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ABSTRACT 

RNA editing in the mitochondria of kinetoplastid 
protoza involves the insertion and/or deletion of precise 
numbers of uridine residues at precise locations in the 
transcribed RNA of certain genes. These genes are 
known as cryptogenes. In this paper we study 
computational algorithms to search for unknown 
cryptogenes and for the associated templates for 
insertion of uridines, gRNA sequences. The pairwise 
similarity search algorithm of Smith and Waterman (1) 
is modified to study this problem. The algorithm 
searches for unknown gRNAs given the cryptogene 
sequence. The method is tested on 4 known 
cryptogenes from Ltarentolae which are known to have 
7 associated gRNAs. The statistical distribution of the 
longest gRNA when comparing random sequences is 
derived. Finally we develop an algorithm to search for 
cryptogenes using amino acid sequences from related 
proteins. 

INTRODUCTION 

RNA editing is defined as the modification of mRNA sequences 
within coding regions (Simpson and Shaw (2)). The type of RNA 
editing found in the mitochondria of kinetoplastid protozoa 
involves the addition or more rarely the deletion of uridine 
residues at a few or multiple locations (Feagin et al. (3)); Shaw 
et a/. (4); Shaw et al. (5); Benne (6); Benne er al. (7); Benne 
et af.  (8); Van der Spek et al. (9); Van der Spek et al. (10); 
Feagin et al. (1 1); Stuart et al. (12); Bhat et al. (13); Koslowsky 
et al. (14)). The sequence information for these editing events 
is located within genes known as guide RNA (gRNA) genes, since 
these genes are transcribed to give rise to the small gRNAs which 
actually mediate the editing process (Blum et al. (15)). The 
gRNAs form short duplex anchor regions immediately 
downstream of the pre-edited region and these are thought to 
represent the initial event of editing. The remainder of the gRNA 
forms a perfect hybrid with the mature edited mRNA, provided 
G .  I /  basepairs are allowed. 

The simplest case of editing involves the addition of four U’s 
at three sites and is guided by a single gRNA. The most complex 
involves the addition of hundreds of U’s at sites throughout the 

length of the gene (Feagin et al. (16); Bhat et al. (13); Koslowsky 
er al. (14)). This latter type of editing is known as pan-editing 
(Simpson and Shaw (2)) and involves multiple gRNAs, which 
act sequentially 3’ to 5’ on the pre-edited mRNA. 

In the kinetoplastid mitochondrion, there are two types of 
mitochondrial DNA molecules, maxicircles and minicircles 
(Simpson (17)). The maxicircles contain rRNA genes and 
structural genes for mitochondrial membrane proteins. gRNA 
genes are found in both maxicircle and minicircle DNA in L. 
rurentolae (Sturm and Simpson (18)). The maxicircle gRNA 
genes are scattered around the genome with no apparent relation 
to the pre-edited genes (Blum et al. (15)). Five cryptogenes have 
been so far identified in the maxicircle genome of L. farenrolue 
and an additional six G-rich regions exist which also contain 
cryptogenes. Seven maxicircleencoded gRNAs and fifteen 
minicircleencoded gRNAs have been identified. The cryptqene 
transcripts which are edited by several of the minicircleencoded 
gRNAs are not yet known. Likewise, gRNAs for several of the 
cryptogenes have not yet been identified. 

The goal of this paper is to describe computational algorithms 
to search for unknown cryptogenes and gRNA genes. It is of 
course an easy matter to find the gRNA genes when the mRNAs 
or edited cryptogenes are known. We are interested in cases 
where the mRNAs and the gRNAs are unknown. We have 
modified pairwise similarity search algorithms to model this 
problem on a computer. More precisely we present a dynamic 
programming algorithm which ‘detects’ possible gRNA gene 
sequences in the genome,. with only the cryptogene given. The 
basic idea to discover such patterns is the free addition of ‘U 
into the cryptogene to increase the number of basepairs with the 
gRNA gene. The algorithm is similar to the algorithm for best 
sub-sequence alignment as proposed by Smith and Waterman (I), 
and Waterman and Eggert (19). The algorithm can be extended 
to handle deletion of ‘U as well. 

We apply the algorithm to search for gRNA gene sequences 
for 4 known cryptogenes which have 7 associated maxicircle 
encoded gRNAs. Initially we have limited success which is 
improved by the imposition of rules suggested from experimental 
results. Candidate gRNA sequences are ranked by alignment 
score. Even with the modified algorithm, three of the true 
gRNA’s are not near the highest score. For this reason, we pose 
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the question of the statistical distribution of the longest candidate 
gRNA when comparing random sequences. Some probability 
theory allows us to give a good approximation to this distribution. 
Finally we develop an algorithm to search for cryptogenes using 
amino acid sequences from related proteins. 

METHODS 

It is a common practice to use computer methods to find similarity 
between two DNA, RNA or protein sequences. Similarities are 
usually presented in the form of sequence alignments. See 
Waterman (20) for a review. The problem of sequence alignment 
is made difficult due to the necessity of introducing alignment 
of non-identical letters and the necessity of including insertions 
or deletions (indels) in alignments. Here we adapt a dynamic 
programming method known as the Smith - Waterman algorithm 
(1) to search for cryptogenes. gRNA genes can be aligned to 
cryptogenes by basepairing with the exception of inserted Us. 
The flexibility of dynamic programming method is much more 
critical than issues of computer memory and time for the solution 
of our problem. 

In 1970 Needleman and Wunsch (21) introduced the first 
dynamic programming algorithm for comparison of two 
sequences. Their algorithm finds the alignments that maximize 
a similarity score where identical or closely related aligned amino 
acids receive positive score and more distantly related amino acids 
receive negative score. Gaps also receive a negative score. More 
recently algorithms have been developed to locate high scoring 
segments between two sequences (1). 

Clearly the effort to find gRNAs must incorporate basepairing, 
not identical letters as in sequence matching. General schemes 
to predict minimum energy RNA secondary structure based on 
dynamic programming have existed since Waterman (22). (See 
Zuker (23) for a survey of this area.) It is quite easy to see that 
dynamic programming methods can be applied to find gRNAs 
when the edited message is available. This is just what Blum et 
af. (15) did to locate the first gRNAs. It is less clear that gRNA 
genes can be found with knowledge of only the cryptogene. 
Below we will present some standard dynamic programming 
algorithms for sequence alignment. Then we will present new 
algorithms to search for potential gRNA genes that correspond 
to a cryptogene. 

Dynamic Programming 
We begin with two sequences a = up?.. a,, and b = bl b... b,. 
In this section we briefly describe two algorithms for sequence 
alignment. While this paper studies RNA sequences, the 
sequences could be DNA, RNA or protein. To specify the scoring 
function, let s(a.6) be the score for aligning the letters a and 6. 
In sequence alignment, s(a,a) is often set to be 1. While one gap 
of length k is frequently weighted less than k gaps of length I ,  
it is sufficient here to consider only gaps of length 1 which 
receives a penalty weight of 6. In the above notation s(-.b) = 
s(a,-) = -6, for all a and 6. A convenient way to view 
alignments is to insert of gaps or ‘-’s into each sequence and 
score the implied alignment. The sequence a(b) becomes a* = 
U * ~ U * ~  ... = 6*lb*2 ... 6*3 where the subsequence 
obtained by removing a*, = - is the original sequence a. The 
best scoring alignments have score 

1 
L 

: all a* and 6* 

The number of ways of inserting gaps into sequences grows 
exponentially with sequence lengths. The score can be calculated 
by a straightforward recursion. Let 
Sj j  = S(ala2 ... a;, bib2 ... bj). Soj = j6,Si.o = i6,Sm = 0. 

Then 

Sj j  = max(Sj-lj-l + s(aj,bj), - 6 ,  S i j - l  - 61 (1) 
To compute S,,,m takes computing time proportional to nm, the 
product of sequence lengths (O(nm)). Corresponding alignments 
can be found by a procedure called tracebacks. 

The algorithm (1) was modified by Smith and Waterman (1) 
to find best scoring subsequence alignments. Here we wish to 
find ‘intervals’ or segments of sequence that have high scoring 
alignments: 

H(a,b) = max(S(alak+, ... a;, bb,+l ... 6,)l 

The algorithm to find H(a,b) recursively computes 

Hjj = max(0; S(alaap+ll ... a;,6,4+1l ... 6,): 

Set H j j  = 0 if i 

Hii = max (H;-lj-l + s(ai,bj), H;-lj - 6, H;j-l - 6, Ol(2) 

The best scoring segments satisfy 

l ~ k ~ i ~ n , I ~ l ~ j s m j .  , 
I 

l s k s i , 1 1 1 1 j ) .  
j = 0. Then 

H(a,b) = max HV. 
I S i s n  
I 5 j sin 

Again, these best scoring alignments can be obtained by 
tracebacks from the scoring matrix (Hjj). This algorithm is 
known as a local algorithm. 

gRNA algorithms 
Let the cryptogene sequence be a = up2 ... a,,. We will search 
for gRNA genes in b = blbz ... 6,. b for example could be an 
entire maxicircle sequence. To be clear, both a and b will be 
represented as DNA sequences. This is convenient since the 
cryptogene is actually DNA and the potential gRNA genes reside 
in the mitochondrial DNA genome of the trypanomme. Therefore 
while the biological editing process takes place with RNA 
sequences, we will search DNA sequences. 
The known examples of editing in the introduction make it clear 

that, even when the cryptogene region is known precisely, we 
cannot assume one gRNA gene covers the cryptogene regions 
of editing. Of course it is also true that gRNA genes are very 
small compared to the entire maxicircle. Therefore a local 
algorithm along the lines of Smith - Waterman is appropriate. 

We will replace the similarity function s(a,6) by a new function 
u(a,6) which will embody changes necessary for the new 
problem. First of all we wish to reward basepairs since gRNAs 
base pair with transcribed cryptogenes. 

’ 

CI if (46)  E ( (AT), (T,A)I 
c2 if (a.6) E ( (G,C), (C,G)I 
cj if (a,& E I (G,T), (T,G)1 
c4 otherwise. 

u(a.6) = 

Here we will take cI > 0 and c2 > 0. The two canonical 
basepairs, A*T  and G - C  are listed separately since they have 
different free energies. It is important to allow for the possibility 
of cI # c2. In RNA structures G.U basepairs are common; we 
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take c3 1 0. Generally we wish cI. c2, c3 to reflect the free 
energies of base pairs. It is possible to include stacking energies 
but stacking energies are not implemented. In fact, we make c3 
> 0 but small relative to cI and c2. For non-basepairs, it is 
possible to allow for non-pairing, but they should be accounted 
for in bulge or interior loop functions. Therefore c4 = - 00 
is usually our choice. 

Recall that we want to find good scoring regions between a 
and b with possible Us (Ts in our DNA version) inserted into 
the sequence a. If we allow no bulges or interior loop in our 
structure, this reduces to 

a(-,A) = a( - ,@ = cs L -00, 

a(-,Q = a(- ,C)  = - 00. 

and 

. Of course 

a(a , - )  = - 00 for all a .  

In our implementation, c3 = a(G,Q>O while cs = 0. This 
allows us to prefer G-T basepairs over the insertion of Ts to 
form T-G or T.A basepairs. It will be seen in the next section 
that it is necessary to introduce heuristic rules suggested by the 
biology to limit the candidate gRNA genes. 

Editing can also includes the deletion of U's in RNA, so that 
it is of some interest to devise an algorithm to include these 
events. All that is required is: 

U(T,-) = c6 2 -m, 

and 

a(a,-)  = -a all a # T. 

Finally, we describe the method of traceback used to produce 
candidate gRNA genes. We begin by choosing the largest score. 
Whenever there is a tie between inserting a Tor making a basepair 
in the traceback, we always take the basepair. Multiple alternate 
gRNA candidates could be produced but we only output one 
gRNA. In addition, if two tracebacks require the same basepair, 
we output only the one alignment with largest score. An iterative 
recomputation scheme along the lines of Waterman and Eggert 
(19) could be implemented to produce the k-best candidate gRNA 
genes that do not share any basepairs in common, but we have 
not found this to be necessary. The tracebacks are generally 
unambiguous. 

Rules 

As will be detailed in Results, the gRNA algorithm presented 
above does not place known gRNAs among the highest scoring 
potential gRNAs. To improve this situation, we studied the known 
gRNAs located in L turentolae maxicircles and abstracted 6 rules 
to eliminate spurious candidates for gRNAs. In Results we will 
discuss these rules in more detail, but simply list them here 
without further discussion. 
Rule 1. There must be at least 5 basepairs at the 3' end of the 
cryptogene region, including G .  U basepairs. We refer to this 
basepaired region as the anchor. 
Rule 2. There can be no more than 3 G -  U pairs in the anchor. 
Rule 3. There must be at least 4 contiguous Watson-Crick 
basepairs in the anchor. 
Rule 4. No more than 8 contiguous Us can be inserted. 
Rule 5. There are no more than 3 basepairs between inserted Us. 

Rule 6. There must be at least 1 basepair at the 5' end of a 
cryptogene. 

It is necessary to present our rules at this point since we next 
turn to the statistical distribution of gRNA gene lengths in random 
DNA sequences, motivated by these rules. 

Statistical distribution of random gRNA gene lengths 
We model our sequences as independent, identically distributed 
nucleotides. Let b = blb2 ... b, be the maxicircle, or the DNA 
to be searched for the presence of gRNA genes. Set P@, = a) 
= qa, a e (A,T,G,q. Similarly let a = ala2 ... a,,, be the 
cryptogene region, with P(a, = a)  = pa, a e (A,T,G,q. We 
model the editing process with three steps: (1) we more precisely 
define anchor, modifying Rules 1-3 somewhat and calculate the 
probability of this event; (2) we describe the 5 ways to enter 
editing from an anchor; (3) finally we give the matrix of transition 
probabilities between the 8 editing states. Rule 4 would unduly 
complicate the analysis and is not included. 

Recall that an anchor must begin with a mispair, must have 
at least 5 consecutive basepairs, can have no more than 3 G.U 
basepairs, and must have at least 4 Watson -Crick consecutive 
basepairs. Let pI = pAqr + PT q A  + p & ~  + p&c be the 
probability a Watson -Crick pair and p2 = p&u + p f l ~  be the 
probability of a G- U pair. Therefore the probability of a mispair 
is 

(3) P(mispair) = 1 - pI - p2 

Let & = 1 be the anchor length, that is the number of 
basepairs in the anchor. The event that & = 1 can be 
decomposed into 4 disjoint events: La = 1 with k G * U  pairs, 0 
I k I 3. The probability of the first of these events is elementary 
to compute since it is equivalent to coin tossing with success 
probability p I :  

P(& 1 1 and k = 0) = (1 - pI - p 2 ) p l '  

The remaining cases are easily derived but the formulas are 
cumbersome. However, for 16 I I ,  

For computational convenience, we model the anchor as requiring 
at least 5 basepairs of either type. Therefore 

P(L, 2 0 = (1  - PI - P2) (PI + PZ)'? 

P(L, = 0 = (1  - pi - P2)2@I + P2)' 

so that 

Having calculated the anchor probabilities we now turn to the 
transition from anchor to editing. We visualize the cryptogene 
written above the gRNA gene. While insertion events take place 
in RNA, it is very convenient to represent insertion events in 
the genes. Therefore we will show 'inserted U's' by 'inserted 
lowercase t's'. The anchor can only be terminated by an editing 
event, which is generated by a non-basepair of the following type: 

gRNA gene A ? . . .  G?. . .  A ? . . .  G?. . .  A ? . . .  

After 'editing' these sequences become 

cryptogene A . . . A . . . G . . . G . . . C . . .  

tA.. . [A ... t G . .  . tG. .. [ C . .  . 
A? ... Q..- A? . . .  Q...  A ? . .  
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1 2 3 4 5 6  

0 0 1 4 A  46 
2 4 A  4G 
3 0  0 4.4 4G 
4 0 0 4 A  4G 
5 0  0 0 0 4 A  

6 PA% PA9G P ~ A  P d G  P d A  
PA% PA9C P d A  P& P d A  
PA% PA% P d A  P&G P d A  

7 8 

4T 0 0 

4 T + 4 C  0 
4T + 4c 0 0 
9G 0 0 

PI + Pz 0 
0 PI + Pz 
0 0 

0 0 4T 

8 8 

p(L, = klbegin at i E S) = M j j  ( I  - 
, = 6  .> = I 

x x 

j = 6  .% = I 

Mi,J 

= Akrj$(I - M\.s), 

Then 

P (Enter S and Le = k )  
5 

P(State i )  P(Le = klbegin at i c S) 
i s  I 

5 8 n 
= Ak( riP(State i))( ((1 - MjJ) 

i =  I j = 6  s = I  

= CXk.  

Recall that P(State i )  > 0 only for 1 5 i 5 5 .  
Let Z = the random gRNA gene length, L, = random anchor 

length, and Le = random editing region length. Earlier we 
computed P(Lu =I) .  Clearly Z = Lu + L,, and 

P(Z = I )  = P(Lu + Lc r )  
I 

= c P(Lu = OP(L, = t - 9 (4) 

The dominant feature of (4) is that P(Z = r) will look like a 

It is then possible to obtain detailed information about the 
maximum value of Z. The approximate expected maximum can 
be obtained by solving 

for t .  For an estimation of statistical significance, not utilized 
in this paper, it is possible to apply the Chen-Stein method 
(Arratia et al. [251). 

This section has presented an analysis of the maximum length 
of edited regions for random DNA. A more difficult analysis 
for general scoring schemes could be based on work of Arratia 
et al. (26) and Karlin and Altschul (27) where the distribution 
of the best scoring segment is derived. Those analyses do not 
include insertions and deletions but if editing were restricted to 
one sequence we believe that a rigorous analysis is possible. Our 
conclusions below do not require this more difficult and 
sophisticated mathematics. 

Protein sequences from other organisms 
The approach we take is based on the observation that if a segment 
of cryptogene sequence a = ala2 * -a ,  encodes a segment of 
a homologous protein y = yIy2 * . . y,,,, the edited cryptogene 
should be closely related to y. A similarity function such as one 
of the Dayhoff matrices or the minimum mutation matrix is used 
in the following way. Let s(aluj + lai + 2, y )  be the similarity 
between the amino acid encoded by the triplet upi + + 2 and 
the amino acid y .  Define Hjj to be the best score of any segment 
of y ending at yj ,  or any edited segment of a ending at a;, or 
0, whichever is larger. As in the algorithm in Section 2.2, we 
will not charge for the insertion of Us (Ts).  

/ = 5  

power of X or of @, + pz), depending on whichever is larger. i, 

nmP(Z = 1) = 1 

Hij = maX [o,H;-lj - 6 N, Hjj-1) - 6 ~ ,  
Hi-3j-11 + s(a;-~a;-lai~Yj)~ 
Hi-, j -  I + s(ta;- la;,yj), 

Hi- I j -  I + s(rraj.yj), 

H;-2j-,I + 4a;-iIQ;,yj), 
Hi-2 j- I + dai- laP,yj), 

H;-I j-1 + s(fajt,yj), 

Hjj-1 + s(W,yj)l. 
Hi- I j -  + s(a;N.Yj), 

Here we have aN and 6”, the cost of deleting a nucleotide or 
amino .acid, respectively. Normally in protein/DNA sequence 
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A A A A T A A G G A A A G A G A G G C G A A A A T  
T ~ 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 O l l l l l O  

1 2 2 2 3 1 2 2 2 2 2 2 2 2 2 2 2 2 3 1 2 2 2 2 3  
1 
1 
1 
C 
C 
P 
P 
P 
1 
1 
C 
1 
P 

1 
' 1  

1 
1 
I 
1 
I 
1 

i i S 3 0 4 2 3 3 3 3 3 3 3 3 3 3 3 0 4 2 3 3 3 0  
1 2 3 4 0  4 4 4 4 4 4 4 4 0 1 5 3 4 4 0  
1 2 3 4 0  5 5 5 5 5 5 5 5 0 1 2 6 4 5 0  
0 0 0 0 0 0  0 0 6 0 6 0 6 6 0 1 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 1 0 1 0 1 7 0 1 0 0 0 0 0  
0 0 0 0 1 0 0 1  0 0 1 0 1 0 1 7 0 1 0 0 0 0 1  
0 0 0 0  1 0 0  1 0 0 1 0 1 0 1 7 0 1 0 0 0 0 1  
0 0 0 0 1 0 0 1  0 1 0 1 0 1 7 0 1 0 0 0 0 1  
1 1  1 1 0 2 1  1 1 1 2 1 2 1 2 0 1 2 1 1 1 0  
1 2 2 2 0  1 3 2 2  2 2 2 3 2 3 2 0 1 2 3 2 2 0  
1 2 2 2 3 1 3 2 2 3  2 2 3 2 3 2 3 1 2 3 2 2 3  
1 2 3 3 0 4 2 4 3 3  3 3 3 4 3 4 0 4 2 3 4 3 0  
1 2 3 3 4 4 2 4 3 3 4  3 4 3 4 0 4 2 3 4 3 4  
0 0 0 0 0 0 0 3 5 0 0  0 5 4 0 1 0 0 0 0 0  
1 1 1 1 0 1 1 1 4 6 1 1  1 6 0 1 2 1 1 1 0  
0 0 0 0 0 0 0 2 2 0 0 0 2  6 2 0 1 0 0 0 0 0  
1 1 1 1 0 1 1 1 3 3 1 1 1 3  7 0 1 2 1 1 1 0  
1 2 2 2 0 1 2 2 2 4 4 2 2 2 4  0 1 2 3 2 2 0  
1 2 3 3 0 1 2 3 3 3 5 5 3 3 3 5  0 1 2 3 4 3 0  
1 2 3 4 0 1 2 3 4 4 4 6 6 4 4 4 6 4 0 1 2 3 4 5 0  
1 2 3 4 5 1 2 3 4 4 4 6 6 4 4 4 6 4 0 1 2 3 4 5 6  
1 2 3 4 0 6 2 3 4 5 5 5 7 7 5 5 5 7 0 1 2 3 4 5 0  
1 2 3 4 5 6 2 3 4 5 5 5 7 7 5 5 5 7 0 1 2 3 4 5 6  
1 2 3 4 0 6 7 3 4 5 6 6 6 8 8 6 6 6 0 1 2 3 4 5 0  

F w  1. Crypogene (horizontal sequence) and potentd gRNA ( v e M  sequence) 
alignment. 

comparison it is desirable to delete nucleotides in groups of 3 
to stay in frame. With RNA editing, a single nucleotide deletion 
might correspond to at least a three letter deletion in the edited 
cryptogene. 

RESULTS 

We first illustrate our algorithms by a small example with 
cryptogene a = AAAATAAGGAAAGAGAGGCGAAAAT (5' to 
3') and potential guide sequences in b = 7TGGGl7'CC- 
AAATTGTACTCTlTTATAT (3' to 5 ' ,  compliment). For this 
illustrative example we choose the naive weights where a(a,b) 
= 1 if a and b form a basepair (including G-U) and -00 

otherwise. a( - ,A)  = a( - ,G) = 0, and - 00 for all other cases 
involving ' - '. The matrix H appears as Figure 1. The largest 
entry is 13 and the traceback yields the following alignment where 
inserted T s  are denoted by t: 

A A G G t t t A A t A t G A G A G G ,  
T T C C A A A T T G T A C T C T T T  

' 

Application to known cryptogenes 
Now that we have established our model, it is necessary to test 
its predictive power. Our ultimate goal is to find new and 
unknown cryptogene/gRNA gene pairs. Before that is possible 
we must be able to locate gRNA gene sequences from known 
cryptogene sequences. In this section we describe a first step of 
that process: searching the Leishmania rurenrolae maxicircle 
DNA for gRNA genes that correspond to parts of the cryptogenes 
Cytochrome b, Murt2, ND7, and COIL The gRNA gene for 
COII appears immediately 3' of the COII gene. Therefore we 
expect this gRNA to have atypical properties. In all instances 

we search with cryptogenes where gRNA sequences have been 
found experimentally p l u m  et al. (15)). 

With a fixed scoring scheme, it is a statistical problem to 
determine how many genomic segments will score at or above 
a given cutoff when compared with the cryptogene. The cutoff 
score can be determined by the score of the known gRNA gene. 
Our implicit assumption in deriving the gRNA algorithms is that 
real gRNAs will score noticeably better than other genomic 
sequence. With our naive scoring methods this assumption turns 
out to be unfounded. We derived some statistical results that relate 
to the length of the longest match using our algorithm. Here 
length is the simplest possible score. We will discuss the statistics 
in detail below, but in most cases there are a large number of 
gRNA-like matches expected from random sequence 
comparisons. 

Table 2 gives the ranking by score of each gRNA gene in the 
list of candidate gRNA genes produced by our algorithm. The 
gRNA gene names given are those appearing in the literature. 
Since many potential gRNAs have the same score, the ranking 
of the gRNAs are ambiguous. The length in Table 2 is defined 
to be the length of the longest maxicircle segment that is 
basepaired with the cryptogene (with inserted Us). The matches 
are scored with the following parameters 

500, if (a,@ E NA,T),V,A)I 
1O00, if (a,b) E ((G,C),(C,G)I 

1, if (ah)  E I(G,T),(T,G)I 
-OD, 0 otherwise, 

a(a,b) = 

a(-,A) = a(-,@ = 0,  

and 

a(a,-)  = -OD for all a E [A,G,C,Tj. 

The results are quite robust regarding the values of a( e ,  e ) ,  

except that we feel it is important to score G .  C basepairs more 
strongly than A *  T base pairs. For example, scoring by u(A,T) 
= 1, a(G,C) = 3 ,  and u(G,T) = 1 does not change the results 
of the search. 

Except for the ND7/gRNA-5' match, ranking by score or by 
length is not useful. Since we have experimental examples of 
gRNAs, we examined them for common patterns that might be 
of assistance in our computational approaches. Artificial 
intelligence methods or consensus sequence methods are unlikely 
to yield significant insights into this problem. The reason for this 
is biological: each of the many known gRNAs basepair with a 
different portion of a nucleic acid coding region for different 
proteins. Therefore universal conservation of patterns of letters 
in cryptogene/gRNA gene matches seem unlikely. The heuristic 
rules we have derived are all in terms of the number of bases 
or number of basepairs. We feel these patterns are associated 
with the editing machinery. These patterns were obtained from 
the 7 known maxicircle gRNAs for L. tarentolae. In figure 2 
data for the number of contiguous U's inserted for maxicircles 
and for both maxicircles and minicircles. Except for one 9 letter 
insertion in a minicircle gRNA, all regions are less than or qual 
to 8. Figure 3 presents the maxicircle data for the number of 
basepairs between inserted U's. In maxicircle gRNAs, this 
number never exceeds 3. This number 3 is often exceeded in 
minicircles however and we require 3 or less in our Rule 5. 
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a 
t 

a 

0 

1: 
. 
a 

0 

b 

8 

0 

0 2 4 E I 

W U n r U M d U  

F i  2. Ftequency hktogram of inserted Us. Figure 2a is the data for maxicircle 
gRNAs and figure 2b is the data for maxicircle gRNAs. 

Relaxation of Rule 5 would make the real maxicircle gRNAs even 
lower in our list. Our 6 rules are as given below. The rules 
describe properties imposed on the region of the cryptogene that 
is basepaired with a gRNA. 
Rule 1. There must be at least 5 basepairs at the 3' end of the 
cryptogene region, including G. U basepairs. We refer to this 
basepaired region as the anchor. 
Rule 2. There can be no more than 3 G. U pairs in the anchor. 
Rule 3. There must be at least 4 contiguous Watson-Crick 
basepairs in the anchor. 
Rule 4. No more than 8 contiguous U's can be inserted. 
Rule 5. There are no more than 3 basepairs between inserted Us. 
Rule 6. There must be at least 1 basepair at the 5's end of a 
cryptogene. 

Recall that editing proceeds 3' to 5' along the cryptogene. Rules 
1-3 all concern the 3' anchor region, which we expect is 
necessary to stabilize the interaction between cryptogene and 
gRNA and thereby allow the editing machinery to proceed. Rules 
5 and 6 are also stability rules at the 5' end of the cryptogene 

i 
~ 

Figure 3. Fquency histogram of the number of basepairs between insetted Us 
for maxicircle gRNAs. 

and we think of these as stopping rules. The remaining Rule 4 
restricts the number of contiguously inserted U's during the 
editing process. Table 3 repeats the analysis of cryptogenes from 
L tarentohe with known gRNAs with application of Rules 1-6. 

Statistical distribution of gRNA gene lengths 
In Tables 2 and 3 we presented two different rankings of 7 gRNA 
gene scores when the entire L tarentohe maxicircle is searched 
with 4 cryptogenes. Without our rules applied to the search, all 
but one of the 7 gRNA genes fall far below the highest scoring 
regions of the maxicircle. Even with the rules applied, two of 
the gRNA genes rank first, one ranks third, another eighth, while 
the remaining ranks 18th and below. This leads us to pose the 
question of the statistical distribution of the longest candidate 
edited region or, using the language from the statistical section, 
the longest matched region. To obtain this distribution, we first 
model the editing process as a Markov chain. Applying results 
from Perron - Frobenius theory, we can obtain the approximate 
distribution of the length of the candidate edited regions. Finally, 
we use these results to obtain the statistical distribution of the 
length of longest candidate edited region. 

In the known L. tarentohe maxicircle sequence of n = 20,993 
basepairs, pA = q A  = 0.3835, p~ = qG = 0.1160, pc = qc 
= 0.0949, and pT = q T  = 0.4056. This yields p I  = 0.3331, 
p2 = 0.0941, c = 0.0154, and X = 0.7666. Summing the series 
(2.4), we obtain 

P(Z = t + 1) = 0.0005 (0.7666)' 

We return to the example of Table 2. There we compared 
cryptogene regions of length 100 with both strands of the 
maxicircle (of length 2 x 2 0 9 3 ) .  The goal here is to give the 
expected length of the best Z from all the possible Z's encountered 
in such a search. Since there should be 1 'longest Z and since 
there are (100) (2 ~20,993)  ways to begin Z's, we solve 

(100) (2X20,993)P(Z L t) = 1 

for t. This gives 

(4.1986x 106) (0.0021) (0.7666)' = 1 
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Table 2. Ranking by score of known gRNAs when mrching the Lfarenrolae 
maxicircle with 4 cryptogenes 

Position in the list of 
Cryptogene gRNA Length suboptimal gRNA 

cytochrome b gRNAI 32 27-30 
gRNAII 54 36-43 

Muti2 gRNAI 14 271 -3M 
gRNAlI 46 1286- I327 

gRNA-FS 19 92 -93 
ND7 gRNA-5' 44 2 

COII gRNA-FS 16 88- 100 

Table 3. Ranking by score of known gRNAs when searching the Lrurenfolae 
maxicircle with 4 cryptogenes. Rules 1-6 have been applied. 

Cry ptogene gRNA ranking with Rule 1-6 applied 

Cytochrome b gRNAI 3 
gRNAII 1 

ND7 gRNA-5' I 

Murt2 gRNAI 78-84 
, gRNAll 18-21 

gRNA-FS 8 
co-I1 gRNA-FS 86-99 

or r = 34.18. Therefore, the average or expected length of the 
longest Z is about r = 35. If the cryptogene is localized to a 
region of length lo00 rather than 100, we then obtain t = 43. 
This is quite consistent with Tables 2 and 3, except for gRNAI 
of Murf2 (which has an unusual base composition). Tables 2 and 
3 of course reflect the scoring schemes of equation (3, while 
we have studied the simpler score of length in this section. 

Using protein sequences from other organisms 
In this section protein sequences are used to motivate other 
dynamic programming algorithms for locating cryptogenes. Once 
the sequence of an edited cryptogene is known, there are two 
obvious directions to proceed. First gRNA gene sequences can 
be searched for that complement edited regions of the 
cryptogenes. Second the translated protein sequence can be used 
to search a protein data base. Thus it is possible to infer the 
protein family in cases where homologies are discovered. In the 
case of Murf4, Bhat er al. (13) have argued by sequence 
comparison that the cryptogene encodes subunit 6 of ATPase. 
Instead of pursuing such problems where standard algorithms 
already exist, we are interested here in other questions. If a 
potential cryptogene does not have a known edited RNA, we wish 
to identify potential homologous proteins encoded by the 
cryptogene. On the other hand if a protein family should have 
a gene in kinetopastid DNA but the gene is not known, it should 
be possible to search for potential cryptogenes. 

To test the algorithm presented for protein sequences, we chose 
the cytochrome-b cryptogene as our target. The related protein 
is cytochrome-b of the mitochondria of yeast (GenBank accession 
no. JO1476). We chose the first 40 amino acids of the yeast 
protein because portions of the corresponding region of 
cytochrome-b in Lrarentolae are edited. The Dayhoff PAM250 
matrix is chosen, with deletion penalties bA = 12 and 8~ = 4. 
The penalty for aligning stop codons with an amino acid is - 00. 
We searched bases I - 15,OOO in the L.rarenrolae maxicircle 
genome. The maximum score is 182, which comes from aligning 

. 

a 73 base region of Lrurenrolae to all 40 amino acids from the 
yeast protein. The region of the maxicircle known to be edited 
to encode cytochrome-b of Lrarenrolae is not among the first 
191 top scores. (There are 191 regions scoring L 160.) 

To further explore the utility of the algorithm, we compared 
7 1 bases of the cryptogene with the same 40 amino acid sequence 
from yeast. The highest scoring alignment was 130, but 
unfortunately this alignment does not imply the editing known 
by experiment to be correct. The first 15 alignments have the 
same property. 

The above algorithm does not exhaust the COmPafiSOllS p i b l e  
between protein and kinetoplastid DNA, since potential gRNA 
genes are not been incorporated into the algorithm. One way to 
remedy this is to create an algorithm to simultaneously compare 
protein sequences, potential cryptogenes, and potential gRNA 
genes. Of course, the computational complexity is the product 
of the three sequence lengths, and another critical problem is the 
incomplete nature of kinetoplastid DNA sequences. The problem 
could be approached by pairwise comparisons to reduce 
computational complexity but there are further difficulties. 
Because of sequence evolution, the result of the above 
proteidcryptogene comparison is likely to be distinct from the 
edited cryptogene, thereby Compounding the already difficult 
search for gRNA genes. If gRNA/cryptogene searches are m d e  
first, problems of incomplete data and statistical problems arise. 

DISCUSSION 

Our goal was to derive new computational algorithms to search 
for unknown cryptogenes and gRNA genes. Dynamic 
programming algorithms have been described that apply to these 
problems. Our so-called gRNA algorithms search for possible 
gRNA genes that are complementary to candidate cryptogenes. 
We imposed Rules 1-6, derived from known gRNA/cryptogene 
relationships, to limit the spurious matches. In addition, we 
presented an algorithm that matches a segment of a cryptogene 
with a segment of a homologous protein. To obtain the possible 
cryptogene product, we translate the cryptogene sequence edited 
in all possible ways with Ts.  As discussed above it is possible 
(but very computationally expensive) to bring potential gRNA 
sequences into a 3-way comparison. In summary, the methods 
presented in this paper illustrate the flexibility and versatility of 
dynamic programming algorithms. While retaining the rigorous 
foundations, the appropriate searches can be designed to fit the 
biological problem. 

Unfortunately known gRNA sequences do not match 
cryptogenes with scores that are unusual when compared with 
scores from a maxicircle of random DNA. Therefore our 
algorithms might be useful but not now essential for unraveling 
the complexities of RNA editing. In table 2, we show the ranking 
by score of known gRNA genes when we search the maxicircle 
of L.rarentolae. Even after Rules 1 -6 are applied the rankings 
of 3 out of the 7 known gRNA genes fall below 10 in the ranking. 
This is empirical evidence that these scores are being obscured 
by the statistical distribution of scores from unrelated genomic 
DNA. To study this situation more carefully, we model the 
genome by independent nucleotides and the editing process by 
a Markov chain. From this model we learn the expected longest 
match in random genomic gRNA is consistent with the lengths 
observed in our real gRNA sequences. The behavior of this 
expected longest match is captured in a simple formula and 
explains the results of L rarenrolae comparisons. 
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Are there any ways to greatly improve the. sihtation? 
Improvements in the scoring schemes for matching are unlikely 
to help much. We have studied a simple scheme that counts 
basepairs as well as one where realistic freeenergksmassigned. 
Neither of these performs very differently. Real gRNAs are in 
or very close to the statistical noise. Note that a single sequencing 
error can cause our algorithm to fail. However if we relax the 
stringent conditions now required for a ‘match’ the real gRNAs 
would be even more obscured by the random matches. This leads 
to the natural question of how the biological system finds the 
correct gRNAs. The answer seems to be an abundance of gRNA 
molecules that dominates the population of transcribed RNA 
molecules. If we could recognize these promoters of abundantly 
transcribed genes, we could of course l i t  our search space and 
consequently the expected lengths of ‘random gRNAs’ would be 
greatly decreased. This would allow the sample size to be 
appropriate to the biology. Unfortunately we do not know reliably 
how to recognize promoters in genomic DNA. 

The last paragraph suggested promoter recognition as one 
approach to improving the results of our search methods. Other 
possibilities include codon usage, comparisons between 
kinetoplastid genomes, and application to genomes such as T. 
brucei. In general we feel it is important to develop compltationai 
search techniques for novel biological features that are difficult 
to identify, such as RNA editing. 
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