o met At p ot b,
B T e L h .

o a R e . e g MY i - o3 T Ty e it

e

-~ A Fast Filtration Algorlthm for the Substring
Matching Problem *

Pavel A. Pevzner! and Michael S. Watem.lan2

! Computer Science Department
The Pennsylvania State University
University Park, PA 16802

? Departments of Mathematics and of Molecular Biology
University of Southern California
Los Angeles, California 90089-1113

Abstract. Given a text of length n and a query of length ¢ we present

an algorithm for finding all locations of m-tuples in the text and in the

query that differ by at most k& mismatches. This problem is motivated

by the dot-matrix constructions for sequence comparison and optimal

oligonucleotide probe selection routinely used in molecular biology. In

the case ¢ = m the problem coincides with the classical approzimate

" string matching with k mismatches problem. We present a new approach

‘to this problem based on multiple filtration which may have advantages

., over some sophisticated and theoretically efficient methods that have

"2t been-proposed. This paper describes a two-stage process. The first stage

~ (multiple filtration) uses a new technique to preselect roughly similar

m-tuples. The second stage compares these m-tuples using an accurate

method. We demonstrate the advantages of multiple filtration in com-
parison with other techniques for approximate pattern matching,

1 Introduction

Suppose we are given a string of length n, T{1...n], called the text, a shorter
string of length ¢, Q[1...q], called the query, and integers k and m. The substring
matching problem with k-mismaiches ([CL90]) is to find all “starting” locations
1<i<qg—m+1inthe query and | < j < n—m+ 1 in the text, such that
the substring of the query Q[i,i+1,...,i+ m — 1] matches the substring of the
text T{j,j +1,...,j + m = 1) with at most k mismatches. In the case ¢ = m
the substring matching problem yields the approzimaie string matching problem
with k-mismatches,

/The approximate string matching problem with k-mismatches has been in-
tensively studied in computer science. The naive brute-force algorithm for ap-
proximate string matching runs in O(nm) time. Landau and Vishkin ([LV86])

* The research was supported in part by the National Science Foundation (DMS 90-
05833) and the National Institute of Health (GM-36230), This paper was writien
"~ when P.A.P. was at the Department of Mathematics, Umvemty of Sonthem
California.

[

avaNA I,

198

gave a O(kn + kmlogm) approximate pattern matching algorithm. Galil and
Giancatlo ([GG86]) improved the Landau-Vishkin algorithm, achieving a time
performance O(kn + mlog m). All these algorithms and their improved versions
(see [LV89), [TU90]) are based on the preprocessing of the pattern/text

. Recently several approaches emphasizing expected running time have ap-
peared in contrast to earlier results ([BG89], [CL90], [GL90], [TU90], [HS91],
(WM92a), [WM92b], (BP92]). In particular, Grossi and Luccio ((GL90]) demon-
strated that although earlier algorithms yield the best performance in the worst
cases, they are far from being the best in practice. In particular, a simple filtration
algorithm from [GL90] runs approximately 10 times faster than the algorithm
from {GG86] for a wide range of k and m.

The idea of filtration algorithms for approximate matchmg involves a two-
stage process. The first stage preselects a set of positions in the text that are
potentially similar to the pattern. The second stage verifies each potential po-
sition using an accurate method rejecting potential matches with more than &
mismatches. Denote p the number of potential matches found at the first stage
of the algorithm. Preselection is usually done in O(n + p) time where the coeffi-
cient of n is much smaller than for the algorithms based on the preprocessing of
the pattern/text. If the number of potential matches is small and the accurate
method for potential match verification is not too slow, this idea brings a sig-
nificant speed up in comparison to the algorithms based on the preprocessing of
the pattern/text.

* The idea of filtration for information ret.neval/ pattern matching goes back
to early 70’s (H71]. The idea of filtration for string matching problems first was
described by Karp and Rabin [KR87] for the case k = 0. Notice that the idea
of filtration in computational molecular biology for related alignment problems
was stated even earlier (see [DN82], [WL83], [LP85] for I-tuple filtration, [B86],
for filtration by composition).

For k > 0 Owolabi and McGregor [OM88] used an idea of I-tuple filtration
based on a simple observation that if a pattern approximately matches a sub-
string of the text then they share at least one /-tuple for sufficiently large I.
Finding all I-tuples shared by pattern and text can be easily done by hashing. If
the number of shared I-tuples is relatively small they can be verified and all real
matches with £ mismatches can be rapidly located. The theoretical analysis of
the expected running time of this approach has been recently done by Kim and
Shawe-Taylor [KS92]. The idea of I-tuple filtration has been significantly devel-
oped by Baeza-Yates and Perleberg [BP92] and by Wu and Manber ({WM92a),
[WM92b)).

Grossi and Luccio ((GL90]) observed that if a pattern approximately matches)

a substring of the text then they have similar letter compositions. This obser-
vation leads to a simple algorithm runmng in O(nlog|A| + pm) time, where A
is the alphabet of pattern P and p < n is the number of m-substrings of text T
with letter composition having at most k differences with the letter composition

of the pattern. Computational experiments with such filtration by composition
show that pm < nk for a wide range of parameters thus making the Grossi-

199

Luccio algorithm important in practice. Recently Ukkonen ([U92]) generalized
the Grossi-Luccio algorithm taking an advantage of I-tuple composition (filtra-
tion by l-tuple composition) instead of letter (1-tuple) composition,

The complexity of filtration methods depends critically on the ratio f' (filtra-
tion efficiency) between r, the number of real matches with & mismatches and
p, the number of potential matches found on the first stage of the algorithm,
The larger this ratio the smaller the running time of the second stage of filtra-
tion algorithm. In the case £ = 1 we would have an ideal filtration but none
of the mentioned algorithms provides an ideal filtration or even lower bounds
for filtration efficiency. Moreover the filtration algorithms described above do
not provide a method for increasing filtration efficiency even at the expense of
spending more time on the first (filtration) stage of the algorithm. Also filtra-
tion by composition does not allow an efficient implementation for the substring
matching problem. We give an algorithm that allows exponential reduction of
the number of potential matches at the expense of a linear increase of the fil-
tration time. Therefore we drastically reduce the time of the 2nd stage of the
algorithm (potential match verification) for the cost of linearly increased time of
the first stage (filtration). Taking into account that the 2nd stage is frequently
more time-consuming than the first one, the technique provides a trade-off for
an optimal choice of filtration parameters.

Methods described in this paper can be applied to optimal oligonucleotide
probe selection ([DMDC87]) and efficient algorithms for dot-matrices ([ML81])
in molecular biology applications. (See Landau et al. [LVN88] for a dynamic
programming algorithm for substring matching problem and dot-matrix ap-
plications). Some of the described techniques have been implemented in the
OligoProbe DesignSiation software package. (Mitsuhashi M., Cooper A., Water-
man M., Pevzner P. OligoProbeDesignStation: a computcrizcd method for design-
ing opltimal DNA probes. Pending application for United States Letters Patent
(1992).)

2 - Filtration methods for approximate pattern matching

The foliowing simple observation (compare with Theorem 5.1 from [U92]) pro-
vides a basis for [-tuple filtration and filtration by l-tuple composition,

Lemmal. A boolean word v{1,
m— (k+ 1)l + 1 l-runs of ones.

...,m} with at most k zeros conlains al lcast

Substituting [= { %] in Lemma 1 we derive

Lemma2. A boolean word v[1,...
l-run of ones with | = | %] .

,m] with at most k zeros contains al least one

Notice that every match with at most & mismatches between strings PJ[1,..., m]
and Sf1,...,m] corresponds to a boolean word v1,...,m] by the rule

ofi] = { 1, if Pli] = S[i]

0, otherwise

200

This remark and lemma 2 imply the following observation of Baeza-Yates and
Perleberg [BP92] and Wu and Manber [WM92b)]

Lemma3. Let the strings P[1,...,m] and S[1,...,m] match with at most k
mismalches and [= [rm-j Thcn the strings P and S share o l-tuple, i.c. 3i :
Pli,i+1,. ,t+l—1]-S[t i+1,...,i+1-1].

Lemma 3 motivates a simple two-stage {-tuple ﬁltmiion algorithm for approx-
imate substring matching with k£ mismatches between a query Q[1,..:,q} and a
text T(1,...,n):

Algorithm 1. Detection of all m-matches between Q and T with up to &
mismatches.

~ Polentisl match detection. Find all occurrences of I-tuples in both the pattern
and the text.

— Potential maich verification. Verify each potential match by extending it to
the left and to the right until either the first k + 1 mismatches are found, or
the beginning/end of Q or T is found o

Lemma 3 guarantees that Algorithm 1 finds all matches of length m with &

or fewer mismatches between Q and T if | < |;%]. Stage 1 (potential match

detection) of the Algonthm 1 can be implemented by hashing or by bmldmg

the trie ([K73]). The running time of Algorithm 1 is O(n + pym) where p; is

the number of potential matches detected at the first stage of the algorithm (see

[BP92] and [WM92b] for details of the implementation). For a Bernoulli text
" with A4 equiprobable letters the expected number of potential matches equals

Bp) = (n—I+1‘1('q—l+1)

yielding a fast algorithm for large A and {.

For Bernoulli texts with equiprobable A letters define the filiration efficiency
¢ of a filtration algorithm to be the ratio of the expected number of matches
with k mismatches E(r) to the expected number of potential matches E(p). For
example for k = 1 the efficiency of the [-tuple filtration, (see Wu and Manber,
[WM92b]) e = 'Af!}f is rapidly decreasing with m and A increasing. This obser-
vation raises the question of devising a filtration method with a larger filtration
efficiency.

3 ‘The idea of multiple filtration

A set of positions {,i+4t,i+2t...,i+jt,...,i+ (- 1)t is called a gapped I-tuple
with gapsize ¢ and size 1+t(1-1) (Fig.1). Contlnuous l-tuples are simply gapped
l-tuples with gapsize 1 and size .

Similarly to lemmas 1 and 2 we derive

..,._--..,,,.._”

7 o o A ¢ oy YW 1

201

Lemma4. A boolean word v[1,...,m] with al most k zeros contains at least
m— s+ 1— kl gapped I-luples with gapsize t of size s conlaining only ones.

Lemmab. A boolean word v[l ., m) with at most k zeros contains af least one
gapped | 7] -tuple with gapsize k + 1 conlaining only ones.

size

F 10 11 12 13|

EOOENOOED
= =
ulm O

gapsize

1 2 3
0OOo

Fig. 1. Gapped 4-tuple with gapsize 3 and size 10 starting at position 4.

If an I-tuple shared by the pattern and the text starts at position i of the
pattern and at position j of the query, we call (i, ;) the coordinate of I-tuple.
Define the distance d(v;, v3) between I-tuples with coordinates (iy, j1) and (iz, j3)
as .

i, if iy —i3 = j1— ja
d(v1, va) = {oo, otherwise

Combining lemma 2 and lemma 5 we derive

Lemma6. Let the sirings P[1,...,m] and S(1,...,m] matck with ot most k
mismaiches and | = | ;7). Then the strings P and S share both a continuous
l-tuple and a gapped [-tuple with gapsize k + 1 with distance d between them
satisfying the condition

—k<d<m-|

Lemma 6 is the basis of a two-stage double filtration algorithm for approxi-
mate string matching with k& mismatches between a query Q[1,...,¢] and a text
T[,...,n}:

Algonthm 2. Detection of all m-matches between Q and T with up to k
mismatches.

~ .Potential maich detection. Find all such occurrences of continuous I-tuples
from the pattern in the text where there exists a gapped I-tuple with gapsize
k + 1 of the distance —k < d < m — ! from the continuous [-tuple.

~ Potential match verification. Verify each potential match by extending it to
the left and to the right until either the first k + 1 mismatches are found or
the beginning/end of Q or T is found. o

Lemnma 6 guarantees th.at Algorithm 2 finds all matches between P and T
with k mismatches. Stage 1 (potential match detection) of Algorithm 2 can be
implemented by hashing. The running time of algorithm 2 is O(n + pym) where

202

Pz is the number of potential matches detected at the first stage of the algorithm
(the details of an implementation are given in section 5). Define § = [;-4‘_-1-] For
a Bernoulli text with equiprobable A letters the expected number of potential
matches can be roughly estimated by

n—Il+1)}m-1+1 m
E(ps) < (: 34(:)‘A:—o'
thus yielding better filtration than l-tuPle filtration when m < A'~% The effi-
ciency of double filtration is at least 4;:—‘ better than the efficiency of I-tuple
filtration. For typical parameters of oligonucleotide probe selection (A=4,m=
25, k = 2) double filtration is at least 40 times more efficient than {-tuple filtra-
tion. ' ’
In the next section we estimate the efficiency of double filtration.

4 Eﬁiciency of double filtration

According to lemma 6 every match with k mismatches corresponds to both a
continuous /-tuple and a gapped l-tuple located close to each other that contain
only ones. In this section we estimate the expected number of such occurrences
in a random Bernoulli boolean word. A
Fix m and k and let | = [ﬂ-] We say that position j is in the vicinily of
_position i if ~k <i-j<m— (see lemma 6).
A position { in a boolean word v[l,...,n] is a potential match if

(i) ofi,...,i+1~1) is a run of ones,
-and

(ii) there exists a gapped {-tuple with gapsize k£ + 1 starting in the vicinity of i
that contains only ones. .

We denote a continuous I-tuple starting at position i as ¢(i), and a gapped
I-tuple of gapsize k+ 1 starting at position j as g(j). Notice that a continuous /-
tuple c(i) and a gapped I-tuple 9(7) of gapsize k+1 can share at most § = [lﬁ]
positions. If g(5) contains a position i + & (0 £ s < k), then c(5) and 9(j) can
share at most 6(s) = [i—‘;'l-] positions (Fig.2). T

Lemma 7. Let v[l,..] be & Bernoulli boolean word with the probabilities of let-
lers p(1) = p and p(0) = 1 — p = q. Then the probability of a potential maich at
position i > m — | equals

s=k

P =TT - (- 8(a)p'= ¥ g - iy}

Proof. For a l-tuple c(i) starting at i define G,(i) = {g(t)} to be the set of
gapped I-tuples with gapsize k + 1 starting in vicinity of c(i) and fulfilling the
condition: i ~t = s mod k + 1 (Fig.2). Let P, (i) be the probability that at least
one I-tuple in G, (i) contains only ones given that ¢(i) contains only ones. Let

e S Ty o o o e i S e Y YT e v
" - " 8 s ik G Edre 2
’ RS IR s et

(R

203
i i
1232456178 10 11 12 13
miull Nujal NFupul Eujul g=
li-(m-l) ! T

vicinity of i
icini of the
Fig. 2. Vicinity ' '
pofition i=10(m=12k=2l=|F;] = 4,gapsize = k+1 = 3. Solid b;;xe;s
indicate the starting positions of gapped I-tuples from G3(i) = {g(3), g'(s), g(9)_:i(-) .
A gapped 4-tuple and a continuous 4-tuple can share al most § = sl =lx1=2
positions. Gapped 4-tuples from G3(i) and continuous 4-tuple c(i) can share at most

§(s) = [ﬁ{- = [%—I—}] =1 positions (I' = | - §(s) = 3).

ili i ition i given that c(i)
i) be the probability to have a potential match at position i given
f.;(r:za.ins onl; ones. As the sets G, (i) are non-overlapping for 0 < s < &,

1—-P(i) = P{there is no gapped I-tuple g(t) in the vicinity of i containing only ones} =

.k ' . * v 9 13 s v —
hP{there is no gapped I-tuple g(t)eG, (i) in the vicinity of i containing only ones} =

=0

smk

[TIa-~6p.
=0
‘] iti ith ¢(?). Denote ' =
Each I-tuple from G, (i) shares at most 6(3.) positions wit enote [:
1-6(s). Fil:t i and consider the following positions of v to the left of i (Fig.2):

do=its—(k+1), iv=its—2k+1),..., o =its—l(k+1)

3 3) . . = left = I’
left be the minimum index such that v[u,!.] 0 (we assume
iafnt(;l[iloe]t;{[ix]e: ... = vfip_1] = 1). Similarly consider the positions of v to the

rightof i 11

Jo = i-a+(8(8))(k+1), s = i+a+(8(s)+1)(k+1), ...\ Ju = i+ (8(s)+H' 1) (k-+1)

and let right be the minimum index such that v{j-iyn:] = 0 (we assume right = I
if v[jo] = v[i1i]l = ... = vljr-1] = 1). . -

l ['ﬁ:]e posbiti]ons $tetyr 180, J0, - . JI*—1 TEpresent pos.s1.blc positions of g.apped
{~tuples from G,(i). We denote P*(i;, j.) the probablh.ty that left =i and
right = j, in a random word v. Obviously G,(i) contains a [-tuple with only
ones if and only if le ft + 6(s) + right > I). Therefore

1- P,(i) = P.(thtr)

0<i I ~1,0<5,St' -1

204

where the product is taken over all values i; and j, fulfillin iti
where ! g the condition
it +je <V. As P(left = t) = P(right = t) = gp*, the probabilities P{lcft-:
right =1} constitute the negative binomial distribution ([F70)) and

[-1
N ; . 141 LS |
1—P.(3)-— Z qpl_qp) =q:Z('t)Ptgqﬂ_(zpl+l)l=q3,(plzp)l=

i<y t=0 =0

1-1p"g-p"

Denote émin = min, 6(s) = [{54]. Lemma 7 implies

Lemm'a’ 8. LetQ[1,..] and T[1,..] be random query and lext and let p be the
probabilily that arbitrary letlers from the query and from the text are equal. Then
i'hc probability of potential match between the query and the text at position (i, j)
is less than or equal p¥~¥mir((m — I 4 k)(1 = p) + k + 1) >

Pmo;f.'Let P(i, j) be the probability of a potential match at (i,j) given the
condition that the continuous I-tuples of Q@ and T starting at positions i and j
are equal. Without loss of generality assume that i — § = 4 > 0 and consider a
boolean word v1, ..] corresponding to a diagonal A:

oft] = { 1, if Q[t+ 4) = T[t]

0, otherwise

Applying lemma 7 to a word v with p(1) = p and taking into account that
Omin < 8(8) < 6 we derive
3
1-P(i,j) = [J(1 = (1 - 6(a))p'~*q - /=40

=0

k
2 [T = (= bmin)p'~*g = §'=*) 2 1= (K + 1)1 = bmin)p'~*q — (k+ 1)p'*

Therefore
P(i,j) < ((k+ 1)1 - (k+ l)amin)P'-‘q +(k+ l)p'-‘ <

((k.+1)lﬁ;]-(k+l)f%§1)p"‘q+(k+1)P"" < P ((m=I+k)(1-p)+k+1).
D

Lemma‘ _8. den'xonatrates that the efficiency of double filtration is a.pwoxi—
mately m times larger than the efficiency of I-tuple filtration for a wide
range of parameters m and k. Fig.3 presents the results of comparison of the

efficiency of double filtration with the efficiency of [-tuple filtration f :
DNA alphabet. ol ation for a 4-letter

e g o T RPT VTR X e R 818 S W IR TR M YA RO AT Y TMT S T pmny
PRRIEC T PN o e e kRt s RN

e e ety DS e

§ ' Y] }n., ‘o) ted) tat et
5

il

I 1

! ‘

i

| fjj 71

Fig. 3. The comparison of the efficiency of double filtration and I-tuple filtration. The
plot shows the ratio of the efficiency of double filtration and I-tuple filtration in 4-letter
alphabet for different parameters m and k.

Comment: The definition of filtration efficiency when applied to comparison
of I-tuple and double filtration should be taken with caution. The definition
does not take into account the number of potential matches relative to the size
of the text. When I-tuple filtration is already very efficient there is no reason to
apply further filtration. In other words, if the total number of expected potential
matches is, say, 1.3 for the whole text, vs. 0.013 for true matches, the ratio is
large but is meaningless in practice. '

5 Double filtration for approximate substring matching

In this section we present a sketch of the implementation of double filtration

- for approximate substring matching problem. For simplicity we concentrate on

double filtration described by Algorithm 2 and consider the alphabet A=
{0,...,.A=1}. ' '
" Let p be the number of potential matches between the query and the text
found at the filtration stage of the Algorithm 2, and p. (p,) be the number
of continuous (gapped) l-tuples shared by the query and the text. It is not
difficult to see that the filtration stage of Algorithm 2 can be implemented in
O(g + n + pc + py) time by hashing (compare with [U92]).
Query hashing

206

We need an encoding of every l-tuple v as an integer. A natural encoding is
to interpret each /-tuple as an A-ary integer. For a I-tuple v[1,...,1] a hash value
ofvis

o= o[1]A"! 4 o[2AT2 4. o[1]A° Q1)

For query Q[1,...,q) define v; = Q[i,...,i+{—-1],1 <i<m-—1+1, be th
{-tuple of Q starting at position i. Obviously :

Gigr = (= QU] - A1) - A+ Qli+1] 2)

By setting v; and then applying (2) for 1 < i < m — I, we get the hash values
for all I-tuples of Q. Assuming that each application of (2) takes constant time
(we consider relatively small A and !) we can build hash table H; for continuous
l-tuples in O(g) time. Continuous I-tuples from the query with the same hash
value h are put in a linked list pointed by H;[h}([K73]).

Similarly we can build a hash table H; for gapped /-tuples with gapsize gap
in O(q) time. Denote w; = Q[i,i+gap,i+2-gap,...,i+j-gap,...,i+(I~1)-gap].
Using the same hash function (1) for w; we get

Wirgep = (Wi = Q[i]- A1) - A+ Qi +1-g] (3)

By setting wy, ..., Wyap and then applying 3 we get hash values for all gapped I-
tuples with gapsize gap. Gapped I-tuples from the query with the same hash value
h are put in a linked list pointed by H,[h]. Note that with such an implementation
memory requirements of double filtration are doubled in comparison with I-tuple
filtration.

‘Text scanning with double filtration :

Figure 4 presents a sketch of the filtration stage for approximate substring
matching with k mismatches by double filtration. We assume ! = | %] and
size = (k+ 1)(l = 1) + 1. Given a ¢ X n matrix we number its ¢ + n — 1
diagonals assigning number j — i + ¢ to a diagonal containing position (i, j). To
implement double filtration we have to test efficiently if there exists a gapped
l-tuple in the vicinity of 'a continuous [-tuple. To provide this.test we use an
array diag(l,...,n + q] and assign

diag[j —i+gq)=j

every time we find a gapped I-tuple starting at (i, j). Therefore for each of n+¢
diagonals of the ¢ x n matrix representing all possible coordinates, diag(t] equals
the starting position in T of the last gapped /-tuple found at this diagonal. On
the preprocessing stage of the algorithm we put a dummy value diag[t] = —1 for
1 £t <'n+q. Although memory requirements of substring matching problem
are not crucial in many applications notice that to reduce memory requirements
diag can be actually implemented as an array of size ¢ that is scanned in a
circular manner (not shown at Fig.4).

7 e e e - 1o

TR T SO bk 47 28004

Lo I O IR £ TIPS A S P P

LY werTEeY

- y
St raty

207

Algorithm Text scanning with double filtration
for (j=1;j <n—=1+1;j++) /*n is the length of the text*/
if (j < n—size+1-k) [*size is the size of gapped I-tuple with gapsize k + 1*/

compute the hash value w;4x of the gapped [-tuple starting at j+ k
if (linked list H3[w;44] is not empty)

for all gapped I-tuples from Ha(w;4x) find their starting positions
i(1),...,4[t1] in the query
for (t=L;t<=1t1;t++)
diag((j +) — it} + o) = j + k;

}

compute the hash value ¢, of the continuous I-tuple starting at j
if (linked list H,[#,] is not empty)
{

for all continuous i-tuples from Hi[#,] find their starting positions
i(1],...,i[t2] in the query
for (t=1;t<=2;14++)
if(j - diaglj - i[t] + ¢] <=m ~ 1) [*sec lemma 8*%/
report potential match (i[t], 5)

Fig.4. Sketch of the filtration stage of the double filtration approximate luBstting
matching algorithm.

Potential match verification A

Brute-force implementation of the verification stage of the algorithm adds
O(m) time for verifing of each potential match. For the _approxim‘ate Pattern
matching problem it leads to an algorithm with linear expected running time for
k= O(i5g) (see [BP92] for details).

6 Overlapping potential matches and fast dot-matrix
drawing

Several optimizations are included that deviate from the simple description of
the algorithm given in Fig.4. We observe that m-matches with k-mismatch_es
frequently overlap. To exclude redundant output we use an extended polential
maich data structure.

Let (i, j) be a potential match on the diagonal j — i + ¢ where i (j) is the
starting position of the I-tuple representing potential match in the query (text).

208
Consider the positions on the diagonal j — i+ q behind (4,J) and define an array

o1,..):
b= { g M A-A=TU-4

Similarly, consider the positions on the diagonal j — i+ ¢ ahead (i, §) and define
an array a[l,.. }: . '

aff] = L, fQE+I-1+t)=T[j+1-1+1)
T 10, otherwise ‘

(for the sake of simplicity we neglect border effects when, for example i ~ ¢ < 0).
Let behind[0, ..., k] be an array with the positions of the first (k + 1) zeros in

b. Similarly let ahead[0, ..., k] be an array with the positions of the first (k + 1)
zeros in a. We call the structure . :

(3,7), behind[0,...,k] aheado,...,k)

an eztended potential match starting at (i, 5).

Let (i, j) be a potential match and Q[i-+1] = T[j+1] (it means that (i+1, j+1)
is a potential match also). Notice that in this case an extended potential match
(i+1, j+1) does not provide any additional information in comparison with (i,7)
and we can exclude such overlapping extended potential matches from further
consideration. .

Arrays behind[0,..., k] and ahead]0,...,k] can be easily derived by simply
scanning diagonal j — i + ¢ behind (i,;) and ahead (i+ 1/~ 1,j+1~1) or
by faster methods (see, for example Wu and Manber [WM92b]). We say that
an approximate match with k-mismatches starting at (7', j') is generated by a
potential match (i, j) if it belongs to the same diagonal j' — i’ = j — i and

i—behind[k] < ' and i + 1~ 1 + ahead[k] > ' + m -1

Lemma 6 guarantees that each approximate match is generated by at least one
potential match. On the other hand a potential match (i,5) generates an ap-
proximate match with k mismatches if and only if there exists 0 <t<k
ahead[t] + behind[k — t] + | > m. This condition gives an efficient algorithm
for potential match verification. Notice that for biological applications extended
potential match data structure provides a useful tool for dot-matrices draw-

ing without looking at all approximate matches generated by a given potential
match.

7 Computational experiments

We have implemented the double filtration (Algorithm 3) and compared its
performance with I-tuple filtration (Algorithm 1). Recent studies ([WM92b])
demonstrate that I-tuple filtration runs much faster than other approximate
pattern matching algorithms. Our study indicates that double filtration outper-
forms l-tuple filtration for approximate substring matching in a wide range of

Y T T U LTI 1 T DN T TRk G T

A e S - S e e 8 A

e B A T i

209

parameters. We presented the results of the computational experiments with
the parameters { = | §%7] and k as they are more convenient for comparison of
running times than usual parameters m and &.

Algorithm 1 ({-tuple filtration) and Algorithm 2 (double filtration) were im-
plemented in ‘C’ and all tests have been run on a SUN SparcStation 2 run-
ning UNIX, Stage 2 (potential match verification) was implemented in the same
straightforward way in both Algorithm 1 and Algorithm 3. Our primary interest
was to reveal the advantages and disadvantages of the filtration stage; that’s why
we ignored fast implementations of the verification stage. The numbers given in
Figure 5 should be taken with caution. They depend on our program implemen-
tation, the architecture, the operating system, and the compilers used. However
we tried to avoid optimizations and fancy programming implementations which
might give an advantage to the double filtration over l-tuple filtration. The only
difference between two programs was the implementation of the filtration stage.

Let t7i1(tver) be a running time of the filtration (verification) stage of the
{-tuple filtration algorithm. Denote ¢ = ’—é%:))- the ratio the filtration efficiency of
double filtration to the filtration efficiency of i-tuple filtration. Roughly speaking
a running time of double filtration algorithm will be 2 -t + 3-‘;-'- In the case

tver
€

it toer > 2 tp +

double filtration is faster than I-tuple filtration. It means that in the case ¢ >
e yrm double filtration might be better than Il-tuple filtration. Figure 3 in-
dicates that this is the case for various m and k as ¢ is very large for a wide
range of parameters. Figure 5 presents the results of comparisons for ¢ = 10000
and n = 100000 indicating that double filtration might be better for a range of
parameters frequently used for dot-matrices constructions and optimal oligonu-
cleotide probes selection (m = 14,...,30, k¥ = 1,...,5). Note that the ratio of
the running time of the I-tuple filtration algorithm to the running time of the
double filtration algorithm depends on % (data are shown only for 2 = 10)

8 Other filtration techniques

The basic idea of all I-tuple filiration algorithms suggested to date is to reduce
a (m, k) approximate pattern matching problem to a (m’, 0) exact pattern prob-
lem and to use a fast exact pattern matching algorithm on the filtration stage.
The drawback of such approachs is relatively low filtration efficiencies. In this
section we suggest reducing (m, k) approximate pattern matching to (m/’, k') ap-
proximate matching with m’ < m and 0 < ¥’ < k and application of the fast
approximate pattern matching technique with small ¥’ on the filtration stage.
We demonstrate that this allows an increase of filtration efficiency without sig-
nificant slowing down the filtration stage. For the sake of simplicity we illustrate
this idea on a simple example reducing a (m, k) problem to a (m’, 1) problem.
Knuth [K73] has suggested a method for approximate pattern matching with
1 mismatch based on the observation that strings differing by a single error must

210

1213 |4{s5]6 7819110
0.98] 1.32] 1.25| 1.09] 0.75 0.62] 0.62| 0.72

! 05 170 | sa| 20| 16| 18] 19] 25
0.87] 1.27] 1.55} 1.58] 1.23] 0.75| 0.62] 0.62] 0.72

2 3las firs | o | 21| 16] 18] 19] 25
0.89{ 1.30{ 1.90| 1.87] 1.38] 0.81| 0.62 0.62] 0.69,

3 srsfroos|ara | a7 | 21 18] 16| 29| 26
0.90f 1.31} 1.92} 2.27} 1.52] 0.87{ 0.62 0.62] 0.69

4 6584 13050194 | 40| 21) 216 16| 19| 26
0.901 1.31] 2.04{ 2.47| 1.66] 0.93] 0.68| 0.62 0.69

3 vsol12ss|208 | 46| 21) 16| 15| 19| 24
0.91] 1.31] 2.14{ 2.62] 1.85] 1.00{ 0.68] 0.62] 0.65

6 46| 14421 222 L5 1 1.6 14 19 7
0.91] 1.31| 2.12] 2.78| 2.00{ 1.06} 0.68| 0.62] 0.65

7 o2alims|us] 50| 21| 16| 18] 19| 27
0.91) 1.31] 2.15) 2.82] 2.19] 1.12] 0.75] 0.62{ 0.70

8 o 1rsolzea | sa | 21| 16] 16| 19| 22
0.91] 1.29] 2.25| 3.13| 2.28| 1.12] 0:75} 0.62} 0.70

9 1008 193328 | 53| 20| 16| 16| 19 24
0.91] 1.29] 2.20] 3.12] 2.47} 1.18] 0.75{ 0.62{ 0.70

10 uspsdzorlos | sr| 21| 16) 16 19| s

Fig. 5. The comparison of the running time of the double filtration (Algorithm 3) and
{-tuple filtration (Algorithm 1) for random Bernoulli words in 4-letter alphabet with
¢ = 10000 and n = 100000 for different parameters k (number of mismatches) and
! = |354) (size of l-tuple). Lower cell on the intersection of k-th row and l-column
represents the running time of the double filtration algorithm (in seconds). Upper cell
on the intersection of k-th row and [-column represents the ratio of the running time of
the I-tuple filtration algoritlim to the running time of the double filtration algorithm.
The area shown by a solid line represent the set of parameter (k,I) for which double
filtration outperforms I-tuple filtration,

match exactly in either the first or the second half. For example, (9, 1) approxi-
mate pattern matching problem can be reduced to (4, 0) exact pattérn matching
problem. This provides an opportunity for 4-tuple filtration algorithm. In this
section we demonstrate how to reduce (9, 1) approximate pattern matching to a
6-’tuple filtration algorithm thus increasing the filtration efficiency by a factor of
A
3

Let (I1,91,12,93, ..., lt, 9t, l41)-tuple be an tuple having I, positions followed
by a gap of length g; + 1, then [; positions followed by a gap of length g3 + 1,

e g A A

v e s e e e

D et e i Al

1 2 3 4 5 6 7 8 9 10 11 12 13
EEEEOOERENCOOCOEEMN

Fig. 6. Example of (4,1,2,3,3)-tuple.

..., then l; positions, followed by a gap of length g; + 1 and finally 141 positions
(Fig.6). Fig.7 demonstrates that every boolean word of length 9 with at most 1
zero contains either a continuous 6-tuple or a (3, 3, 3)-tuple containing only ones.
Two 6-tuples and one (3, 3, 3)-tuple shown in Fig.7 are packed into 9-letter word
v so that every position in v belongs to exactly two of these tuples. Therefore

the only zero in v belongs to two of these tuples leaving the third. In Fig.7 the
(3.3,3)-tuple contains only ones. o

1 7 8 9
[O
o

" E©
H g

Hm N E°

continuous 6-tuple

5 6
i (o
o e
Bcontinuousé'-tup[e

N [W 553000

Fig.7. A boolean word of length 9 with only zero contains either continuous 6-tuple
or (3,3, 3)-tuple containing only ones.

The following lemma generalizes the example above and allows one to per-
form | 3m)-tuple filtration instead of | 1m)-tuple filtration-in Algorithm 1, thus
increasing filtration efficiency approximately A,l times.

Lem',mag. A boolean word v[1,...,m] with at most 1 zero contains cither a
continuous [m]-tuple or ¢ (|3m], |4m], |1m])-tuple containing only ones.

The following lemma generalizes lemma 2 and reduces the (m, k) approximate
pattern matching problem to the (m’, k') problem with m’ < m, k' < k.

Lemma 10. A boolean word v[1, ..., m] with at most k zeros contains a subword
of length m' with at most k' < k zeros for m' = [‘%{%‘l‘-’"—']

212

Proof. Fix 0 <t < m and consider all m —¢+ 1 subwords of v of length t. Every
position in v belongs to at most ¢ of these t-words. Therefore the total number
of zeros in these t-wordsis : < k- 8.

If all t-subwords of v contain at least &’ + 1 zeros then the total number of
zeros in these t-words is z > (k' + 1) - (m —t + 1) and therefore

kt2z22(+1)-(m-t+1)

If this inequality fails then there exists a t-subword of v containing less than
k' + 1 zeros. Therefore the maximum ¢ fulfilling the inequality

Et<(k+1)-(m—t+1)
provides the upper bound for the length of subword containing at most &’ zeros.

o EHD) (m1)
E+k+1 7

8]

Substituting &’ = 1 in the last lemma provides a reduction of (m, k) approx-
imate pattern matching problem to (lzﬂ%l], 1) approximate pattern matching
problem. Lemma 9 allows further implementation of filtration with | (44241]))-
tuples. For large m lemmas 9 and 10 allows one to implement [-tuple filtration
with { zé? which improves the filtration of Algorithms 1 and 3 with'l s T,

Finally, there is no approximate pattern/substring matching algorithm that
is the best for all possible cases. It is an open problem to find the optimal
filtration techniques depending on the parameters and applications. Note that
the proposed methods does not support insertions and deletions. This moti-
vates the problem of finding an efficient filtration technique for approximate
pattern matching with k differences. To solve this problem Myers, 1990 ([M90])
proposed a related method based on a reduction of the (m, em) approximate pat-
tern matching problems with a database of length n to the (log n, elogn) pattern
matching problems. The method requires a prebuilt inverted index and so is an
off-line algorithm while all the others mentioned here are on-line. This technique
provides approximate pattern matching with k differences in sublinear time and
gives 50- to 500-fold improvement over dynamic programming algorithms for
approximate pattern matching ([U85}, [MMS86]).

9 Acknowledgements

We are grateful to William Chang, Udi Manber and Gene Myers for useful
suggestions,

Hy
¥
¢
%
i

5
5.
iy

References

[BG89] Baeza-Yates R.A., Gonnet G.H. A new approach to text searching. in Proc.
of the 12th Annual ACM-SIGIR conference on Information Relrieval, Cambridge,
MA, (1989), 168-175

[BP92] Bacza-Yates R.A., Perleberg C.H. Fast and practical approximate string match-
ing. In A.Apostolico, M.Crochermore, Z.Galil, U.Manber (eds.) Combinatorial Pat-
tern Matching 92, Tucson, Arizona, Lecture Notes in Computer Science, 644,
Springer-Verlag, (1992) , 185-192

[B86] Blaisdell B.E. A measure of the similarity of sets of sequences not requiring
sequence alignment. Proc. Nat. Acad. Sei. U.S.A., 83, (1986), 5155-5159.

[CL90} Chang W.IL, Lawler E.L. Approximate string matching in sublinear expected
time. Proceedings of 31st IEEE FOCS, (1990), 116-124

[DMDC87} Danckaert A., Mugnier C., Dessen P., and Cohen-Solal M. A computer pro-
gram for the design of optimal synthetic oligonucleotides probes for protein coding
genes. CABIOS, 3, (1987) 303-307.

[DN82] Dumas, J.P., Ninio, J. Efficient algorithms for folding and comparing nucleic
acid sequences, Nucl. Acids Res., 10, (1982), 197-206.

[F70] Feller W. An introduction to probability theory and its applications. John Wiley
& Sons, New York, (1970)

{GG86] Galil, Z. and Giancarlo, R. Improved string matching with k mismatches.
SIGACT News, April, (1986), 52-54.

{GL90] Grossi R., Luccio F. Simple and efficient string matching with & mismatches.
Information Processing Letters, 33, (1990), 113-120

(H71] Harrison M.C. Implementation of the substring test by hashing. C.ACM, 14,
(1971), 777-779

[HS91] Hume A., Sunday D. Fast string searching. Software - Practice and Ezperience,
21, (1991), 1221-1248

[KR87] Karp R.M., Rabin M.O. Efficient randomized pattern-matching algorithms.
IBM J. Res. Develop., 31, (1987), 249-260

{KS92) Kim J.Y. Shawe-Taylor J. An approximate string matching algorithm. Theo-
retical Computer Science, 92, (1992), 107-117

{K73] Knuth D.E. The art of computer programming, vol.Ill: sorting and searching.
Addison-Wesley, Reading, Mass., (1973)

[LV86] Landau G.M., Vishkin U. Efficient string matching with k mismatches, Theoret.
Computer Sci., 43, (1986), 239-249

(LV89] Landau G.M., Vishkin U. Fast parallel and serial approximate string matching.
J. of Algorithms, 10, (1989), 157-169

[LVN88]) Landau, G.M., Vishkin, U., and Nussinov, R. Locating alignments with k
differences for nucleotide and amino acid sequences. CABIOS, 4, (1988), 19-24.

[LP85} Lipman, D.J., Pearson, W.R. Rapid and sensitive protein similarity searches.
Science, 227, (1985), 1435-1441.

[ML81]} Maizel, J. V., Jr. and Lenk, R.P. Enhanced graphic matrix analysis of nucleic
acid and protein sequences, Proc. Nat. Acad. Sci. USA, 78, (1981), 7665-7669.
[MM86] Myers E.-W., Mount D. (1986) Computer program for the IBM personal com-
puter that searches for approximate matches of short oligonucleotide sequences in

long target DNA sequences. Nucleic Acids Research, 14, 501-508

{M90) Myers E.W. (1990) A sublinear algorithm for approximate keyword searching.
Technical Report TR-90-25, Department of Computer Science, Thwe University of
Arizona, Tucson, Arizona. (to appear in Algorithmica)

P

[OM88] Owolabi O., McGregor D.R. Fast approximate string matching. Software.
Practice and Exzperience, 18, (1988), 387-393

[TU90] Tachio J., Ukkonen E. Boyer-Moore approach to approximate string matching
Lecture Notes in Computer Science, 447, Spnnger, Berlin, (1990), 348-359

[U8S] Ukkonen U. Finding approximate patterns in strings. Journal of Algorithms, 6,
(1985), 132-137

[U92] Ukkonen U. Approximate string-matching with g-grams and maximal matches,
Theoretical Computer Science, 92, (1992), 191-211

[WL83] Wilbur W. J,, Lipman D.J.. Rapid similarity searches of nucleic acid and
protein data banks. Proc. Nat. Acad. Sci. USA , 80, (1983), 726-730.

[WM92a] Wu-S., Manber U. Agrep - A Fast Appxoxxm;te Pattern-Matching Tool.
Useniz Wmter 1992 Technical Conference, San Francisco (January 1992), (1992),
153-162.

[WM92b] Wu 5., Manber U. Fast Text Searching Allowing Errors. Comm. of the ACM,
35, No.10 (1992),83-90

