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In this paper we describe a method for the statistical 
reconstruction of a large DNA sequence from a set of 
sequenced fragments. We assume that the fragments 
have been assembled and address the problem of deter- 
mining the degree to which the reconstructed sequence 
is free from errors, i.e., its accuracy. A consensus dis- 
tribution is derived from the assembled fragment con- 
figuration based upon the rates of sequencing errors in 
the individual fragments. The consensus distribution 
can be used to find a minimally redundant consensus 
sequence that meets a prespecified confidence level, ei- 
ther base by base or across any region of the sequence. 
A likelihood-based procedure for the estimation of the 
sequencing error rates, which utilizes an iterative EM 
algorithm, is described. Prior knowledge of the error 
rates is easily incorporated into the estimation proce- 
dure. The methods are applied to a set of assembled se- 
quence fragments from the human GGPD locus. We 
close the paper with a brief discussion of the relevance 
and practical implications of this work. o 1992 Academic 

t 

Press. Inc. 

1. INTRODUCTION 

Central DNA sequence databases came into existence 
about 1982 and have undergone very rapid growth. To- 
day the three major databases, DDBJ, EMBL, and Gen- 
Bank, which contain about 50 X lo6 nucleotides, are 
virtually identical for all practical purposes and are posi- 
tioning themselves for the era of genomic sequencing. 
See Kahn and Cameron (1990) for a discussion of 
EMBL and Burks et al. (1990) for a discussion of Gen- 
Bank. In Waterman (1990), a number of issues regard- 
ing genomic sequence databases are raised. The present 
paper is focused on one of these issues: DNA sequence 
accuracy. It is commonly undersbod that the existing 
data are not of uniform accuracy, but generally this is 
not apparent from the database entries. In fact, what is 
acceptable accuracy and how to estimate accuracy are 
the subjects of considerable recent debate (Roberts, 
1990). Sequences appear as AGCTG . . . , for example, 
with no comments about their accuracy. In this paper we 
propose a method for estimating DNA sequence accu- 

. 

racy from the assembled fragments of a shotgun se- 
quencing project or of any sequencing method that relies 
on redundant sequencing to achieve accurate finished 
sequence. The result of our analysis is an estimate of the 
likelihood of the base in each position or a simple esti- 
mate of an entire consensus sequence at  a given level of 
confidence. While the reliability of the consensus or fin- 
ished sequence usually exceeds that of an individual 
fragment, it is valuable to quantify this. Similar statisti- 
cal approaches could be taken to determine the accuracy 
of other types of physical map data. See Michiels et al. 
( 1987), Lander and Waterman ( 1988), Branscomb et al. 
( 1990), and Balding and Torney ( 1991) for overlap like- 
lihood estimates for physical mapping with fingerprints 
from clones. 

In a shotgun sequencing project, a large DNA mole- 
cule is broken into a collection of fragments. The frag- 
ments are cloned into a suitable vector and sequenced 
individually. The fragment sequences are then assem- 
bled by determining their relative orientations and over- 
laps and aligned to form a column-by-column corre- 
spondence (Churchill et al., 1990; Kececioglu and Myers, 
1990; Staden, 1980). The accuracy of a finished se- 
quence produced by this method will vary across sites. 
The depth of coverage varies for statistical and biologi- 
cal reasons (Lander and Waterman, 1988; Edwards et 
al., 1990). It is intuitively obvious, and we shall make 
this notion precise, that increasing the depth of coverage 
should improve the accuracy of the finished sequence. 
The fragment assembly will inevitably contain columns 
with discrepancies due to errors in the fragment se- 
quences. Sequencing errors will show some clustering 
due to chance, but errors can also be caused by proper- 
ties of the sequence itself. Homopolymeric runs and re- 
petitive sequences in general are prone to errors. Se- 
quences with a tendency to form secondary structures 
are suspected of causing compression errors. Sometimes 
all the fragments covering a region will have the same 
orientation, making these strand-specific systematic 
errors hard to detect. 

There are a number of reasons why it is important to 
assess the accuracy of DNA sequence data. The level of 
accuracy required may depend on the types of analyses 
for which the sequence will be used. Sequence compari- 
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son algorithms that are robust to small numbers of 
errors exist. States and Botstein ( 1991 ) have studied the 
problem of locating homologous genes in a database 
when the query sequence has errors. However, some 
other aspects of sequence analysis are likely to be very 
sensitive to errors. The problem of finding coding re- 
gions is an important example. Current methods rely in 
large part on the ability to detect open reading frames 
(Fields and Soderland, 1990). The effect of a single in- 
sertion or deletion error is a frameshift that can mask an 
open reading frame. Posfai and Roberts ( 1991) have de- 
veloped a technique to detect these errors. 

The study of natural variation in DNA sequences is 
another area where accuracy must be considered. It will 
be important to distinguish genuine variation from se- 
quencing errors. The frequency of polymorphic DNA 
sites, although it may vary between species and across 
genomic regions within species, may be on the order of 1 
base in 250-2000 ( Gusella, 1986). The level of accuracy 
should be known and accounted for in studies of se- 
quence variation. 

Sequence accuracy should be considered in the plan- 
ning of experiments that require the design of specific 
oligonucleotides. Oligonucleotides selected from the 
most reliable regions of a sequence will maximize the 
probability of success. This probability could be calcu- 
lated using the summary statistics we describe below. 
These considerations increase in importance for experi- 
ments that require a large number of specific hybridiza- 
tions. 

Finally, to design an effective strategy for genomic 
sequencing, we must consider the trade-off between ac- 
curacy and the cost of redundant sequencing. A reason- 
able strategy for a large project might be to produce the 
bulk of the sequence data rapidly and at  low cost. Careful 
resequencing could then be focused on selected regions 
to attain a desired level of accuracy (E. Chen, personal 
communication ) . 

We consider DNA sequence accuracy as a function of 
the redundancy of coverage and the frequencies of ran- 
dom errors in the fragment sequences. We take the term 
accuracy to mean the probability that a given DNA base 
or sequence of bases in a finished sequence is identical to 
the corresponding base in the actual DNA molecule. We 
assume implicitly that there is a single true sequence and 
not a population of sequences being studied. The prob- 
lems of errors that occur at  the DNA preparation or 
cloning stages and of errors in data transcription are not 
addressed here. Systematic errors that occur in sequence 
determination are also beyond the current scope of these 
methods. Thus, the statistics described represent a 
bound on sequence accuracy. We have made a number of 
assumptions to facilitate the statistical analysis. As we 
emphasize, some of these assumptions can be relaxed 
without difficulty while others present more formidable 
obstacles to the statistical analysis. These assumptions, 
numbered A1 to A6, are described before we give an 
overview of our methods for estimating accuracy. These 
assumptions are never fully realized in practice, but it is 

worth emphasizing that if they were, the statistical 
methods are sure to be valid. Some are more critical to 
the method‘s success than others; we list them in order 
of decreasing effect. Moreover, some of the difficulties 
are more easily overcome than others. We consider this 
paper to be a starting point for future work on DNA 
sequence accuracy. 

The starting point of our analysis is the assem- 
bled fragment configuration. A crucial assumption is 
that the fragment assembly is correct. We realize that this 
will never be absolutely true. Some ambiguities will exist 
in the alignments and the final product may depend on 
the assembly algorithm and/or the judgment of the in- 
vestigator. Still, with low error rates in the fragment 
sequences and moderate to deep coverage, it is possible 
to obtain highly reliable assemblies. We assume that all 
fragment sequences have been carefully examined prior 
to assembly and that all traces of vector have been re- 
moved. The investigator may wish to reexamine certain 
gels that are questionable and correct the fragment se- 
quences. This is expected and acceptable. However, for 
the purposes of our statistical methods, it is not recom- 
mended that fragment sequences be altered to conform 
with an alignment after the assembly. Altering the frag- 
ment sequences in light of the alignment to conform 
with the “consensus” sequence can distort the estimated 
error probabilities and lead to unreliable estimates of 
accuracy. 

This is easily seen with an example. If the column 
consists of AATA, the consensus letter is A. If the col- 
umn is then “corrected” to AAAA, there is now no way 
to see that variation existed and no way to estimate the 
variation. Therefore if the correction of “errors” is based 
solely on the alignment, the error rates in raw fragments 
cannot be estimated. In light of the alignment, there will 
be two types of errors: those that create ambiguity and 
those that do not. We assume errors that do not create 
ambiguity are generated by the same mechanisms and 
occur at  the same frequency (in unassembled frag- 
ments) as those that do create ambiguity. It is important 
that we obtain an unbiased estimate of this frequency. If 
“obvious” errors are corrected in light of the alignment 
the hidden errors will remain, and we will underestimate 
their frequency. 

We assume that all regions within a fragment are 
equally reliable. However, the resolution of small frag- 
ments on a gel is generally better than the resolution of 
large fragments. Hence, one end of a fragment sequence 
will be more reliable than the other. It may be possible to 
explicitly model the decay of accuracy that occurs as the 
gel is read out to greater lengths. This would allow one to 
include data that are still informative although less accu- 
rate without compromising the quality of the final se- 
quence. A simple solution to this problem would be to 
use two sets of error rate parameters, one for the first, 
more reliable part of the sequence and a second set of 
rates for the more error-prone portions. Another ap- 
proach would be to utilize a probabilistic representation 
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of the bases in each fragment (see the discussion in Sec- 
tion 8). This is an area for future research. 

We assume that all fragment sequences are 
equally reliable. Any number of factors may influence the 
reliability of individual fragments. If these factors are 
known to the investigator, a subjective weighting 
scheme could be imposed on the fragment set. It also 
may be possible to detect "bad" fragments after the as- 
sembly and consensus computations. A quality-of-frag- 
ment statistic such as a x 2  statistic could be computed 
on the basis of observed and expected numbers of errors 
in a fragment. However, a fragment sequence should not 
be removed from the assembly unless it is clearly anoma- 
lous, i.e., aligned incorrectly. A multiple testing problem 
is involved here and we refer the interested reader to 
Arratia and Gordon ( 1990) for a discussion of extreme 
values and the binomial distribution. 

We assume that sequencing errors are indepen- 
dent of their local context, i.e., that error probabilities 
depend only on the true base at  a position and not on 
adjacent or more distant bases. This assumption can be 
relaxed somewhat at  the cost of increasing the number 
of model parameters. Error rates that depend on the 
bases immediately to their 5' side in the fragment can be 
introduced into the model. However, the true situation is 
likely to be more complex than a simple one-step depen- 
dence. For example, compression sites are a common 
source of errors that may be related to the formation of 
local secondary structures extending over several bases. 

We assume that the sequencing error rates are 
constant across the entire sequence. Constancy could be 
checked by a sliding window plot of the expected error 
frequencies. Some clustering of errors can be expected 
due to chance. The assembly itself may be incorrect in 
regions with a high rate of errors and should be reexam- 
ined. Otherwise, high error rates may be due to some 
unusual aspect of the local sequence. 

We assume that the composition of the sequence 
is independent, both of adjacent bases and over large re- 
gions. Markovian dependence between bases is well es- 
tablished, as are local variations in composition (Chur- 
chill, 1989). However, the effect of these assumptions on 
the inferred final sequence is likely to be minor. Addi- 
tional modeling of the DNA sequence composition could 
be incorporated, again at  the cost of additional parame- 
ters. 

In the sections below, we begin with a description of 
the assembled fragments. Then we examine the problem 
of determining a consensus when the sequencing error 
rates are known. A consensus distribution that allows 
one to compute the most probable base at  each position 
(Procedure A, Section 3 ) or a redundant set of bases that 
exceeds a specified level of probability (Procedure 'B, 
Section 3)  is defined. The latter procedure is extended in 
Procedure C, Section 3, to produce a collection of se- 
quences that constitutes a global confidence interval for 
the true DNA sequence. Next, we turn to the problem of 
estimating the sequencing error rates using the method 

A3. 

A4. 

A5. 

A6. 

of maximum likelihood. The result' is a simple iterative 
solution (Procedure D, Section 4) ,  which is a special 
case of the EM algorithm (Dempster et al., 1977). Incor- 
poration of prior knowledge about error rates into the 
estimation procedure is described. The methods are il- 
lustrated with an example from a large sequencing proj- 
ect (Chen et al., 1990). 

2. THE ASSEMBLED FRAGMENTS 

A set of fragment sequences (fragments are indexed 
by j = 1, . . . , m )  is aligned by some procedure. The result 
of the alignment procedure is a matrix with m rows. 
Each row contains the ordered sequence of bases in a 
particular fragment written in either direct or reverse 
complemented orientation. Gaps may be inserted inter- 
nally and each fragment is offset to produce a column- 
by-column correspondence among the entire set of frag- 
ments. The column index i = 1, . . . , n runs from the 
leftmost base in the assembly to the rightmost. 

Let si denote the true state of the DNA sequence 
corresponding to column i in the fragment assembly. 
The true state may take any value in the set A = {A, C, 
G, T, -} . The symbol - is included to allow for extra 
columns in the fragment assembly that do not corre- 
spond to any base in the true DNA sequence. The alpha- 
bet of redundant bases is defined to be the set of all 
nonempty subsets of A. A partial notation for this set is 
given by the standard IUPAC DNA alphabet (Cornish- 
Bowden, 1985). When a redundant set includes one or 
more bases and -, we append an * to the IUPAC sym- 
bol, i.e., R* = {A, G, -}. Redundant bases are used 
below in the definition of consensus sequences. 

The elements of the fragment assembly matrix, de- 
noted by xu,  may take values in the set 93 = { A, C, G, T, 
-, X ,  4} , where - denotes an internal gap and X de- 
notes any ambiguous determination of a base. The set of 
ambiguous bases can be expanded, but the methods de- 
scribed below are essentially unchanged. The null sym- 
bol 4 is used as a place holder for nonaligned positions 
beyond the ends of a fragment; in data files 4 of course 
would be replaced by the blank character " ". The blank 
character is awkward in equations, hence the use of 4. 

All sequenced bases xij are recorded in a standard ori- 
entation relative to the assembly. However, many (typi- 
cally half) of the bases are sequenced on fragments that 
are reverse complemented relative to the standard orien- 
tation. It is necessary to keep track of the orientation 
because the specific sequencing errors made depend on 
orientation. An error of reading A instead of G may not 
have the same probability of reading T instead of C. For 
each fragment we will define the reverse complement 
indicator to be 

0 Fragment i is direct 
I 

Dl r .  = 
' 1 Fragment j is reverse complemented. 

We use the notation a' to denote the base complemen- 
tary to a .  Note that a' is well defined even for redundant 
bases: for example, A" = T, -' = -, {A, G}' = { C, T } ,  
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The depth of coverage at  position i is defined to be the 
number of fragments contributing sequence information 
(including internal gaps), 

The notation 1 ( E )  is used to denote the indicator func- 
tion for the event E .  This function takes the value one 
when E is true and zero otherwise. 

If the fragment sequences could be determined with- 
out error, our knowledge of the true sequence would be 
exact and, except for the problem of correct assembly, 
there would be no need for inference. However, sequenc- 
ing errors do occur and we propose to describe them by 
the following probability model. An error occurs when 
the true base si = a is misread in fragment j to yield xij = 
b ,  b # a. Recall the assumptions that the error probabili- 
ties are constant across all positions, that sequencing 
errors occur independently within and across columns of 
the fragment assembly, and that the error rate depends 
only on the values of a and b .  The sequencing error prob- 
abilities are denoted by 

p ( b l a )  = Pr ( x u  = bls,  = a ) ;  a €  A, b E  3. [ 3 ]  

It is also necessary to define a probability distribution 
for the composition of the DNA sequence. We have as- 
sumed that bases occur independently with identical 
distribution across the assembly. The composition prob- 
abilities are denoted by 

p ( a )  = Pr (si = a ) ;  a E A. 141 

Note that our definition of sequence composition in- 
cludes the gap frequencies. More complex models for the 
DNA base composition and the sequencing error proba- 
bilities could be incorporated at  this stage. 

3. CONSENSUS WITH CONFIDENCE 

Our goal is to make the best possible determination of 
sl, . . . , s, given the data in the fragment assembly. We 
initially assume that the sequencing error probabilities 
and DNA base composition are known exactly. In Sec- 
tion 4, we address the practical problem of estimating 
these quantities while simultaneously estimating the 
consensus sequence. 

The consensus distribution is a probability distribu- 
tion over the set A defined by 

a i ( a )  = Pr (si = a l x i j , j  = 1 , .  . . , m ) .  [51 

It is the probability that the true base is a given the 
fragment assembly data. These probabilities can be 
computed using Bayed rule, 

where we set p (4  I a )  = 1 for all a € A. See Feller ( 1968, 
p. 125) for a discussion of this widely used elementary 
formula. Note that a, ( a )  is defined to be the probability 
that the base s, = a given the fragment data x , ,  while Eq. 
[ 61 gives a, ( a )  in terms of the conditional probabilities 
of reading xij given the true base s, = a. Bayed rule al- 
lows us to reverse the conditioning. By studying the accu- 
racy of the fragment sequencing process, we can esti- 
mate the accuracy of the assembly. 

We present three different approaches to the defini- 
tion of a consensus sequence. First, we compute the most 
likely values of s, at each position. Second, we allow re- 
dundancy in the consensus and compute a subset of A 
such that the probability that s, is a member of this set 
exceeds 1 - a at each position. Finally, we describe the 
construction of a consensus sequence with redundant 
bases such that the probability that the entire sequence 
sl, . . . , s, or region of interest sa, . . . , sb is contained 
within the redundant consensus sequence with probabil- 
ity at  least 1 - a. 

Procedure A.  The most likely value of s, is the base a 
that maximizes a, ( a )  over a. Denote this value by c, ; 
then 9 

max a , ( a )  = a , ( c , ) .  [71 
a€& 

Procedure B. Now we wish to allow redundant bases 
into the consensus. Our goal is to find the character with 
minimum redundancy that has probability in excess of a 
specified level 1 - a. The probability that a redundant 
base includes the true base is the sum over all bases rep- 
resented by the symbol ci . The choice of consensus se- 
quence is made so that at each position the probability 
ai ( ci ) exceeds a specified level, 

To find the best redundant set, we begin by choosing the 
most likely base at  position i ;  call it a,. If 7ri (a i  ) > 1 - a, 
we stop. Otherwise, we add to the redundant set, the 
next most likely base; call it b, . If a, (a, ) + ai ( bi ) > 1 - 
a, we stop. The process continues until the level exceeds 
1 - a. It is guaranteed to stop because 7ri ( A )  + ai ( C )  + 

A redundant sequence can be thought 
of as a collection of sequences with a different member 
for each unique expansion of its redundant characters. 
Formally this is a cylinder set in sequence space (Feller, 
1968, p. 130) .  We wish to construct such a collection of 
sequences that will contain the true sequence with proba- 
bility exceeding 1 - a. The probability that the true se- 

a i ( G )  + ai(T) + ai(-) = 1. 
Procedure C. 
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quences sl, . . . , sn lies within a redundant sequence 
cl, . . . , cn is given by 

2. Estimate p ( a )  and p ( b l a )  for all a, b:  Set the 
counts n, and nab equal to their conditional expected 
values 

l-I Pr ( s i  C ciI x i j , j  = 1, . . . , m ) ,  [91 
i= 1 

where ci is taken from the redundant sequence alphabet 
and the event si C ci indicates that si is a member of the 
set represented by ci . 

A consensus sequence with global coverage probabil- 
ity 1 - a can be constructed by the following procedure. 
Set a threshold level T and find the marginal consensus 
for this level according to Procedure B. Compute the 
global coverage probability for this consensus (Eq. [ 91 ) . 
If this probability is less than 1 - a, increase T. Other- 
wise T may be decreased until the probability of con- 
tainment just exceeds 1 - a. Because the containment 
probability is a monotone function of T, we can solve the 
problem quickly using a bisection algorithm. 

One practical problem with this procedure is that 
many positions may have equal distribution ri and 
hence will all be set to the same level of redundancy. 
This problem could be avoided by randomization. We 
prefer to choose the smallest value of T such that the 
coverage exceeds 1 - a! and report the actual coverage 
achieved. 
4. ESTIMATION OF THE SEQUENCING ERROR RATES 

If the true DNA sequence were known, it would be 
trivial to estimate the composition and sequencing error 
rates. One would simply count the number of times that 
a base a occurs in the sequence 

n 

n, = C 1 ( s i  = a )  [lo1 

and the number of times the base a was recorded as the 
base b in a fragment 

i-1 

n m  

nab = c c [ ( I  - r , ) l  (XI, = b ) l  ( S I  = a )  
r = l  ]=l 

+ r,1 (x; = b ) l  ( s ;  = a ) ]  [ l l ]  

for all a E A and b E 23. Maximum likelihood estimates 
of the base composition and error rate parameters are . given by 

I ; (a )  = na/n [12 1 
and 

p"(bla) = nab/np. [13 1 
This situation suggests the following algorithm for the 

simultaneous estimation of the error rates and the con- 
sensus distribution. 

Procedure D. 
1. Initialize the consensus distribution: Set rI ( x )  = 

1.0 where x is the most frequently occurring letter at  
column i. 

m 

i = l  

n m  

r id  = [(I - r j ) l  ( x i j  = b ) r , ( a )  
i=l j=1  

+ r j l  (x: = b ) r i ( a c ) ]  [15] 

and estimate p ( a )  and p ( b l a )  as before (Eqs. [12] 
and [13]). 

3. Recompute ri ( a )  for all i and a: according to Eq. 
[ 61, withp ( a )  andp ( b  I a )  replaced by their current esti- 
mates. 

4. Continue: If the changes in p^( a I b )  and p^( a )  are 
less than t, for all a and b ,  stop. Otherwise go to Step 2. 

This estimation procedure is a special case of the EM 
algorithm for a mixture of multinomial distributions 
(Dempster et al., 1977). 

5 .  USING PRIOR INFORMATION 

When a sequencing project has been ongoing, a great 
deal of information will accumulate regarding the types 
and frequencies of sequencing errors (see Krawetz 
( 1989), Posfai and Roberts ( 1991 ) , States and Botstein 
( 1991 ) ) . It is to our advantage to incorporate this infor- 
mation into estimates of the error rates. When error 
rates are small any one assembly will contain only a few 
errors and probabilities will not be estimated accurately 
from the data. Our revised estimate of p ( b  I a )  will be a 
mixture of the prior expectation p( b I a )  and the current 
maximum likelihood estimate p^( b 1 a ) ,  

p"(bla) = ~ ( b l a )  + (1 - a)p^(bla), 1161 

for some mixing proportion 0 < a < 1. In the extreme 
cases, for (Y = 1 we use only prior information and for a = 
0 we use only the current data. This linear combination 
arises from our choice of the analytically convenient 
Dirichlet distribution as a representation of the prior 
information (Lindley, 1972, pp. 59). For each a E A we 
have a prior distribution over p ( - I a ) ,  which is propor- 
tional to n b E B P  ( b  I a )  f l a b .  The parameters p,b determine 
the prior means and the mixing proportions. The weight 
of the prior is defined as 

and the prior means are 

p ( b l a )  = p a b / k a .  [I81 

The error rate estimates corresponding to Eq. [16] are 

Thus, the prior information effectively adds k = CaEAka 
observations to the current data. 
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To implement these estimates using the EM algo- 
rithm (Procedure D) ,  augment Eqs. [14] and [15] as 

These quantities are used to estimate p ( b  I a )  (Eq. [ 13 ] ) 
but the estimates of p ( a )  (Eq. [ 121 ) are unchanged. A 
convenient choice for the prior distribution parameters 
is to take Dab equal or proportional to iiab from previous 
sequence assemblies. 

6. COVERAGE AND EXPECTED ACCURACY 

Before a sequencing project is undertaken, the inves- 
tigators should make some decision about the degree of 
accuracy desired. The size of the region to be sequenced 
and the purposes for which the sequence will be used 
should be considered. The need to quantify the relation- 
ship between cost of sequencing and accuracy was dis- 
cussed by Waterston (Roberts, 1990). For example, if 
the target region is lo6 bp and the maximum acceptable 
number of errors is 100, the probability of a sequencing 
error should be less than lop4. The desired degree of 
accuracy can be attained by adjusting the depth of 
coverage. 

An approximate relationship between accuracy and 
the depth of coverage will be derived. An exact result 
depends on knowledge of the detailed structure of the 
error rates. We avoid this complication by the following 
assumption. Let 

2 p(bla)  = for all a E A. [221 
bEB 
b #a 

We think of fi  as the average error rate in sequenced 
fragments and we study the model wherep ( a c  I a )  = pfor 
all a E A. 

Clearly, increasing depth increases the accuracy of col- 
umns with no discrepancies, e.g., a column with all A’s. 
The probability that such a column is generated in error 
is approximately 

Pr(error) = 1 - exp [ i1 - ”,)”), [231 

which goes to zero very rapidly as d gets larger. However, 
the probability that a column of depth d contains no 
discrepancies is (1 - p ) d ,  which decreases as d gets 
larger. Thus, the number of columns without discrepan- 
cies will decrease as depth of coverage increases. To 
show that increasing depth is desirable, we compute the 
expected accuracy, first for fixed depth d and then as an 
average over the distribution of d .  

For a position covered to a depth d ,  we compute the 
probability that at  most one-half of the observed bases 
are correct. This procedure for determining consensus is 

0.00. 

I I I I 
5 10 15 20 

coverage 

FIG. 1. The approximate probability of an error in one base of 
finished sequence (Eq. [ 251 ) is shown as function of the mean depth 
of coverage. The scale for error probabilities is logarithm base 10. The 
five curves arise by varying the parameter p in Eq. [ 241. 

more conservative than procedure A and has the advan- 
tage of being much easier to compute. This is a binomial 
probability given by 

(p)d-k(l -j7)k. [241 

When sequence fragments are randomly located, 
there is some variation in depth of coverage. In fact the 
distribution of d in a shotgun assembly is approximately 
Poisson with some mean A. We ignore positions not cov- 
ered by any fragments. Thus the mean coverage is c = 
A /  ( 1 - e-’) .  We can compute the average error probabil- 
ity conditional on the depth being at  least 1 as 

1 O0 Adep’ 
Pr(error) = ~ 2- Pr (error( d ) .  [25] 1 - e - ’ d = l  d !  

This quantity is summarized in Fig. 1. Variations in the 
coverage decrease the accuracy relative to a uniformly 
covered sequence with the same mean coverage c .  In ei- 
ther case, increasing depth of coverage increases the ex- 
pected accuracy of the finished sequence. 

For our simplified model, now we are able to study the 
depth of coverage required to attain a given level of accu- 
racy in the finished sequence. If our goal is lop4  errors 
per base, then forp = 0.01 we require a mean coverage of 
c = 9.4. If the error rate in fragment sequences can be 
kept down t o p  = 0.001, we need c = 6.1. To achieve 
errors per base at  15 = 0.01, we need c = 15.3 and at  p = 

0.001 we need c = 12. 
Our results are sensitive to the definition of 

P (error I d )  . If P ( error I d )  is defined to be the probabil- 
ity that at  least one-half of the observed bases are 
correct, the P(  error) changes noticeably. With this defi- 
nition, and a goal of lop4 errors per base, for fi  = 0.01 we 
require a mean coverage of c = 6.8. If the error rate in 
fragment sequences can be kept down to fi  = 0.001, we 
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TABLE 1 

EM Estimates from GGPD Data (see Section 7) with N = 11865 Aligned Positions 

C t U g A X 

( i )  Estimated error counts = ri,, 

C 11918 6 4 2 
t 9 10401 3 2 
U 6 4 11035 3 
g 5 1 11 12010 
A 81 87 61 90 

(ii) Estimated error rates B(b I a )  

65 
44 
30 
58 

377 

3 
8 
5 

12 
3 

C 0.993304 0.000504 0.000356 0.000178 0.005405 0.000252 
t 0.000843 0.993742 0.000266 0.000188 0.004239 0.000721 
U 0.000496 0.000402 0.995662 0.000266 0.002735 0.000438 

0.000996 g 0.000443 0.000086 0.000931 0.992712 0.004832 
A 0.116051 0.123898 0.087734 0.128809 0.539908 0.003599 

(iii) Estimated sequence composition $(a) 

0.258896 0.225850 0.239146 0.261041 0.015067 

need c = 3.8. To achieve lop6 errors per base a t p  = 0.01, 
we need c = 12.5 and at  p = 0.001 we need c = 4.2. These 
numbers are much smaller than those in the previous 
paragraph. 

7. THE HUMAN GGPD LOCUS 

Recently Chen et al. ( 1990) presented the sequence of 
20,114 nucleotides of human DNA, which includes 
the human glucose-6-phosphate dehydrogenase gene 
(G6PD ) . Defective G6PD genes can cause hemolytic 
anemia but they also offer partial protection against ma- 
laria. Consequently many variants exist and over 300 
have been described. Chen et al. (1991) sequenced 
15,860 nucleotides of the transcribed region from the 
mRNA start site to the polyadenylation site. There are 
13 exons, and the 20,114 nucleotides are about 25% Alu 
sequence. 

The total sequence was determined from three EcoRI 
fragments. Chen et al. (1990) kindly provided us with 
their assembly of the largest fragment, 11,791 nucleo- 
tides in length. The fragment was isolated in X clones, 
subcloned in pUC18, and sequenced in fragments ran- 
domly subcloned in M13. The assembly has 165 frag- 
ments with mean length 283. The average depth of cover- 
age is therefore about 4. The fragments are very accurate 
with small error probabilities. We ran Procedure D on 
the fragment set and estimated a, andp ( a  I b )  (see Table 
1 ) . To summarize the analysis we present two graphs. In 
Fig. 2a is a graph of depth of coverage vs nucleotide posi- 
tion. In addition to depth, we graph entropy e, in Fig. 2b 
to show the variability of a,. The entropy of the distri- 
bution a, is 

[261 

When a( a )  = 1 for some a ,  e = 0, the minimum value e 
can attain. The function e is maximized when a = ($, $, $, 

. 

, 

e, = - 2 ai(a)log2(ai(a)) .  
aEA 

i, i) : then e = log,( 5 ) .  Therefore uncertainty in the con- 
sensus distribution is indicated by large values of e , .  
Statistical entropy was introduced in 1948 by C. E. 
Shannon who founded the modern field of information 
theory. That paper remains one of the best introductions 
to the subject and is reprinted in Shannon and Weaver 
( 1964). 

As an illustration of Procedure C, we have constructed 
a series of cylinder sets around the 605-bp region con- 
taining the Alu cluster 8R98L (see Chen et al., 1990). 
This region was selected because of its intrinsic interest 
and because the depth of coverage is 1 at 165 positions 
and ranges up to 5 with a mean coverage c = 2.94. There 
are 11 columns with discrepancies involving insertion/ 
deletion of bases and only two mismatched bases. Two 
portions of this region are shown in Fig. 3 A cylinder set 
with containment probability 295% comes at  the high 
price of 255 ambiguous bases, leaving 350 bases well de- 
fined. This result should not be surprising, as the precise 
determination of a large number of independent quanti- 
ties is a very strong inference. By reducing the contain- 
ment probability, we can increase the number of well- 
defined bases and/or reduce the ambiguity of the re- 
maining bases. Note, for example, the progression from * 
to X to R to A in the depth 1 portions of the sequence as 
the containment probability is decreased. The tightest 
cylinder set computed contains a single ambiguous base 
corresponding to a C,T mismatch in the alignment. 
This cylinder contains the true sequence with 12% prob- 
ability. 

8. DISCUSSION 

We have described a method for assessing the accu- 
racy of DNA sequences and quantified the relationship 
between accuracy and the depth of coverage. By intro- 
ducing a model of the sequencing error process we can 
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a R gagcaagactccatctcaaaaaaaagaaaaaacaaaaattagctggatgtggtggcaggcacctggaatcccagctactcaggaggctaaggcagg 
R aaattagctggatgtggtggt 
D tggaatcccagctactcaggaggctaaggcagg 
R aatcccagctactcaggaggctaaggcagg 
R ctactcaggaggctaaggcagg 
D taaggcagg ________________________________________-------------------------------------------------------- 

Depth 111111111111111111111111111111111112222222222222222222221111111222333333334444444444444555555555 

0.9562 (255) ~**'*t\lt~l*tt*ttttttttttttttlltt*~taaattatc~**a****f"**"**"""aatcccagctactcaggaggctaaggcagg 
o.9153 (210) ttt*t*t*t*ttttt*t*l************~***aaa **agc'gga*g*gg+gg*******~*ggaatcccagctactcaggaggctaaggcagg 
0.8771 (170) ***********************************aaattagctggatgtggtgg*******+tggaatcccagctactcaggaggctaaggcagg 
0.6727 (170) ' x " ~ * x ' + + * x " " ~ * ~ ' ~ a a a t t a g c t g g a t g t g g t g g + x * * * x + * t g g a a t c c c a g c t a c t c a g g a g g c t a a g g c a g g  
0.6524 (170) +r**rr*r**'*r****rrrrrrrr*rrrrrr*rraaattagctggatgtggtgg'r**~r**tggaatcccagctactcaggaggctaaggcagg 
0.4372 (122) *a*xaa*kXfXXa*x*xaaaaaaaa*aaaaaaxaaaaattagctggatgtggtggfa"xaxxtggaatcccagctactcaggaggctaaggcagg 
0.3105 (73) gagyaagay'yya~*yaaaaaaaagaaaaaayaaaaattagctggatgtggtgg*aggyayytggaatcccagctactcaggaggctaaggcagg 
0.1215 (1) gagcaagactccatctcaaaaaaaagaaaaaacaaaaattagctggatgtggtggxaggcacctggaatcccagctactcaggaggctaaggcagg 

b R tct-gggcgtggtggctcatgcctgtaa-ccccagcactttgggaggctgaggagggtggatcacctgaggtcaggagttcgagaccagcctggcaaacatggtgaaaccccgtctctact 
R tct-gggcgtggtggctcatgcctgtaa-ccccagcactttgggaggctgaggagggtggatcacctgaggtcaggagttcgagaccagcctggcaaac 
R tctggggcgtggtggctcat-cctgtaacccccagcactttgggaggctgaggagggtggatcacctgaggtcaggagttcgagaccagcctggcaaacatggtgaaaccccgtctctact 
R cgtggtggctcatgcctgtaa-ccccagcactttgggaggctgaggagggtggatcacctgaggtcaggagttcgagaccagcctggcaaacatggtgaaaccccgtctctact 
D agcactttgggagg-tgaggagggtggatcacctgaggt-aggagt-cgagaccagcctgg-aaacatggtgaaaccc-gtctcg 

Depth 3~33333444444444444444444444444445555555555555555555555555555555555555555555555555555555555555555554444444444444444444333 

0.9562 (255) tct*gggcgtggtggctcat*cctgtaa-ccccagcactttgggagg'tgaggagggtggatcacctgaggt*aggagt'cgagaccagcctgg*aaacatggtgaaaccc*gtctc'act 
0.9153 (210) tct*gggcgtggtggctcat'cctgtaa-ccccagcactttgggagg'tgaggagggtggatcacctgaggt*aggagt'cgagaccagcctgg*aaacatggtgaaaccc'gtctc'act 
0.8771 (170) tct*gggcgtggtggctcat'cctgtaa-ccccagcactttgggaggctgaggagggtggatcacctgaggtcaggagttcgagaccagcctggcaaacatggtgaaaccc'gtctc*aCt 
0.6727 (170) tct'gggcgtggtggctcat'cctgtaa-ccccagcactttgggaggctgaggagggtggatcacctgaggtcaggagttcgagaccagcctggcaaacatggtgaaaccc'gtctc'act 
0.6524 (170) tct'gggcgtggtggctcat'cctgtaa-ccccagcactttgggaggctgaggagggtggatcacctgaggtcaggagttcgagaccagcctggcaaacatggtgaaaccc'gtctc'act 
0.4372 (122) tct*gggcgtggtggctcat'cctgtaa-ccccagcactttgggaggctgaggagggtggatcacctgaggtcaggagttcgagaccagcctggcaaacatggtgaaaccc~gtctc'act 
0.3105 (73) tct*gggcgtggtggctcat~cctgtaa-ccccagcactttgggaggctgaggagggtggatcacctgaggtcaggagttcgagaccagcctggcaaacatggtgaaaccc~gtctc*act 
0.1215 (1) tct-gggcgtggtggctcatgcctgtaa-ccccagcactttgggaggctgaggagggtggatcacctgaggtcaggagttcgagaccagcctggcaaacatggtgaaaccccgtctctact 

Two segments of the fragment assembly from the region of Alu cluster 8R98L. Symbols in the left-hand column indicate the 
orientation of the sequenced fragments: R, reversed complement, D, direct. The depth of coverage is indicated. A series of cylinder sets is shown 
at the bottom. Containment probabilities for the entire 605-bp Alu cluster are given at the left. The numbers of ambiguous bases are shown in 
parentheses. Positions denoted by * are ambiguous including both a gap ( - )  and a base. 

FIG. 3. 

should be adjusted to give the correct overlap of the data 
sets. It may be necessary to add columns internally to 
allow for insertions in one sequence relative to the other. 
The cost of tracking accuracy is an increase in storage 
space requirements to store one integer and five floating 
point numbers for each sequence position. If accuracy 
information were to be stored in a central database, sim- 
ple sequence data could be distributed to the majority of 
users and the more detailed accuracy information could 
be available upon request. 

As a further refinement to sequence accuracy statis- 
tics, we recommend that automated sequencing devices 
output a probability distribution reflecting the accuracy 
of individual base determinations. The methods de- 
scribed here can be readily modified to handle such data. 
The base values in fragment sequences are not simply 
single letters xij E B but instead are probability distribu- 
tions over the set A, denoted pij (  x) ( i  = 1, . . . , m; j = 

1, . . . , n; x E A) .  The error probabilitiesp ( b  I a )  are still 
well defined. The new version of the consensus distribu- 
tion is 

algorithms could be modified to accept such input and 
would be less likely to get stuck trying to fit "bad" data. 
It may also be possible to read gels beyond the current 
limits of accurate resolution. One could extract informa- 
tion that is currently discarded without compromising 
the accuracy of the final sequence. 

The currently achievable error rates in manually se- 
quenced fragments are more than adequate to achieve 
high-quality finished sequence. Post-assembly editing of 
sequences is a labor intensive task that is essential to 
maintaining this high quality. The methods described 
here can provide some degree of automated assistance by 
flagging areas of high uncertainty. However, it would be 
a mistake to abandon the careful rechecking of se- 
quences at  this stage of technological development. As 
fully automated sequencing systems are developed, man- 
ual rechecking will become impractical. Automated qual- 
ity checking will become essential but realistically can- 
not be expected to match the quality of a manual ap- 
proach in the near future. 
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where the denominator and the reversed-complement 
bookkeeping have been suppressed to simplify the nota- 
tion. Given data of this type, assumption A2 would no 
longer be necessary. There may be additional advan- 
tages to this approach. For example, fragment assembly 
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