA satisfy this 
condition, and more complicated bonding corresponds to “tertiary 
structure.” 

Another “actual” restriction on a secondary structure corresponding to 
RNA arises from the “rigidity” of the sugar-phosphate backbone of the 
underlying linear macromolecule; namely, the sites comprising the support 
of a bond cannot be too close together. Indeed, experimental evidence 
[Le] suggests that if B = {s, s‘} is a bond, then (s-s’l is at least three or 
four (that is, a “hairpin” cannot be too “tight”), whereas our condition on 
secondary structures requires only that the sites supporting a single bond 
cannot be consecutive. We do not handle any further such combinatorial 
restrictions here, and must consider binary macromolecules as a simplified 
model for secondary structures on RNA. Of course, by ignoring the restric- 
tions on the secondary structure imposed by the allowable bonding 
between particular nucleotides (the “primary structure”), our model is 
already simplistic. Furthermore, as noted above, our very notion of a bond 
is simplistic from the point of view of RNA insofar as a base-pair actually 
corresponds to several hydrogen bonds between nucleotides. 

On the other hand, we also consider here arbitrary macromolecules with 
no bound on the number of bonds supported at a given site, and we again 
do not impose any combinatorial restriction arising from “rigidity” of the 
underlying backbone. Our main results come, therefore, in two essentially 
different combinatorial guises: arbitrary macromolecules and binary 
macromolecules, and it is the latter which we hope may have applications 
to RNA. 

2. SPACES OF MACROMOLECULES 

Let us fix the number m of sites and define 

Yrn = (arbitrary secondary structures on M,).  

For an example, we enumerate the set Y; in Fig. 3. (The configuration of 
the figure will be explained below). The finite set 9, admits a natural 
partial ordering < induced by inclusion of sets, so S< S’ if and only if the 
bond picture associated to S arises from that associated to S‘ by erasing 
some collection of semi-circles. 
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- 
FIGURE 3 

Next, we briefly discuss a standard construction in topology which will 
be required in the sequel. This construction is called the “geometric realiza- 
tion of a poset” and associates a simplicial decomposition of a topological 
space to a given poset. We give a definition tailored to our needs below 
and consider some examples here, referring the reader to the text [Mu], 
for instance, for more details and background material. To describe this 
construction, suppose that X is a finite set, and let B be some poset whose 
elements are subsets of X, where the partial ordering in B is induced by 
inclusion of subsets of X, and make the assumption that if A €9 and 
(21 ZBc A, then B E B  as well. We build a triangulated topological space 
$ by first defining a collection 8’ c B of points (called “0-simplices”), then 
a collection of line segments 8’ (called “1-simplices”) in 8 with vertices 
among Bo, then a collection 9’ of triangles (called “2-simplices”) in B 
whose boundary edges are among the line segments 8‘, and so on, finally 
taking the space 3 itself to be the union of all the simplices considered. 

Indeed, there is one 0-simplex in B for each singleton A €9. Suppose 
inductively that all of the p-simplices in Y have been defined for each 
p < N- 1 and proceed to define the N simplices in B as follows. If A E B 
consists of N + 1 elements of X, then there is a corresponding N-simplex in 
B; writing A = (xl, ..., x N +  ,}, we identify each A - { x i }  for i =  1, ..., N +  1 
with its corresponding N- 1 simplex in gN-l to describe the inclusion 
into B of the N-simplex associated to A. 

Let grn be the triangulated topological space arising as the geometric 
realization of the poset Yrn. As an example of geometric realization, we 
illustrate the space g in Fig. 3; the pentagon in the figure is the geometric 
realization g of g, and next to each simplex (i.e., point or line segment) 
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of the pentagon, we illustrate the corresponding secondary structure on 
M , .  This explains the configuration of the figure, as was promised above. 

To better understand gm, fix some S E ~ ~ ,  and arbitrarily associate a 
positive real number X ~ E  W, called the bond strength of p, to each bond 
B E  S; an assignment of a bond strength to each bond in S is called simply 
a bond strength on S itself. There is a natural equivalence relation on the 
collection of all possible bond strengths on S, where two bond strengths 
( x p :  PES) and ( y p : P ~ S )  are equivalent if there is some Z E W ,  so that 
x p =  fyp for each BES. An equivalence class of bond strenghts on S is 
called a projective bond strength on S, so a projective bond strength on a 
secondary structure S is an assignment of ratios of bond strengths to the 
set of bonds comprising S. Thus, if S consists of N+ 1 2 1 bonds, then the 
collection of all projective bond strengths on S is naturally identified with 
an N-simplex. 

Identifying the simplex of all projective bond strengths on S with the 
simplex in gm corresponding to SeYm in the natural way, we find that 
gm is just the collection of all pairs (S, [x]), where S E ~ ~  and [x] is a 
projective bond strength on the bonds comprising S. 

Suppose that {s,, si }, (s2, si} are bonds in SE 9, with sI <s‘, and 
s2 <si. We say (sl, s:}, (s2, s;} are parallel provided Isl -s21 = 1 = 
Is’, - si1 and consider the equivalence relation generated by parallelism on 
the set of bonds comprisingS. (The collection of bonds comprising a 
parallelism class is called a “helix” in the biological literature.) Let { n,} /“= 
denote the equivalence classes, where l7, consists of p r  bonds, for each 
1 = 1, ..., L, and define 

Let q(S)  denote the number of bonds (s, s’} E S so that Is -s’I = 2, set 
r ( S )  = p ( S )  + q(S) ,  and let f(S) denote the number of (“free”) sites which 
do not occur in the support of any bond in S. 

9”, is 
a binary macromolecule, and notice that if SE 9“,, then m < 3f(S)  + 2p(S).  
In particular, the poset 

Turning finally to binary macromolecules, suppose S E 9, = Urn 

@;= (binary SE Yrn : f ( S )  =fand r ( S )  < r } ,  

is finite for each r 2 0. There is a corresponding infinite poset 
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FIGURE 4 

for each f > ,  1, and the chain 

of posets gives rise to a corresponding chain 

of simplicial inclusions of geometric realizations. As an example, we 
illustrate 9; in Fig. 4, where the configuration is explained as before. 

3. R o o m  FATTREES 

Given an abstract rooted tree T and an embedding t c R2 of t in the 
plane, there is a further structure induced on t. Namely, for each vertex v 
of T there is an induced (counter-clockwise) cyclic ordering on the collec- 
tion of all edges of t incident on v. We refer to such specifications of cyclic 
orderings on the edges incident on a common vertex v, for each vertex v of 
t ,  as a fattening of T. Abstractly, we define a rooted fattree 7 to be a rooted 
tree together with a fattening. We regard two rooted fattrees as identical if 
there is an isomorphism of underlying rooted trees (so the isomorphism 
must map the root to the root) which respects the cyclic orderings. Thus, 
an embedding of a rooted tree in the plane uniquely determines a rooted 
fattree. Conversely, it is elementary to see that a fattening of an abstract 
rooted tree uniquely determines an isotopy class of embeddings of the 
underlying rooted tree into RZ. Define the valence of a vertex in a rooted 
fattree T to be the number of distinct edges incident on it, and let ut(7)  
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denote the number of k-valent vertices of T for each k>,  1. In particular, we 
let U ( T )  = u l ( r )  - 1 denote the number of univalent vertices excluding the 
root and let b(r )  = u 2 ( ? )  denote the number of bivalent vertices. We also let 
e(z) denote the total number of edges of T and i ( r )  denote the number of 
internal edges of T. 

LEMMA 1. If T is a rooted fattree, then 

Proof: For the first identity, consider two copies o f t  and identify each 
corresponding pair of univalent vertices to a single bivalent vertex to 
produce a “fatgraph” G (cf. [Pl]) with bivalent vertices as in Fig. 5 ;  G is 
called the “double” of T along its univalent vertices. The Euler charac- 
teristic x(G)  of the underlying graph is evidently 1 - u(T), while the very 
definition of Euler characteristic of G gives x(G) = - Ck (k - 2 )  uk(G), as 
was asserted. 

Insofar as the double G obviously has x k ,  kuk(r) = 1 + U ( T )  + 
C k z 2  kvk(t) edges and this is clearly twice e(r), the remaining identities are 
elementary consequences of the first identity. Q.E.D. 

Given some u 2 2, consider the collection Tu of all isomorphisms classes 
of rooted fattrees r with u ( T ) = u ,  where the root of r is univalent and the 
other endpoint of the edge of T containing the root is a vertex of valence 
at least three. Notice that Tu is countably infinite for each u; on the other 
hand, for each b E h, there are only a finite number of elements of Tu with 
b(r),<b by the first part of the previous lemma. 

In fact, each Tu is a poset for each u 2 2. To define the partial ordering 
< on Tu, we suppose that and define another T‘ET~ as follows. 
Consider an internal edge e of T whose endpoints correspond to vertices 
v ’ ,  v 2  of respective valences u ,  and u p  We may “contract” e to a single 
point, coalescing v 1  and v 2  to a single vertex of valence u l  + u 2 - 2  as 
illustrated in Fig. 6; also illustrated in Fig. 6 is the natural induced 
fattening on the resulting rooted tree. We let T’ denote the resulting 
rooted fattree and say that T‘ arises from t by an elementary moue along 
the internal edge e. 
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T 

FIGURE 5 

FIGURE 6 
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We stipulate that T’<T and let < denote the induced partial ordering 
on Fu. Thus, t l  < t2  if and only if one can pass from T~ to t1 by a finite 
sequence of elementary moves. In particular, given any t2  E Yu, there is a 
well-defined t l  E Fu where b ( t , )  = O  obtained by applying elementary moves 
along all the internal edges of t2  with a bivalent endpoint. In fact, we also 
consider the finite sub-posets 

F:= { t ~ K : b ( t ) < b }  

SPACES OF RNA SECONDARY STRUCTURES 

consisting of rooted fattrees with u + 1 univalent vertices (including the 
root) and at most b bivalent vertices ~ . .. - - -. 

The rest of this section is dedicated to the proof of 

THEOREM 2. There are canonical isomorphism of posets 

0 :  a;+ F;, 

t :  .4”, + 9:- ,. 
Proof: The mapping (T is described in [ScW, Proposition 11, which we 

next recall. The rooted fattree (T = a(S) associated to SEA?; is constructed 
inductively from the bond picture of S. To describe this construction, 
choose some vertical interval I in the upper halfspace in R2, and take 
its upper endpoint to be the root. Adjoin to I disjointly embedded edges 
running from the lower endpoint of I to each outermost bond and each 
“accessible” free site, as in Fig. 7. One proceeds constructing a in this way 
(as is also illustrated in Fig. 7) to produce the desired (T =a(S)eF;. 

S 

FIGURE 7 
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To see that u is a bijection, suppose we are given a rooted fattree 
U E ~ ? ,  and embed u in the upper halfspace in R2 in such a way that the 
root lies at positive height in R2 and each of the other univalent vertices 
lies on R c R2. To draw the bond picture of the corresponding secondary 
structure S, we draw one semi-circle for each interior edge of u, and 
there is an essentially unique way to draw these semi-circles so as to be 
disjointly embedded since 0 is a tree. Mapping the univalent vertices as 
well as the endpoints of the semi-circles to consecutive integer points in 
the natural way gives the bond picture for a corresponding secondary 
structure S E a;. 

The maps in the previous two paragraphs are evidently inverses and 
respect the partial orderings, so u: 9;- 9; is indeed an isomorphism of 
posets. 

Turning to the map T ,  suppose that S E Y ~ ,  and consider the bond 
picture of S. To construct T = r ( S )  E F: - I ,  begin as before with a vertical 
interval in R2 whose upper endpoint is taken as the root of?. Adjoin to I 
disjointly embedded edges running from the lower endpoint of I to each 
outermost bond and each “accessible” interval in R c R’ whose endpoints 
comprise the intersection of the interval with the collection of sites, as in 
Fig. 8. Continue constructing T in this way (as illustrated in Fig. 8) to 
produce the desired T = r ( S )  E F i  - 

To describe the inverse of T ,  suppose T E 9: - I ,  and embed T in R2 in the 
upper halfspace as before so that the root lies at positive height in OX2 and 
each of the other univalent vertices lies in R c R2. To draw the bond 
picture of the corresponding secondary structure S, put one site between 
each pair of consecutive univalent vertices of T lying in R as well as one site 
before the first and one site after the last univalent vertices of z lying in R 

I I I I ~ I  I I - I - I - - I  I I I I I 

S 

FIGURE 8 
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as in Fig. 8. There is again one bond in S for each internal edge of t ,  and 
we may uniquely draw the bond picture as before. 

As above, the maps in the previous two paragraphs are evidently 
inverses and respect the partial orderings, so T: 9", -+ Ti-, is indeed an 
isomorphism of posets. Q. E.D. 

SPACES OF RNA SECONDARY STRUCTURES 

We sketch in Section 6 below a treatment of arbitrary macromolecules 
which is analogous to our treatment of binary macromolecules in 
Theorem 2. 

4. THE ARC COMPLEX 

I We show in this section that 9: is isomorphic to a certain poset d,, 
called an "arc poset," whose geometric realization 2, is a topological 
sphere of dimension u - 3. The sphericity of d,, is in a sense well-known (as 
we discuss later), but we include a simple proof of this fact here. 

To define the poset d,, consider a planar polygon P, of u sides, and 
choose a distinguished edge of P, once and for all. Define an arc family in 
P, to be (the homotopy class of) a (non-empty) collection of arcs disjointly 
embedded in P, with endpoints among the vertices of P so that there is at 
most one arc connecting a given pair of vertices and each arc connects 
non-consecutive and distinct vertices. See Fig. 9 for the arc families in the 
pentagon P,. 

FIGURE 9 
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Identify the vertices of P,  once and for all with a set V.  Given an arc 
family in A c P,, we may associate a collection of unordered pairs of 
elements of V in the natural way, where we associate to an arc a E A its 
unordered pair of endpoints, and to A itself we associate the set whose 
elements are the unordered pairs associated to the component arcs. Thus, 
du is a poset of the type considered in Section 2. 

PROFWITION 3. There is an isomorphism of posets 

F :  du --+ F: - L. 

Proof. The map F is essentially a recapitulation of the map T in 
Theorem 2; see Fig. 10 for the rooted fattrees corresponding to the arc 
families in Fig. 9. Actually, this is the polygonal case of the duality between 
“fatgraphs” and “ideal cell decompositions” (cf. [ P2] ). Q.E.D. 

Our main result for this section is 

THEQREM 4. For u 3 4, the geometric realization du of the poset d, is a 
topological sphere of dimension u - 4. 

Proof. Rather than study d, directly, we consider the “deprojectiviza- 
tion” d?,, defined to consist of all pairs (A, x), where x = (xu: a E A )  is a 

* 
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bond strength (not a projective bond strength) on A ;  cf. Section 2. We show 
that d, is naturally homeomorphic to R U - 3 ~ d , , r  where = denotes the 
equivalence relation of being homeomorphic, in such a way that O E W - ,  
corresponds to the empty weighted arc family 0 in P,. Thinking of d, as 
the cone over a?, from 0, it is then evident that 

where S" denotes the n-dimensional sphere. 
Thus, it sufices to prove that d, = R"-3 , and to this end, we choose a 

triangulation A,  of P, once and for all; that is, A ,  is an arc family SO that 
each component of P ,  - A ,  is a triangle, and one finds that there are u - 3 
arcs in A , .  (In fact, there are (::;) - (:I,") different such triangulations 
we might choose here, using the standard notation for binomial 
coeficients; see [Kn, Problem 2.2.1, No. 41.) 

Given a vector X = (X,: a E A,) where each X ,  E R, we define a corre- 
sponding (A, x ) E ~ ( ,  (so that X=O if and only if A = 0 ) ,  and there 
are cases depending on the signs of the component Xa's as well as other 
conditions. Let us formally associate X ,  = 0 to each frontier arc f i  c P, so 
that to each triangle T complementary to A,, in P, is associated the triple 
{X,, X,, X3} of real numbers assigned to its frontier edges. There are the 
following possibilities to consider for {X,, X,, X ,} :  

(a) Xi>O,  for i= 1,2,3, and X i , < X j + X k  whenever ( i , j ,  k} = 
{ 1,2, 3 1; that is, the Xi  satisfy all three weak triangle inequalities; 

(b) Xi>O,  for i =  1,2,3, and some triangle inequality among the Xi 
fails, say X ,  > X 2  + X,. Notice that if X I  2 X2 + X 3  and X, 2 XI + X ,  (for 
instance), then X ,  < 0, while if all three triangle inequalities fail, then X,, 
X,, x,ro; 

(c) XI < 0 and X,, X, 2 0 (for instance); 
(d) X I  20 and X 2 ,  X3 GO (for instance); 
(e) X i 6 0 ,  for i =  1,2, 3. 

The construction of a weighted arc family inside the triangle T in each of 
these cases is indicated in the corresponding part of Fig. 11. 

To combine these weighted arc families on the complementary triangles 
into a weighted arc family on P, itself, consider a neighborhood of an arc 
a E A,. There are two cases depending on whether X ,  < 0 or X ,  2 0. In the 
former case, simply combine the two arcs parallel to a into a single parallel 
arc with weight x,= lXal; see Fig. 12(a). One imagines taking a corridor 
about each arc of width 4 IX,( and sewing these two corridors together in 
the natural way to get a corridor about a of width 1X.l. 
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Suppose X, 3 0, let TI, T,  denote the triangles in P ,  on either side 01 a, 
and choose an orientation ona. We have constructed above in T, a 
weighted arc family and let t ,' , ..., 1:' (where n,  < 3 by construction) denote 
the arcs in Ti meeting a enumerated in their order of occurrance along 0; 
for i =  1,2, and let the weight on t', be denoted w',. Imagine embedding 
in p ,  a corridor of width w', about each arc t',. There is a unique way to 
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combine these corridors near a, as illustrated in Figure 12(b), since the 
collections of corridors on either side of a have the same total width 

n2 "' . 1 w', =x,= w:, 
J = 1  j -  1 

as in Kirchhoff's laws of electricity. (See [PH, Construction 1.7.71 for more 
details.) 

Combining the arc corridors in each complementary triangle, we finally 
construct a family of corridors in P,, where each corridor consists of a 
family of parallel copies of an arc in /? in P,. By construction, the various 
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p may be disjointly embedded, and the resulting arc family in P ,  is 
denoted A. The width of the corridor about p gives a corresponding bond 
strength xg for each such p. Thus, (A,  x)  E du is canonically associated to 
X, as was promised above. 

The inverse map associates X to some ( A ,  x ) E ~ "  by the assignment 

if a E A * ;  
XI={ - x z 9  1 c XI, if a 9 A , ,  

a 6  A ,  P E  I n A 

where the inner sum in case a 9 A, is only over transverse intersection 
points (of geodesic representatives). 

The maps of the previous two paragraphs are evidently continuous and 
mutual inverses, completing the proof. Q.E.D. 

Remark. These coordinates are a hybrid of Thurston's transverse and 
tangential coordinates on train tracks (cf. [PHI);  this global coordinatiza- 
tion of the space J& of measured laminations on a polygon is new. At the 
same time, we have described in [P3] a compactification of the moduli 
space of an arbitrary (i.e., not necessarily planar) punctured Riemann sur- 
face, and the proof of Theorem 4 first arose in that context as a very special 
case of our conjecture that this new compactification is an orbifold; in fact, 
here (and only in this setting) this compactification is identified with the 
space of projectively measured geodesic laminations, which is well known 
to be spherical. 

5. COMBINATORICS OF SECONDARY STRUCTURES 

We finally bring together the previous results into explicit combinatorial 
assertions about secondary structures. Our main result for this paper, 
which follows, is an immediate corollary of Theorem 2, Proposition 3, and 
Theorem 4: 

For any m 2 4 ,  gm is a topological sphere of dimension 
m - 4, and for any f 2 3, 3; is a topological sphere of dimension f - 3. 

We derive some explicit combinatorial consequences below. Prefatory to 
this, we refer the reader to [Mu] for a discussion of simplicial homology 
groups and chain contractions and have 

THEOREM 5. 

LEMMA 6. For each r 2 0, the natural inclusion 

93; c a;+ 
is a chain homotopy equivalence, for any f 2 3. 
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Proof: By Theorem 2, it suffices to show that 9; c 9;+ is a chain 
homotopy equivalence, and one simply takes a chain homotopy 9: + 9:+' 
induced by inserting a bivalent vertex along a specified branch. Q.E.D. 

Our next result (which follows immediately from the previous two 
results) is a natural extension of Theorem 5. 

THEOREM 7 .  For each ma.,  9, is a triangulated topological ( m - 4 ) -  
dimensional sphere. For each r>O and f > 3 ,  93; is a homology 
( f  - 3)-dimensinal sphere, and in particular, L%; is a triangulated topological 
( f - 3 )-dimensional sphere. 

Of course, Theorem 7 is a topological synthesis of a wealth of explicit 
combinatorial information about secondary structures. To give an example 
of an explicit combinatorial result about secondary structures which 
follows from Theorem 7 ,  we define the total valence of a fattree t as 
V ( r )  = Ck u ~ ( T )  and have 

COROLLARY 8. For any m > 4, we have 

( - 1)~"'s)) = { ;; if misodd; 
S € 9 *  if m iseuen, 

and for any r 2 0 and f 2 3, we have 

( -  1)Y'"'S)) = {; if f is odd; 
S+ if f iseuen. 

We first consider the poset Ym and must compute the dimension 
S of the simplex corresponding to S E Y ~ .  According to the definitions, 
S =  i ( t ( S ) ) -  1, so by the third part of Lemma 1, S =  V ( r ( S ) ) - 2 .  In the 
same way, the dimension of the cell corresponding to SE L%; is found to be 

Thus, the left-hand side of the equation in Corollary8 is simply the 
definition of the Euler characteristic whereas the Euler characteristic of the 
N-dimensional sphere vanishes for N odd and equals two for N even. 

Q.E.D. 

Proof: 

V(a(S)) - 2. 

6. ANOTHER TREATMENT GF ARBITRARY MACROMOLECULES 

We sketch here a treatment of arbitrary macromolecules which is 
analogous to our treatment above of binary macromolecules and must 
reformulate the very definition of bonds as follows. We alter the definition 
of bond in Section 1 to allow bonding between consecutive sites (still 
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requiring, however, that a bond on M ,  cannot have its support at 1, 
m E M,). Furthermore, we weaken the definition of secondary structure in 
Section 1 to allow multiple bonds with the same support. Thus, the bond 
picture now allows semi-circles whose endpoints are consecutive integers as 
well as allowing multiple “semi-circles” connecting a given pair of sites, and 
we let W,,, denote the collection of these more general secondary structures 
on M,. Again, each %,,, is an infinite poset in the natural way, and we let 
@,,, denote its geometric realization. 

We must also consider various subspaces of @,, as follows. Given 
CEV,, let u(C) denote the number of bonds {s, s’} E C  so that Is-s’J = 1. 
We also say two bonds in C E %, are parallel if they have the same support, 
suppose that there are t ,  elements of the parallelism equivalence classes, for _ _  
I =  1, ..., L, and define 

L 

t ( C ) =  ( t r -  1)  
I =  1 

as in Section 2. 
Set w ( C )  = v(C) + t (C) ,  and define the finite sub-poset 

V;= (CEVm: w ( C ) < w } c % ? , ,  

for each w>O,  so, in particular, VO, is just the familiar poset 9,. Again, 
there is a chain 

VO,cVt,c ... c ... e%, 

of inclusions if posets. Let @; denote the geometric realization of the poset 
%‘;, so there is a corresponding chain 

4;cQ;C e@, 

of simplicial inclusions of topological spaces. 

isomorphism 
The obvious analogue of the map t in Theorem2 establishes an 

%?;-+y;-, 

V; c %?;+I 

of posets, the natural inclusions 

are chain homotopy equivalences as in Lemma 6 for w 2 0 and m 2 4, and 
we have 



49 SPACES OF RNA SECONDARY STRUCTURES 

REFERENCFS 

[Kn] D. E. KNUTH, "The Art of Computer Programming," Vol. I, Addison-Wesley, 

[Le] 
[Mu] J. MUNKRES, "Elements of Algebraic Topology," Addison-Wesley, Reading, MA, 

Reading, MA, 1968. 
B. LEWIN, "Genes, IV," Oxford Univ. Press. Londonwew York, 1990. 

1984. 
[PI ]  

[ P21 
[P3] 

R. C. PENNER. Perturbative series and the moduli space of Riemann surfaces, 
J.  Dflereniiul Geom. 27 (1988). 35-53. 
R. C. PENNER, Weil-Petersson volumes, J. Dflerenrial Geom. 35 (1992). 559-608. 
R. C. PENNER, The Poincare dual of the Weil-Petersson Kahler two-form, Comnl. 
And.  und Geom. 1 ( 1993 ), 43-70. 

[PHI R. c. PENNER WITH J. L. HAREK, "Combinatorics of Train Tracks," Ann. of Math. 

[sew] w .  R. SCHMlTT AND M. S. WATERMAN, Plane trees and RNA secondary structure, 
Stud., Vol. 125, Princeton Univ. Press, Princeton, NJ, 1992. 

Discrere Appl. Math., in press. 
[Stw] P. R. STEIN AND M. S. WATERMAN, On some new sequences generalizing the Catalan 

and Motzkin numbers, Discrere Murh. 26 (1978), 261-272. 
[Wa] M. S. WATERMAN, Secondary structure of single-stranded nucleic acids, in "Studies in 

Foundations and Combinatorics," Advances in Mathematin Supplementary Studies, 
Vol. I ,  1978. 

Printed by Catherine Press, Ltd., Tempelhof 41, E8000 Brugge, Belgium 


