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Although a number of efficient algorithms for the longest common subsequence
(L.CS) problem have been suggested since the 1970s, there is no duality theorem
for the LCS probiem. In the present paper a simple duality theorem is proved for
the LCS problem and for a wide class of partial orders generalizing the notion of
common subsequence and sequence alignment. An algorithm for finding general-
ized alignment is suggested which has the classical dynamic programming approach
for alignment problems as a special case. The aigorithm covers both local and
global alignment as well as a variety of gap functions. It is shown that the
generalized LCS problem is closely associated with the minimal Hilbert basis
problem. The Jeroslav—Schrijver characterization of minimal Hilbert bases gives an
O(n) estimation for the number of elementary edit operations for generalized
LCS. © 1993 Academic Press, Inc.

1. INTRODUCTION

A DNA molecule can be represented as a long string of letters from the
four-letter alphabet {a, c, g, t}. Currently a large effort is being expended
in the experimental determination and subsequent compilation of these
genetic sequences from various organisms. The analysis of these sequences
is usually based on ideas from evolution. Sequence features important to
organisms are usually preserved over evolutionary time while those less
important features change. Therefore the biologist asks what known
sequences are closely related to a newly determined sequence. These
primary events in sequence evolution are substitution, when one letter is
replaced by another, and insertion or deletion of one or more letters.
These are the edit operations in the computer science problem of mini-
mum edit distance between two strings. In [A90] algorithms for minimum
edit distance problems and finding patterns in sequences are reviewed. In
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this paper we study algorithms for sequence comparison motivated by
biological problems. If the two sequences are written on the horizontal
and vertical axes, the intersection points on the grid can represent the
alignment of two letters, one from each sequence. If the letters are not
equal, the node represents the substitution of one for the other. In this
way, it is seen that sequence comparison or alignment is a path in a
network. Finding optimal alignment is therefore a problem in combinato-
rial optimization.

Usually algorithms for combinatorial optimization problems are based
on duality theorems. The Ford-Fulkerson algorithm, for example, is based
on a duality theorem that states maximum network flow is equal to
minimum cut. Duality theorems often give insight into the nature of the
optimization problems. In this paper, we explore duality theorems and
primal-dual algorithms for sequence alignment.

The simplest and most often studied alignment problem in computer
science is the longest common subsequence (LCS) problem, which is to
find a longest subsequence common to two sequences. The LCS problem
is equivalent to the edit problem of finding the minimum number of
inserted or deleted letters to transform one sequence into the other. In
Section 2 we give a matrix generalization of LCS, A-LCS, for 2 x 2
matrices A. Several alignment problems of biological interest are included
in this family of 4-LCS problems. In Sections 3 and 4, we prove a duality
result for this class of alignment problems. Each A-LCS problem has an
associated partial order < and a conjugate partial order <*. The length
of the A-LCS is the size of a minimum cover.

Recently [EGGI91] raised the problem of devising non-dynamic pro-
gramming algorithms for sequence alignment. Utilizing the duality result,
we give a primal-dual algorithm for 4-LCS problems. This algorithm does
not appear to be related to the usual dynamic programming algorithms for
sequence comparison.

A-LCS is a path in a comparability graph for a partial order. The
classical Needleman-Wunsch [NW70] dynamic programming algorithm
decomposes each long arc in this graph into short arcs, thereby achieving
its efficiency. In Sections 5 and 6, we study similar reductions for 4-LCS
problems. Further reduction is achieved in Section 7 which applies the
theory of Hilbert bases to this problem. We give a geometric interpreta-
tion of elementary edit operations for 4-LCS and demonstrate that the
number of elementary edit operations equals the size of the minimum
Hilbert basis in the corresponding cone.

Most algorithms currently used for DNA or protein sequence alignment
have more complex weighting functions than those in the LCS problem.
Each possible pair of alphabet letters can have different substitution
weights, and insertions /deletions of blocks of letters can be weighted as a
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function of block length or even block compositiqn. In' chtions 8,9, .ami
10, generalized alignment is defined and an algorithm is given for op}uh:
geileralized alignment. The algorithm contains many alignment algorithms

as particular cases.

2. ExaMPLES AND DEFINITIONS

A partially ordered set or briefly a poset i's a pair (}.’, <) smlich that 1: is
aset and < is a transitive and irreflexive binary relation on P, 1.e.l, pemz
and g < r imply p < r. A chain is a subset of P, where any tvlvo e extx; s
are comparable, and an antichain is a subset, where no two elemen

p i i dered chain p; < p, < -+ <

comparable. A sequence in a poset is an order .

p,. Partial orders < and <™ are called conjugate [KT82] if for any two
-

distinct p,, p, € P the following condition holds:
p, and p, are < -comparable < p, and p, are < *.incomparable
Let w be an arbitrary non-negative integer valued function on P:
w:P—>Z%.
For a partial order <, a sequence p, p,... P in P, maximizing

k

ZW(Pi)s (1)

i=1

is called a longest < sequence.

Let I ={1,2,...,n}and J = {1,2,..., m}. As discussed in the Introduc-
tion, our inte’rest is in the comparison of two sequences s = s;5,...5, an;i)
t =’t ty...t,. For this reason we study P C/ >§J (often p ='(z,)) el
deno;es s;=t;). Let p; = (i}, j;) and p, = (i, j,) be two arbitrary ele-
ments in I X J. Denote

Ai = Ai( py, Py) =k — iy,
Aj=Aj(py,py) =J2 =1
Consider a few examples of partial orders on I X J (corresponding se-
quences are shown in Fig. 1):
« Common subsequences (CS):
P, < P = Ai>0,A)>0;
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* Common forests (CF):
Pr=2p;=A4i>20,4/20;
* Common inverted subsequences (CIS):

P1=3p;=Ai>0,4/<0;
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e Common inverted forests (CIF):

P1<4P2“Ai20,A]'SO.

Partial orders <, and =<, are particular cases of a partial order
defined by an arbitrary 2 X 2 matrix A4 = (a,;):

Dy <4 Py = AAT > 0. )

For A = ((’) %) we have <, and for 4 = ((‘) _Ol)we have =<, . A partial

order defined by A is called an A-order, and a sequence in A-order is
called an A-sequence. Similarly, define A-order and A-sequence by the -

inequality

Py <5 Py = AAT 2 0. (3)

CFs are A-sequences for 4 = ( (‘) ?), and CIFs are A-sequences for A

= ((l) 2 1)'

The matrix 4 determines a cone in R?; the cones for various A-matrices
and corresponding A- and A-sequences are shown at Fig. 1. The set of
vectors A fulfilling (2) is designated cone(A4), while the set of vectors A
fulfilling (3) is denoted cone(A). For partial order 4, an A-sequence
PPy Py in P maximizing (1) is called a longest common sequence for A
or A-LCS (A-LCS s defined similarly). For P =1xJ, A = (} ) and w
defined for sequences s and t according to the rule
1, s, =1,
0, otherwise,

w(p) =w(i,j) = {

problem (1) coincides with the well-known longest common subsequence

problem.
Let € = {C) be a family of subsets of a set P. €' C £ is called a cover

of a function w if:

Vp € P there exist at least w( p) subsets in family £’ containing
an element p. '

For w = 1 0on P, €' is a cover if and only if each p € P is contained in at
least one of the subsets C € €”. The number of elements in € is called
the size of the cover €’ and a cover of minimum size is called a minimum

cover of w by €.
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3. DUALITY FOR LONGEST < -SEQUENCE PRrROBLEMS

LemMma 1. Let < and <* be conjugate partial orders on P. Then the
-Sequence in P equals the size of a minimum cover of w

length of a longest <
by < *.sequences.

Proof.  According to Dilworth’s theorem [D50}, the length of a longest
antichain in <™ equals the size of a minimum cover of w by =< *-chains.

As < and <* are conjugate, each antichain in <* is a chain in <

and, vice versa, each chain in < is an antichain in <*. Therefore the
length of a longest < -sequence in P equals the size of a minimum cover

of w by =< *-sequences. O3
Consider a binary relation on P defined by
Py Epy = py<pyorp <*p,.
LEMMA 2. T is a linear order on P.

Proof. We prove that p, = P, and p, T p; implies p, C p,. If p, C D2
and p, C p, then one of the following conditions holds:
() py <p, and p, < p,,
(i) p, <p, and p, <*p,,
(iii) py <*p, and p, < p,,
(iv) p; <*p, and p, <*p,.

In case (i) p; < p, and p, < p, implies p, < p, and therefore D, T ps.
In case (ii) p, < p, and p, <*p, implies neither p, < p, nor P3<*p,.
(In the first case p; < py and p, <p, implies p, < P,, contradicting
Py <*p;. In the second case p, <*p; and p; <*p, implies Py <*py,
contradicting p, < p,). Therefore p, < p; or Py <*ps, implies p, C p,.
Note that cases (iii) and (iv) are symmetric to (ii) and (i), respectively, so
we have shown that relation C is transitive. The lemma follows from the
observation that for each pair Py, p, either p, C p, or p, Cp,. O

Let #=p,p,...p, be an arbitrary sequence of the members of P, and
# =p,p,...p. Let %, =1{C,C,,...,C} be a cover of & by <*-
sequences and let p"™, pfax | p™™ be the <™*-maximum elements in
€y, Cy,...,C; correspondingly. Consider an algorithm for constructing a
cover ¢, from €. The algorithm is illustrated in Fig, 2.

ALGORriTHM 1. Let k be the minimum index (1 < k <) fulfilling the
condition (Fig. 2)

P& < Dy, (4)
and if the condition (4) fails for all k set k = j + 1.
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If k<j+1,add p; . t0 Ckvand define
€., ={Ci,Corewer Ciets GV (Pisi}sCasts---Cit-
i+ 1 ] ’ ’

t

if k=j+ 1ladd {p;, ) as a new =< *.sequence to the cover €. '
J i+
’gi+‘ = {C19C27""Cj7cj+l {pi+1}}'

Define also a reference ref( p) for p;,, Y
P, ifk>1
ref(pivt) = {Q, otherwise.

. = {p,} and ref(p,) = . Apply-
i Asspme‘ €'~t;?::ill§t18 fn;yt;;rfx::ewftwgll coriszz;’uct a cover &, g g eazg dz
152% ;?l:e?egr(;:ces ref( p) for each p € P. ’I;l;:estl)zfetgi tch:v:;)vg is[ an Epper
on the cho®e 10f thti (c))‘fldlz‘:g‘gs? ff:i::ence. The following lemma 1sh:w;s‘
bouqd for-th; enrgdeﬁng of P in C , then Algorithm 1 gives a primal= \;b_
that i - i? , e‘r;ultaneous solutions of (i) the longest < -sequence plgcity
?lgor;:]c;n (ii())rt;le minimum < *-cover problem (we suppose for simp
em

that w = 1). | | )
osition 1. If @=pipy---P1 1 the ordering of P 1(1:1} L‘o.f, It)hby
AIPRr(;;r: 1 constructs a minimum cover € =1{C :1’ CZ;;.;I, l (;ngest b
6:‘0 equences. A traceback of references ref(p) defin
<*-s .
sequence of length t for eachp € C,.

/'/Q\\\ CH-I

i+1 i ( 1* Cz, R
-sequen Ck n the cover i

ilG. 2. Addltlon of Pi+ to the < ce covi € =™ C

Iefelences !e«P) =g cot!espond to the (dashed) arcs (p, q)-

,C;). The
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Proof. We show th
‘ at for each i (1 <
: <ix<l!
{C1, Cy,...,C)} satisfies the condition ) the cover ¢ = T cone(A)
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Applying Lemma 4 to the matrix 4 =

matrix 4* = (' 0)
0 -1

THEOREM 1.

* Length of longest CS equals the
* Length of longest CF equals the
* Length of longest CIS eq
* Length of longest CIF e

sz:ze OJf‘ a minimum cover by CIF.
Size of a minimum cover b

_ y CIS.
uals the size of a minimum cover by CF.
quals the size of a minimum cover by CS.
' For the LCS problem a
implemented in O(nL) time where L is the len

Needleman-Wunsch algori
gorithm have been su
:;ud tI-Isunt and .Szymanskj [HS77]. In fact
Ajgr:) r;thz;mfnf”kilt h[HVS;Z(]) alggrithms can be viewed as implementations of
us data structures. < *-chains in i
rcr:)errrlf.:sspoofnd< ioc;zinlsc-ic;la):llzdat?; in Hirschberg’s algorithm. I\?lai?;:;?r:lel
: <Teck gorithm 1 correspond to the dom; ;
;2135352?232 :hnu;p;ovex:eni ([:A86] of Hunt-Szymanski’s :g;n:t’:mmgfgg
or the LCS problem can be f i .
glrlo)gﬁ, A6, AG8T, KR87, EGGISO]. We mention s o0 NKY82
vides much more information thap ;
provid . _ an just the LCS length
Yoguc;r;tt::) l1 w1t;1 the Robu?son—.Schensted-Knuth algorithn% [Sa(gc:;;f?;i
Aloor ta eaux), The relationships between Algorithm 1, advanced LCS
S, and Young tableaux will be considered in detail elsewhere

ggested by Hirschberg [H77]
both Hirschberg [H77] and

5. MaxmMuM PaThs N GRAPHS AND A-LCS ProBLEM

Wit i
hout loss of generality we suppose that P has a minimum element

a =
;72 : n‘;in au;é ;1:1(:1);11 pg.t }:}, L(;r;lg;st (<f -setc:uence problem can be reformulated
€m (lor the vertex p,) in the wej i
graph G(P, E,w), where E and w are defined lgy the rur::elghted directed

(pl’pz) EE“pl <D,,

w( py, p,) = w(p,).

Iﬁlote.the abuse of notation (w(p

smp.hfying the arguments. The gr;,
modxﬁzcation [L76] of a shortest p
O(IPI®) could be used for finding

p2) = w(p,)) which we introduce for
ph G(P,.E) is acyclic, so that a simple
ath algorithm [D59] with running time
longest < -sequences.

1 .
(0 ‘1’) (partial order <,) and
(partial order <3 ), we derive the following theorem:
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For P c I X J defined by sequences s = atgcaa and t = agcta ((i, j) € P
iff s; =t,), the corresponding graphs G(P, E) for various A-orders are
presented in Fig. 4. For “random” words s with n-letters and t with
m-letters (n > m), the graph G(P, E) for the classical LCS-problem has
O(n?) vertices and O(n*) arcs; therefore Dijkstra’s algorithm for this
graph runs in O(n*) time. Sankoff and Sellers [SS73] were the first to
consider LCS problem as optimization in the partial order. Sankoff [S72]
first proposed an O(n?) algorithm for the LCS-problem in computer
science, but a few authors developed closely related algorithms even
earlier in speech processing [V68, VZ70] and in molecular biology [NW70].
As a matter of fact, the contribution of these authors is concerned with
transformations of G(P, E) to reduce computational complexity. They
increased |P| with a simultaneous significant decrease of |E| by “decom-
position” of each “long” arc into short arcs. This transformation does not
change the length of longest path in G. As a result they reduced the
maximum degree of vertices in G to three and the number of arcs in G
was reduced to O(n?). Johnson’s shortest path algorithm [J76] runs in
O(|E|log|P|) time and gives O(n? log(n)) complexity for such “sparse”
graphs. For the case where arc weights are small integers, Wagner [W76]
suggested an algorithm running in O(|E|) time.

The classical Needleman-Wunsch algorithm for the LCS problem has
running time O(n?) due to the special arrangement of vertices of G.
Define a function g on the vertices of the graph G(P,E) to be an
arrangement if for each arc (p,, p,) € E: g(p,) < g(p,). Letk = (k, k,)
> 0 be an arbitrary vector. For p = (i, j) we now define a function f of
interest:

f(p) = f(i,i) =k- A4~ (i,7)".

As a matter of fact the following lemma means that the vector kA
determines a systolic schedule [K88] for the A-LCS problem. Systolic array
designs for the LCS problem were suggested in [LL85, YL86, CPHW91].

Lemma S. Let k=(k,k,)>0and f(p) =k A - (i, ))T. Then

(i) f(p) is an arrangement of graph G(P, E ), defined by A-order, and
(ii) if A is non-singular, then f is an arrangement of the graph G(P, E),
defined by A-order.

Proof. For each p,, p, € P, observe that

f(py) + kKAAT = f(p,)) + (f(p) = f(p1)) =f(p2).  (8)

G) If (py, p,) is an arc in G(P, E), defined by A-order, then accord-
ing to (2) and (8), f(p,) < f(p,).
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(iD) If (p,, p,) is an arc in G(P, E), defined by A-order, then accord-
ing to (3) and (8), f(p,) < f(p,) and f(p,) = f(p,) iff AAT = 0. Since 4
is a non-singular matrix, AAT = 0 implies p, = p,. Therefore f(p,) <
f(p,) for each arc (p,, p,). O

A-order

Arranging vertices allows implementation of the maximum path algo-
rithm for acyclic graphs in O(JE|) time and gives O(n?) running time for
the LCS-problem. Unfortunately the Needleman-Wunsch transformation
of G(P, E) into the graph G*(I X J, E*) with O(n?) arcs is not valid for
an arbitrary A-order. Below we describe a transformation of G(P, E) that
" T o o decreases the number of arcs significantly. The Needleman—-Wunsch trans-
: A A A T G ¢ a a o formation is a particular case of this transformation.

A

AT fof AT C A A
\ / / \ / / \/ 6. ALGORITHMS FOR A-LCS PrROBLEMS
A G C T a

A G C T @ Consider the A-LCS problem and let L, and L, be the lines a,,x +
a;,y =0 and ayx + a,y = 0, respectively. If there is no integer point
(x,y) on line L, fulfilling the condition

xl <n, Iyl <m, (9)

we slightly rotate L, decreasing cone(A4) until the “first” integer point of
L, fulfils condition (9), for k € {1, 2}. After rotation (Fig. 5) we have lines
L, and L', and cone(A') € cone(A). Obviously A" and A4 define the same
partial order on I X J. Below we suppose that the first integer points

r=(i,j,) and s = (is, j,) of L, and L, fulfil (9) and A4 = ( i “").

-2 iz

A-order
A T
|

Let v,,v,...,0, be the set V' of all non-zero integer vectors (or
vertices) of the parallelogram Il (Fig. 5), defined by points 0, r, s, r + s.
The number of elements of V,||V|], is given in the next proposition. The
proof, which is straightforward, is omitted. '

ProrposiTioN 2. VIl = |iyj, — iyj;| + 2 = |det(A4)| + 2.

Consider a graph G*(I X J, E*) with vertex set I X J and arc set E*
determined by V,

(P, py) €E* = (p,—p) EV. (10)

Define weighting functions w and w on E* according to the rule: -

A G C T A

A G C T a

Fic. i
1G. 4. Graphs G(P,_E) and optimal alignments for s = ATGCA, t = AGCTA and for

various A-orders and 4. - indi i .
duced o Sre :;1 ‘A prders. A-LCS are indicated by thick arcs; additional arcs intro- = w( Pz), . P2 € P and (Pz B pl) mre u
graph G(»P, E) ¢ indicated by dotted arcs. Sequence alignments are shown below the w(pi, p2) = 0 otherwise; (1h
s 3 ’ ’
B(pyp,) = | W(P2)y PSP (12)
1> 72 0, otherwise.
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Fic. 5. Integer points on the lines L and L', determine parallelogram IT and a set V of

integer points in I1.

Theorems 2 and 3 below reduce A-LCS and A-L
DAt o CS problems to longest

THEOREM 2. The length of an A-LCS coinci ;
w-longest path in G*. / coincides with the length of a

Proof. Obviously, each path Py Pyy...,p, in G*(I X J, E*, W) corre-
sgonds to an A4-sequence of the same length, since the vertices o’f this path
with w( p,?).> 0 correspond to elements of an A-sequence. To prove the
theorem, it is sufficient to prove that each A-sequence DysDyy.-., D, has a
corresponding path in the G*-graph of at least the same1 ,lexi’gth. o

_Ixt Pi-1, Pi be two arbitrary sequential elements of an A-sequence.
Since A = A, (p,_,, p,) belongs to cone(A), then

A=xr+ys=|x|r+|y]s+{x)r+{y)s

([x] is the integer part of x and (x) is the fractional part of x). The
vector p = {x)r + (y)s belongs to the parallelogram II and is integer
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(p=A—|x|r+|yJs). Therefore A is decomposed as a sum of | x|
+|y]+ 1(or | x] +|y]if p = 0)vectors defined by vertices from V. The
decomposition for each pair p,_,, p, determines a path in G* that visits
vertices py, P, ..., P, and therefore has at least the same length as the
A-sequence p,p;...p,. D

THEOREM 3. The length of an A-LCS coincides with the length of a
w-longest path in G*.

Proof. Let @=p p,...p, be an arbitrary path in G*. Consider a
subsequence of & defined by vertices: @' = {p,: p, € P,(p, — De-) *
r, s}. Observe that &’ is an A-sequence and according to (11) the length
of this A-sequence coincides with the w-length of P:

!

ZW(Pk—l»Pk')= Z w(Pi-1>Pi) = Z w( py)-

k=2 preP p P

To prove the theorem, it is sufficient to prove that each A-sequence
Py Pyy---, P, has a corresponding path in graph G* with the same
w-length. Let p,_,, p, be two arbitrary sequential elements of the A-
sequence. As was proved in Theorem 2, A = A (p,_;, pp) = |xr+
|y)s + p. If p + 0, define 2, to be the path consisting of | x | arcs r, | y|
arcs s, and ending with p. According to (11) only the last arc of this path
has positive weight, equal to w(p,). If p = 0, then | x|> 0, | y|> 0, since
otherwise p,_, and p, would be incomparable. Let &, be the path
consisting of | x| — 1 arcs r, |y} — 1ares s, and the arc r + s at the end.
According to (11) only the last arc of this path has positive weight, equal to
w( p,). Thus each pair p,_,, p, determines a path P, inG*(I X J,E*,w),
and only the last arc of this path has positive weight w( p,). Therefore the
length of the path &, #,,..., P, equals the length of the A-sequence

p1’p21--'ap{ D

7. A-LCS ProBLEMS AND HIiLBERT BasEs

* According to Theorems 2 and 3, finding longest 4 and A sequences
requires about kn? operations, where k is the maximum vertex degree in
G*. (k = |det(A)] + 2 equals the number of integer points in II minus 1,
by Proposition 2.) For the classical LCS problem, and. for the longest CF,
CIS, CIF problems, det(4) = 1 and k = 3 (Figs. 6a, b) as in the usual
Needleman-Wunsch algorithm. For CF and CIF, k can be reduced to
two, where the vertex (1,1) of IT is decomposed as (1,0) + (0, 1). For A4

(2 ) and 4 = (7} _2)detC) = ~3and k = 5 (Figs. 6c, ), but we

]

2 1 2




154 PEVZNER AND WATERMAN

b A
R
XA
XD
PR

Fic. 6. Examples of parallelograms II for various matrices 4 and the corresponding

graphs G*. The dark nodes in I1 correspond to 7 and s.

can further decrease k& as some points in Il are non-negative integer
combinations of others.

__We describe a procedure to eliminate arcs in the graphs G* for A- and
/_4-LCS problems. A set H of integer vectors in the cone K = {x: Ax = 0}
is called a Hilbert basis of K if each integer vector in K is a non-negative
integer linear combination of vectors in H. Let H be a Hilbert basis of the
cone {x: Ax > 0}, and let H(A) be the intersection of H and 1, where 1
is the parallelogram defined by 4. Note that each integer vector in IT is a
non-negative integer linear combination of vectors from H(A).
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Observe that Theorem 2 still holds even if we define E* by

(p1;p;) €EE* = (p,—py) EH(A)
instead of by (10). Similarly Theorem 3 still holds even if we define E* by

(P, Py) EE* = (py—p) €H(A) U {r+s}

instead of by (10). These observations allow further transformations of G*
excluding arcs which do not belong to the Hilbert basis.

For example, when A = (; f), H(A) = {2, -1),(1,0),(0,1),(—1,2)}.

(The vertex (1, 1) from IT equals (1,0) + (0,1).) For 4 = ("; _f), H(A)
= {(1,2),(1,1),(2, 1)). Therefore we can reduce the maximum degree of

G* for these matrices to four and three, respectively. For matrix A4

= (_i ‘i) k =2, but H(A4) = {(1, 1)}, reducing the maximum degree of
G* to one.
Sometimes we can reduce the maximum degree of G* even if there

exist O(n?) integer points in I1. For example, let n be even and

[ =(n/2-1) n-1
A~( n-1 —(n/2—1))'

For this matrix, II contains |det(A4)| + 3 = 0.75n% — n + 3 vertices by
Proposition 2" but H(A) ={(n/2 - 1,n - 1),(1,2),(1, 1,2, 1),(n ~
1,n/2 ~ 1)} with only five vertices (Fig. 7).

Unfortunately we cannot guarantee that H(A) contains O(1) integer

points for an arbitrary A-matrix. When 4 = (_'1' ":), the parallelogram
I1 contains almost all vertices from I X J; |det(A)| + 3 = nm + 2 and
H(A4) = {(1,D,(1,2),...,q,n)} v {2,1),3,2),...,(m,1)} contains n +
m — 1 vectors.

Some interesting questions arise:

1. Given A, find H(A) of minimal size. (This is the minimal Hilbert
basis for a plane lattice generated by vectors r and s.)

2. Find the maximum size of 2 minimal Hilbert basis H(A) for matrix
A = (a;;) with la;;| < n.

Fortunately using the Jeroslav-Schrijver characterization of Hilbert
bases, we can find H(A4) in O(n) time and prove that the maximum size of
minimal Hilbert basis of H(A) is O(n).

THEOREM 4 [J78],[S81]. Let A be an integer matrix. If K = {x: Ax > 0}
has the property that x # 0 and x € K implies —x & K, then the intersec-
tion of a family of Hilbert bases is a Hilbert basis. (This intersection is called
the minimal Hilbert basis.)
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-(n/2-1) n-1

Fic. 7. For matrix A = ( with n = 6 parallelogram [I con-

n—1 —(n/2-1)
tains |det(A)| + 3 = 0.75n% — n + 3 = 24 vertices but the minimal Hilbert basis contains
only five vertices.

Theorem 4 implies the following observation of Schrijver [S81].

CoroLLARY 1. A set of all integer vectors in K that are not non-negative
integer linear combinations of other integer vectors in K is the minimal
Hilbert basis in K.

The corollary implies a sufficient condition for a point (i, j) to lie
outside the minimal Hilbert basis of the plane lattice II: if all points in
one-neighbourhood of (i, j) (the set {(7/, j'): lif —i| < 1,1j’ — jl < 1)) be-
long to I, then (i, j) does not belong to the minimal Hilbert basis of II.
Therefore (i, j) can belong to the minimal Hilbert basis only if its one-
neighbourhood intersects the boundary of I1. This implies that cardinality
of the minimal Hilbert basis of II is at most O(n + m) and that it is easy
to find the minimal Hilbert basis in O(n) time. Therefore the number of
arcs in G can be reduced to O(n?), and this yields O(n®) A- and A-LCS
algorithms for an arbitrary 4-matrix.

The LCS problem is often discussed in terms of the two elementary edit
operations, insertions and deletions. Generalized LCS problems require at
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least |H(A)| elementary edit operations; each operation corresponds to a
vector from the Hilbert basis. It is worth noting that, although the number
of elementary edit operations can be as large as O(n), an integer analog of
the Caratheodory theorem [CFS86, S91] implies that each arc between
comparable elements can be decomposed as a sum of only four elementary
edit operations.

It is worth noting that for arbitrary 2 X 2 non-singular matrices 4 and
B each A-LCS problem can be reduced to a B-LCS by the transformation

(;)= B! A(;) For arbitrary A and B = ( . ‘1’) this transformation
reduces the A-LCS problem for n-letter words to the classical LCS
problem for O(n?) words and yields a O(n*) algorithm for the 4-LCS
problem. Nevertheless, the Hunt—Szymanski algorithm applied after such

transformation yvields an A-LCS algorithm with running time at most
O(n?log n).

8. GENERALIZED ALIGNMENTS

Most existing methods for DNA or protein sequence comparison treat
more complex weighting functions than Eq. (1). For a 2 X 2 matrix A4, we
define A-maximum alignment of words @ = q,9,...4q, and t =f,1,...1,,
as an A-sequence p,p, ... p, maximizing a function

t t

Z ws(pi) - Z Wg( Pi-y» pi) - win(pl) - w(er(pl)’ (13)

i=1 i=2
where

o w(p) = wyi, J) is the substitution weight of aligning g; and ¢;;

o w(p', p") = w((i', /), (", j")) is the weight of a gap defined as an
insertion /deletion between (/' j') and (i, j");

e w, (p) =w;(i,j) is the weight of an initial gap (for the usual
alignment problem, this is a gap between (0, 0) and (i, j));

o W (D) = w,(i,j) is the weight of a terminal gap (for the usual
alignment problem, this is a gap between (i, j) and (n + 1, m + 1)).

A-maximum alignment is defined similarly. By initial and terminal gap
functions, we mean the gap functions at the leftmost and rightmost ends of
the sequence alignment. These have often been weighted differently from
gaps in the remaining alignment.

Let  and s be the vertices of the parallelogram II (Fig. 5) defined by
matrix A4, and V be the set of all integer points of II, except 0. For an
arbitrary vector p € cone(A4), let p = x,(p)r + x (p)s be the decomposi-
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tion of p into vectors r and s. Define

xll = x -1, if x is integer and x = 0,
[x], otherwise. (14)

For the usual alignment problem, ||x || and [lx]| are treated as the gap
lengths in q and t correspondingly.

Next we consider a few special cases of the functions w, s Wor Win, W

in» ter

1. Substitution weights w, are usually defined by an / x| matrix
(d(a, b)), where [ is the size of alphabet, by the rule w(p) = w(i, j) =
d(g;, t;). Some common examples are

(a)

1, =b
d(“’b)={o b

and
(b) d(a, b) is an arbitrary matrix.

A few matrices for protein sequence comparison are discussed in [A91).

2. Gap weights w,(p’, p”) are defined as functions of variabies ||x,|| =
lx,(p” — p'lland llx )| = lx,(p” — p")ll. For the usual alignment problems,
the sequences p,p,...p, giving a maximum in (13) usually have the
property that {lx,ll = 0 or |lx,|| = 0. We suppose that the gap weight is a
sum of the same gap function for ||x, || and lix J|:

. (a? additive gap functions w,(p’, p") = v - lix,ll + v - llxll, where v
is an arbitrary constant.

(b) linear gap functions w,(p’, p”) =u+v- lx, D + (u + v -
llx;ID, where u and v are arbitrary constants. If |lx,|| = 0 or ||x,|l = 0, the
corresponding term in the sum is eliminated.

(¢) the sum of piecewise linear concave gap functions of ||x,(p” —
p' N and of [[x,(p” — p"l.
3. Initial (terminal) gap weights w;, (w,,):
(@) wi(p) = w,((0,0), p); w,(p) = w(p,(n + 1,m + 1)).
(b)

[0, i=0orj=0,
win(P) = win(i,J) = {oo otherwise
i=nandj=m
otherwise.

.. 0,
i 2) = wilin) = {
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©) wi(p) =w, (p)=0
(d) w;,(p) and w(p) are arbitrary functions.

For A = ( (’) (1))’ particular cases of problem (13) are studied in many
papers, a few of which are listed below:

o w, (1a), w, (2a), w;y, w,., (3a). Evolutionary (edit) distance problem
[S74, FW74] and classical LCS problem (for v = 0).

* w, (1b), w, (2a), w;y, w,,, (3b). Classical global optimal alignment
problem {NW70]

o w, (1b), w, (2a), w;,, w,., (3c). Local alignment with additive gap
function [S79]

e w, (1b), w, (2b), w;;, w,., (3a). Global alignment with linear gap
function {FS83]

* w, (1b), w, (2b), w;,,w,, (3c). Local alignment with linear gap
function [SW81, G82, AES86].

* w, (1b), w, (2c), w;,, w,, (3b). Global alignment with piecewise
linear gap funcnon [WSB76).

* w, (1b), w, (2¢), w;,, w,., (3¢). Local alignment with piecewise linear
gap functlon [SW81, W84, MM88, GG89, G90].

s w, (Ib), w, (2c), w;,, w,, (3d). Global alignment with piecewise
linear gap functxon and arbitrary beginning/end gap function [R84].

A few remarks about the relationships between these papers are in
order. [NW70] presents a similarity method while [S74, FW74] present
distance methods. For global alignment there is an easy correspondence
between these algorithms [SWF81]. For local alignment, [S79] is based on
distance while [SW81] uses similarity. Here no equivalence between simi-
larity and distance exists, and similarity is usually used for local alignment.
Finally we mention that we have included various work under “piecewise
linear concave gap functions.” We refer the reader to [MMB88, GGB89],
where O(n? - log K) algorithms are presented for concave K-piecewise
gap functions.

Note that the problem of finding A-maximum alignment for 4 = ( ’ ‘l’)

with an objective function similar to (13) was studied in speech processing
[SC78], geology [WR87], and DNA physical mapping [WSK84, MBR91,
HW92].

In the next section we prove that all these examples of optimal align-
ment problems are particular cases of Theorem 5 that give O(Kn?)
algorithms for optimal alignment problems with arbitrary K-piecewise
linear concave function w, and arbitrary initial /terminal gap functions w;,
and w,.
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9. GENERALIZED ALIGNMENTS AND K-STRATA GRAPHS

The goal of this and the next section is to give an A-alignment
algorithm for generalized alignment. The situation here is much more
difficult than the 4-LCS problem due to concave gap functions, arbitrary
initial /terminal gap functions, and local or global alignments. Instead of
treating the alignment problems from Section 8 in a case-by-case fashion,
we would like to give a general optimum path algorithm. In this section
we define K-strata graphs and in the next section we derive a general
optimum path algorithm.

Let w, be a piecewise linear concave non-negative function with X
pieces defined on R* (Fig. 8a):

Wg(y)=wg(}’k)+“k()"}’k) if ye <y <yepy, l<k<k
(here Y41 = ). Since w, is concave and non-negative,

Vz>y,: w,(z) < we(yi) tu(z -y, (15)
and

Vz,25,...2. we(z) +2,+...42,) < we(21) + wy(z,)
T +w(z).  (16)

Next we specify a graph for A-alignment, where the edges of the graph
have a clear interpretation in terms of the pieces of w,. The vertices of the
graph will be represented by strata 1,2,..., K, each stratum having two
layers, r and s. Layer r of the ith stratum corresponds to the gaps
between p’ and p” with ||x,|| fulfilling the condition y, < I|x, | < Vier
Layer s of the ith stratum corresponds to gaps with [x || fulfilling the
condition y; < lx |l < y,,,.

Formally, consider the K-stratum graph GX(W, E,w) (Fig. 9) with
vertex set

W=1IxJx{0,1,...,K} x {r,s} U{pi, Prer} -

We designate the vertices of W by triples (p, i, a), where pelIX],
i€{0,1,...,K}, a €{r, s). Pin and p,, correspond to initial and terminal
8aps, stratum zero corresponds to substitutions, stratum i > 0 corresponds
to gaps between p’ and p” fulfilling

” xr(p” - P') ” 2y (layer r)
or

(2" = p')| 2y, (layer s).

1
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a4 w(y)

P

/

y
Yi Y2 Yioxd Vi Ixdl YK
p”-p’
b o) ) o) @) )
P
o) 0 o) o) O
lixgl s
) o) ) o) o)
o) o) o) ) O
] °® °® ) ) O
Ixlic / *
Y e : ) ) 0

- .o
Fic. 8. (a) A piccewise linear concave function w,; (b) the decomposition p” —p
llx, llr + llx,lls + p, where p belongs the parallelogram II.
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layerr p’ p”
stratum 0 \ p—
layer s f
layerr
stratum 1 \ \
layer s
layerr P'+Y;
stratum i plllx lir \
layer s
layerr
stratum j
layer s p'Hix llr+yjs  p’+lixlir+iixglls
layerr
Stratum K
layer s

Fic. 9. The gap between p’ and p” corresponds to the path between (p’,0,r) and

(p",0,r) in GX consisting of seven arcs. Each horizontal line represents a copy of the set
I'x/J

Each stratum has two layers, r and s, corresponding to r and s compo-
nents of the gaps.

A gap in the A4-alignment between p' and p” can be decomposed as
p" = p' =llxlr +lix s + p (Fig. 8b), where p belongs to the parallelo-
gram 1. (See the proof of Theorem 3.) This gap can be represented in the
graph as a path between (p’, 0, r) and (p", 0, r) in GX, consisting of seven
arcs and passing through ith and jth strata (Fig. 9). Indices { and j are
determined by the conditions (Fig. 8a)

yisllxll <y,
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and

y; s nx_;" < Yisre

The first three arcs below give the weight of the r-component of the gap
and the next three arcs give the weight of the s-component. The last arc
gives the weight of the substitution p”:

e (p',0,r) = (p' + y,r,i, r) (r-component of the gap, beginning)

o (p +yr,i,r) = (p +lix,lr,i,r) (r-component of the gap, contin-
uing)

o (p' +llxMryi,r) = (p’ + lx,llr,0,5) (r-component of the gap,
ending)

o (p" +llx,r,0,8) = (p' + llx,llr + y;5,)j,5) (s-component of the
gap, beginning)

o (p' +lIx,lir +y;5,j,8) = (p' + llx,lir + llxlls, j, s) (s-component
of the gap, continuing)

o (p + lix lir + lix,ls, j, 8) = (p + lIx,lir + llx,ls, 0, 5) (s-compo-
nent of the gap, ending)

o (p' + lix,llr +llx,lls,0,s) = (p”,0, r) (substitution p").

Formally the arc set of GX is defined by the rules:

e Arcs inside zeroth stratum (substitution arcs): a = ((p,,0,s),
(p 2 0) r ))’

a € Eandw(a) =w,(p;) = (p,—p,) €EVand(p,—p)) #r,s.

e Arcs inside zeroth stratum (bridges between r and s layers of the
zero-stratum; ||x,ll = 0): a = ((p,0,r),(p,0,s)),

a € E and w(a) = 0.

e Arcs from zero-stratum to kth stratum for k > 0 (beginning gap):

a=((p,0,r), (P2, k,r)): a€Eandw(a) = —wu(y,) = (P2~ P)) =¥il)
or

a=((p,0,5),(p2, k,5)): a€Eandw(a)= —wy(yi) = (p2 —P1) = ¥S-
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* Arcs inside kth stratum for £ > 0 (continuing gap):

a=((pl}k!r))(p2’k’r)): aeEandW(a)= —uk@(pz

or —pl) -n

a= ((pl,k,S),(pz,k,s)): a € E and w(a) = —u, = (pz

* Arcs from k-stratum to zeroth stratum for & > 0 (ending gap):

a= ((p,k,r),(p,O,s)),a € E and w(a) = 0,

or
a= ((p,k,s),(p,O,s)): a&Eandw(a) = 0.
* Arcs from p. initi
S Pin to zeroth stratum (initial gap): g = (pin,
a € Eand w(a) = ~win(P) + w(p).
* Arcs from zeroth stratum to Py, (terminal gap): g = (( p,0,r), p,.)
s Yy » Fter/s

a € Eand w(a) = —w,(p).

10.
ALGORITHMS FOR THE A-MAXIMUM ALIGNMENT PrOBLEMS

First we prove a few lemmas about paths in GX

in th'e zeroth stratum. Then Theorem 5 gives t
algorithm. Let p/, p”

w(Q) in GX
(p",0,s).

beginning and ending
he general alignment
2 el ?<J and let Q be an arbitrary path of length
etween (p’,0,r) and (p",0,s5) or between (p,0,s) and

LEMMA 6. Let p”" — p' = 2r (or
vertices in zeroth stratum, exc

- w(Q).

p" —p' =1zs) and assume Q has no
ept the first and the last ones. Then wy(z) <

Proof. All intermediate vertices

: 2 of Q belong to a kth stratum for &

ztrxlcfsill_mg th/](e conditions 1 < k < K — 1 and Vi < z. (See the deﬁnitionrof
in .) Observe that each arc from the zeroth stratum to the kth

stratum has weight —w_(y, ) insi
: : 5\ ¥x) and that each arc inside the kth str
weight —u, . Taking into account (15), aem has

we(z) < we( ) + (z =Yu, = -w(Q). O

-p,) =s.
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LemMA 7. Letp" — p' = zr (or p” — p’' = zs) and assume Q has no arcs
from layer s to layer r inside the zeroth stratum. Then w(z) < —w(Q).

Proof. Let (p',0) = (p;,0),(p3,0),...,(p,0) = (p",0) be the vertices
of Q belonging to the zeroth stratum, where the indices for layers » and s
are omitted, and let Q; be the subpath of Q between (p;_,,0) and (p;,0)
for i =2,3,...,1. Observe that p, — p;_, = z;r (or p; = p;_, = z;5) for
integer z;, and that Q, fulfils the conditions of Lemma 6. Therefore
wy(z;) < —w(Q,). On the other hand, according to (16),

We(zy + ... +2)) Swe(2) + ... +wy(2))

< -w(Q) —...-w(Q-) =-w(@). O

Lemma 7 implies

LemMA 8. Let Q have no arcs from layer s to layer r inside the zeroth
strata. Then

w,(lx. (2" = P)I) + w(lx.(p" = P)) s —w(Q).

The main result of this section is given in the next theorem.

THEOREM 5. The length of an A-maximum alignment coincides with the
length of a w-longest path from p;, to p,., in the K-strata graph GX.

Proof. Let Q = {pin, a1 = (P1, k) a2 = (P, ka), o 4, =
(P, k), Dre;} be an arbitrary path of length w(Q) between p;, and p,, in
GX. Again the indices for layers r and s are omitted. We denote by
Q(p;, p;) the subpath of Q between (p;, k;) and (p;, k).

We now prove that there exists an A-sequence with alignment score
(13) equal at least w(Q). Consider the projection #=p,p,...p, of Q
onto I X J. For consecutive elements of & either p; — p;_, = 0 for arcs
from the kth stratum to the zeroth stratum, or p; — p;_, = zs or zr for
arcs to or inside the kth stratum, or p, — p,_; € V for substitution arcs
inside the zeroth stratum. Therefore & is an A-sequence and p; — p; €
cone(A) for each 1 <i <j < t. Moreover, p; — p; € cone( A) if a subpath
of O between p; and p; contains a substitution arc from the zeroth
stratum. (See the definition of arcs inside the zeroth stratum.) Therefore
the subsequence of &,

P = {py) U {pi: ((Pi-1» ki-1)s (Pi» k;)) is @ substitution arc
in the zero-stratum} U {p,}

is an A-path. For each pair of consecutive elements p; and p; in &, the
last arc of Q(p;, p;) is a substitution arc in the zeroth stratum. Set
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layerr py’ Py’ Py’ Py
stratum 0 1 7 —
layer s 4 y T y
layer r
stratum 1
layer s
layer r
stratum j -
layer s
layerr Y . \
stratum j >
layer s
layerr
stratum K
layer s

Fia. 19. A path Q in the K-strata graph with the vertices P, and p,. omitted. The
substitution arcs of Q inside the zeroth stratum (dashed line) define a sequence P’ =

(P}, P3, P35, P4). The subpaths Q2= QP ph), Oy = Q(p%, by, and Q, = Q(p%, py) fulfill
the conditions of Lemma 8.

P =pips...p), I <t, and Vi pi=p; for a j>i, and let Q=
Q(p;_,, p}) be a subpath of Q joining p;_; and p! (Fig. 10).
Observe that only the last arc e; of the path Q; belongs to the zeroth

stratum and goes from layer s to layer r. Therefore @\ e; fulfils the
conditions of Lemma 8. Thus

wg(zr) + wg(z:) = _W(Qi\ei)’

where z, =|lx (p} - p;_DIl, z, = I2,Cp} = pi_DIl. Since w(e,) = w,(p)
and w(p; — p;_,) = we(2,) + w,(z,), we have

we( = Pi_y) — w,(p) < ~w(Q,) = ~w(Q:\¢) ~ w(e;).
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Therefore the alignment score (13) for the A-sequence & has score at
least w(Q):

!
W(Q) = w(pin’pl) + ZW(QI) + w(pnptcr)

=2
]
< (~win(PY) +w(p)) + .ZZ(W:(PD — we(pi_1, Pi))
- wler( p;)

To complete the proof of the theorem it is S}xﬁicient Fo ggst;u;tv cf;r1
each A-sequence P=p,p,...p, a cqrrespondmg pa;h én e
P;, and p,., with length equal to the alignment score of &.

Following the proof of Theorem 3, denote

Pe ~ Py =%,7 +x,5 =llxlIr +llx]ls + p.

; < lix,)l <y;,, (Fig. 8b). It
rve that p € Vand let y; < IIX,l_l <Y ¥ Slx, ; )
gl)ls:ws from the definition of arcs in GX that the sequence of vertices

(Fig. 9),
(Px-1,0,7),

(pk—1 +yir’i, r)y

(Pey + (i + Droivr), stratum &

»

(P—r + lIxlIr i, ),
(Pe-1 + Nx,lir,0,5),

(pk...l + “xr"r + )’jS,j, S),

(Pe=r + Nx i + (y; + 1)s,),5), stratum /
(Pe—y + lxlir + lixlls, j, 5),

(P + llxlir +1lixls,0,5),
(Pe—y +lx lir +lxlis + p,0,7) = (pi,0, 1),

a path ‘2 r i K having the length

i o . between (p - ,0, )and (pk,O,r) in G

::(Q ) t"— —;V (pk 1 pk) k+ iv(pk). Therefore, the length of the path Q =
k g ’ 5
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pi:QZ’Q’-'-,Qy i K
Dot g o Pein €

R . .
. r:[;Z?rsf lércsT!]e t;lme complexity of the algorithm is determined by the
Dot of ar: bm the K-st.ratum graph and equal O((X + IIdet( A)|)n?
! ert bases the time complexity can be reduced to O((K +.
1H(A)IDn?). The transformation (I’)-—- ( 'i) reduces the A-LCS ali
: y - align-
rrllent‘ problem to the classical LCS problem and allow e
algorithms from [MMS88, GG89). > One [0 use the

equals the weight of the alignment score

Remark 2. We omitted i i
roe consideratio i .
context, i.e., functions not only the si n of functions w, depending on
as well [S74, R84], Th nly the size of a gap but of the letters in a gap
’ - hese models can be incorporated in our approach

Remark 3. We assumed that i
‘ the gap function is a sum
function for ||lx (p” — Pl and [jx (p” - Pl The case of °f the same gap

. disti

- ofls:g(;:) ta:il: ;?tx;ltixt kiependent gap functions that arise for align-
] nKnown tertiary structure wi i i

known tertiary structure, see (BSST87, SS92J: ith the protein with

* the functions of the variabl
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arise for RNA secondary structure; o
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