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A dynamic programming algorithm to find all optimal alignments of DNA subsequences is 
described. The alignments use not only substitutions, insertions and deletions of nucleotides but 
also inversions (reversed complements) of substrings of the sequences. The inversion alignments 
themselves contain substitutions, insertions and deletions of nucleotides. We study the problem 
of alignment with non-intersecting inversions. To provide a computationally efficient algorithm 
we restrict candidate inversions to the K highest scoring inversions. An algorithm to find the J 
best non-intersecting alignments with inversions is also described. The new algorithm is applied 
to the regions of mitochondrial DNA of Drosophila yakuba and mouse coding for URF6 and 
cytochrome b and the inversion of the URF6 gene is found. The open problem of intersecting 
inversions is discussed. 

1. Introduction. DNA sequence data continue to have a profound effect on 
biology. The information content of genes is revealed in DNA sequence and, 
consequently, inferences can be made about the relatedness of genes or more 
generally about segments of DNA sequences. The sequences under study can 
be found in different species such as human, chimpanzee and gorilla where a 
question is to determine the closest relative to humans. The sequences can be of 
the same gene chosen from members of a population, such as the ADH gene of 
Drosophila. Finally the sequences can be related genes from a single organism, 
such as a, /3 and 6 hemoglobin genes. In examples such as we have given the 
sequences must be compared and similar or homologous positions identified. 
Due to the large data set (over 50 x lo6 base pairs of sequence are in DDBJ, 
EMBL and GenBank as of spring 1991) and the combinatorial nature of 
sequence alignment, DNA and protein sequences are usually compared and 
aligned using an algorithm implemented on a computer. 

Dynamic programming algorithms are a method of choice for sequence 
comparison. Other methods such as FASTA are used in database searches 
because of speed and even these methods use dynamic programming at one 
stage (Pearson and Lipman, 1988). The standard dynamic programming 
sequence alignment algorithms produce alignments that maximize a specific 
objective function. The objective function or score is the sum of weighted 
matches and mismatches, usually with negative weights for insertions and 
deletions. The resulting alignments give explicit relationships between the 
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sequences; the substitutions, insertions and deletions required to transform one 
sequence into another. See Waterman (1984, 1989) for a general discussion of 
these topics. 

While dynamic programming is often used for sequence comparison, there 
are some drawbacks. One is the limitation of the evolutionary transformations 
to substitutions, insertions and deletions. Duplications and inversions are 
common events in molecular evolution (Howe et al., 1988; Zhou et al., 1988). 
Although Wagner (1983) has studied sequence comparison with inversions of 
adjacent letters, his results are negative since including inversions is very costly 
in terms of computer time. Also his inversions are transpositions of adjacent 
letters, transformations of much less interest to us than inversions of longer 
segments of DNA. Therefore including inversions has seemed computationally 
impractical, and there has been no other rigorous work since Wagner. In this 
paper we take a different approach and give a practical solution to sequence 
comparison with non-overlapping inversions. 

- 

2. Dynamic Programming. Needleman and Wunsch (1970) introduced the 
first dynamic programming algorithm for sequence comparison. It was recast 
in its present form in Smith et al. (1981) where similarity and distance 
algorithms were shown to be equivalent or duals of one another. Here we study 
similarity algorithms. For explicitness let a = al.u2 . . . a, and b = b, b, . . . b, be 
two DNA sequences. If a and b are letters of the individual sequences, s(a, b) is a 
real valued function. Gaps are inserted by insertion of "-". Gaps of k 
contiguous letters are given negative weight w(k) and were introduced by 
Waterman et al. (1976). In the case w(k)= kw( 1) the objective function is easy to 
write out. Insert "-" in a and in b so that the new sequences a* and b* are of the 
same (finite) length. The alignment: 

u t a ; .  ... a; 

bt b: . . . b; 

should not have two aligned "-"s. Thus max(n, m }  < Lbn+rn.  Set: 

A(a*, b*) = 1 s(aE b:) 

where s(-, b) = s(a, -) = w( 1) .  Now the score S(a, b) for best alignment of a with 
b is defined by: 

S(a, b) = max A(a*, b*) 

i>  1 

d 

where sit is the set of all alignments. If w(k)#kw(l ) ,  some modifications must 
be made to the definition. 
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The beauty of dynamic programming is that it provides a simple recursion to 
compute S(a, b). Set: 

S(i, j )=S(a ,a ,  . . . ai ,  b ,b , ,  . . . b j )  

where S(0, O)=O, S(O,j)=S(-, b ,  . . . bj )=  w ( j )  and S(i, 0)= w(i) .  Then: 

S(i-1,j- l)+s(ai, bj),  max { S ( i - k , j ) + w ( k ) } ,  
l S k S i  

max { S(i, j - I) + w(l)} 
l < l < j  

Of course S(n, m)= S(a, b). This algorithm takes time O(n2m + m'n) or 0 ( n 3 )  if 
n=m. In the case of a linear weight function w(k)=a+f lk,  there is a nice 
reduction of computing time to O(n2) due to Gotoh (1982): 

E(i, j )  = max{ E(i - 1, j )  + f l ,  S(i - 1, j )  + a + f l }  
F(i,j)=max{F(i, j- I)+B, S( i , j -  l )+a+B} 

S(i,j)=max(S(i- 1, j -  l)+s(ai, bj), E(i , j ) ,  F( i , j ) } .  
and 

In view of the mosaic nature of molecular sequences, the sequence alignment 
problem of current interest is usually that of finding significant alignments of 
segments (contiguous subsequences) of the two sequences. Such alignments are 
known as local alignments. Smith and Waterman (1981) showed that a simple 
modification of (1) gives a solution to the local alignment problem. The local 
alignment problem is to find all alignments which have score: 

H(a, b)=max{S(a,a,+, . . .a,,  b,b,+, . . . 6 J :  1 < u d u < n ,  l<x<y<m}.  

The algorithm can be obtained from H(0,O) = H(i, 0) = H ( 0 , j )  = 0 for 1 < i < n, 
1 < j  < m, and: 

H ( i , j )  = max{H(i- 1 ,  j- l)+s(ai, bj) ,  max ( H ( i - k , j ) +  w ( k ) } ,  
l < k < i  

max { H ( i , j - I ) +  w(I)},  O}. (3 1 
1 9 1 S j  

The 0(n2) improvement for w ( k )  = a + flk yields: 

E(i, j )  = max{ E(i - 1, j )  + p, H(i - 1 , j )  + a + p}  
F(i7j)=max{F(i,j-1)+jl, H(i, j - l )+a+j l }  

H(i,j)=max{H(i-j,j- l)+s(ai ,  bj) ,  E ( i , j ) ,  F(i, j ) ,  O}. (4 1 
Of course H(a, b)=max{H(i,j): 1 < i < n ,  1 < j < r n } .  
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In Waterman and Eggert (1987) a method was introduced to produce the 
2nd, 3rd,. . . , Kth best segment or local alignments as well as the best. The 
succeeding alignments are not allowed to have aligned pairs (ai/bj)  in common. 
The computing time of the Waterman and Eggert method is O(nZ + cF= L:), 
where L, is the length of the lth best alignment. Since we can compute as many 
non-intersecting alignments as desired, it is necessary to have an explicit 
criterion for accepting an alignment. Therefore, we now turn to a discussion of 
the statistical distribution of alignment scores. 

It is a clichC that our ability to compute exceeds our ability to understand. In 
the present context, we can compute alignments that look good to us but might 
be no better than expected from random sequences. Since the goal of sequence 
alignment is to find interesting biology, it is desirable to screen out alignments 
that are not statistically significant. The solution is often Monte Carlo 
simulation. Some progress has been made on theoretical aspects of the problem 
(Waterman et al., 1987; Arratia et al., 1990). Detailed results are known for the 
length of the longest run of identical letters (matches) as well as the longest 
match with r mismatches. Recently this work has been generalized to the 
distribution of the longest run with 01 proportion of matches where 
a>P(match)(Arratia et al., 1990). This work rests on recent advances in 
Poisson approximation (Arratia et al., 1989). There are two lines of study for 
local algorithms with general scoring schemes. Arratia et al. (1988) provided 
strong laws for the score as well as the statistical distribution of letters in the 
alignment. Karlin and Altschul(1990) give the results for more general scoring 
schemes as well as a Poisson approximation to assess statistical significance. 
Another approach appears in Waterman et a!. (1987). For: 

- 

+1, a = b  
-p, a # b  

S(U, b )  = 

and w ( k )  = -6k,  it is known that, except for points on a curve in (p, 6 ) ,  
either: 

or 

H(n, n)/log(n)=d 

The idea is that whenever p and 6 are “large enough H(n, n) behaves like 
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log(n). The results on scoredistribution provide us with a rich ifstill incomplete 
theory for determining statistical significance of alignment scores. 

The Poisson approximation arises in the following way. Set a test value t and 
compute alignments satisfying { H >  t > .  The Waterman and Eggert algorithm 
for the Kbest alignments requires the alignments to be disjoint; in the language 
of Arratia et al., the events are declumped. Let 2 equal the number of 
alignments { H >  t> produced by this method, and let R. = E(Z) .  Order the scores 
by size: 

Define: 

T=max{S(x,x, . . . x i , y l , y 2 . .  . y j ) :  i<n, j < m > .  

The first Poisson approximation result states: 
1P( T > x) P(H,,, < x) z e - 

The remaining order statistics have approximate distribution: 

This result can be rigorously proved for the case of no indels and no 
mismatches. See Goldstein and Waterman (1992) for a generalization to 
mismatches. We have presented these results here since we use the largest 
scores in our new algorithm. Below we compute the Kbest local alignments as 
input to our new algorithm. Since we cannot estimate P( T> x), the formula for 
P(H;,., <x) cannot be used directly. 

3. Inversions. Our first goal is to describe a dynamic programming algorithm 
for optimal alignment of two DNA sequences with substitutions, insertions, 
deletions and inversions. An inversion of a DNA sequence is defined to be the 
reverse complement of the sequence. While the number of inversions is not 
restricted, the inversions will not be allowed to intersect one another. Later we 
will discuss the case of intersecting inversions. While we could describe other 
versions of our algorithm, including full or global sequence alignment, here we 
present the local alignment algorithm with a linear gap weighting function. 
This is probably the most useful version of the method. 

When we allow inversions, we must realize that the inverted regions will not 
exactly match and must themselves be aligned. In addition one of the inverted 
regions must be complemented to preserve the polarity of the DNA sequence. 
Let us define: 

i 
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We first apply the local algorithm with s,(a,  6) and w, (k )=a ,  + B , k  to the 
sequences a=al  . . . a, and the inverted sequence b(i”v)=6m6m- . . .E,. The 
extension of this algorithm from Waterman and Eggert (1987) gives the K best 
(inversion) local alignments with the property that no match or mismatch is 
used more than once in the alignments. Each time a best alignment is located 
the matrix must be recalculated to remove the effect of the alignment. If 
alignment i has length Li, the time required to produce the list 2’ of the K best 
inversion alignments is O(nm+x,!!= L?). To reduce the time requirement we 
chose an appropriate value of K. To further reduce running time we could 
impose a score threshold C ,  chosen so that the probability two random 
sequences have a Kth best alignment score 2 C ,  is small. See the discussion of 
statistical significance in Section 2. 

(1 ) 
Algorithm; Best inversions. 

apply Waterman-Eggert algorithm to a and bti””). 
L?= h; i , j ) ,  (9, h),  ( i , j ) ) :  K best) 

(11) 
set U(i , j )=  V(i , j )= W(i,j)=O if i=O orj=O. 
forj=l to rn 

for i = l  t o n  
{ U(i,j)=max(U(i-I, j)+fi , ,  W(i-1,  j )+a2+f iz )  

~ ( i , j )  = maxi V(i, j -  1 )  + fi2 , W(i , j -  1 )  +a2 + f i 2 }  
W(i,j)=max{max {W(g-1 ,  h - l ) + Z ( g ,  h; i , j ) } + y ,  

1 W ( i - l , j - - l ) + ~ ~ ( u ~ , 6 ~ ) ,  U(i , j ) ,  V(i , j ) ,O}.  
(6)  Y 

best inversion score = max{ W(i, j): 1 < i < n, 1 < j  < m } .  
We have greatly reduced computation time. (I) of the algorithm can be done 

in time O(nm) by (2). To execute (11) requires time proportional to nrn times a 
constant plus the average number of elements in 9 that “ e n d  at ( i ,  j ) .  It might 
seem that only one best inversion has this property, but recall that we align 
agug+ , . . . a, with 6pj- , . . .E,. This allows the possibility of several elements 
with “ e n d  (i, j ) .  Still the list 9 is restricted to K elements. In the illustrative 
example discussed next 191 = 2. Clearly part I1 of the algorithm best inversions 
runs in time O(nrn+C!+J, L:). 

For maximum flexibility we have allowed s,(a, 6) and s,(a, 6) as well as w1 (k) 
and w2(k)  to have different values. This might be advisable if the inversion 
segments are thought to have evolved differently from the rest of the alignment. 
We have experimented with these parameters with the example of Section 5 
and did not improve results over s, =s2 and w ,  = w2. In general, values of 
s(a, 6) and w ( k )  = ak + f i  are chosen in an ad hoc fashion and by experience for 
the standard alignment algorithms. More than twice as many parameters does 
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not make that task easier. We recommend setting s, = s2 and w l  = w2.  Still, y 
and 12'1 are new parameters for the inversion algorithm. We recommend choice 
of y> /  w(1) and 191 as large as is computationally feasible. 

To illustrate our algorithm we use the sequences a=CCAATCTAC- 
TACTGCTTGCA and b = GCCACTCTCGCTGTACTGTG. The matching 
functions are: 

10 when a = 6 
- 11 when a # b  

s,(a, b)=s2(a ,  b )  = 

while: 

The inversion penalty is y = - 2 while the list 9 is defined by K =  2. The two 
alignments in 9 are shown in Fig. la where the matched-mismatched pairs are 
boxed. The best local alignment with inversion is shown in Fig. lb. Figure 2 is a 
schematic of Fig. 1. In Fig. 2a, 1 and 2 correspond to the best and second best 
alignments, respectively. In Fig. 2b, 0 denotes alignment without inversion, 
while 1 denotes alignment of inverted regions. 

4. The J Best Alignments with Inversions. The algorithm for local alignment 
with inversions allows us to find all alignments with the optimal score. Recall 
that the Waterman and Eggert algorithm produces the Kbest local alignments 
with the property that none of these alignments share a pair of matched (or 
mismatched) letters. We have of course utilized that algorithm to produce list 
.Y,IYl= K, which reduces computing time for alignment with inversions. In 
this section we will describe a method similar to the Waterman and Eggert 
algorithm for producing the J best alignments with inversions. 

Next we review in some detail the Waterman and Eggert (1987) algorithm. In 
that paper technical details are given so that one optimal alignment is chosen at 
each stage (1,2, . . .). Occasionally many alternate alignments have the same 
score; they often differ by small details. One guiding principle is to choose an 
alignment of shortest length. This is relevant to our algorithm for inversions 
since different alignment choices in 2' can in some cases create different overall 
alignments. 

Having chosen an alignment, the next task is to recompute the matrix H ( i , j )  
so that a new matrix H * ( i , j )  is defined to be the matrix obtained not allowing 
any match (mismatch) from the alignments already output. The entire matrix 
Hcan be recomputed to obtain H* in time O(nrn) but this is not necessary. The 
upper left most alignment pair (p, q )  is the first value that changes: 
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C A C A G T A C A G C G A G A G T G G C  

10 0 
10 0 

0 20 
0 10 
0 0  
10 0 

0 0  
0 10 

10 0 
0 0  
0 10 
10 0 

0 0  
0 0  
10 0 

0 0  

10 0 0 0 0 1 0  0 0 
10 0 0 0 0 1 0  0 0 
0 2 0  0 0 1 0  0 2 0  0 
9 1 0  9 0 1 0  0 1 0  9 
0 0 0 1 9  0 0 0 0 

10 0 0 0 8 1 0  0 0 
0 0 om0 0 0 0 
0 1 0  0 om 0 1 0  0 

20 0 0 0 o m l o  5 
0 9 om 0 1 0 1 9  0 
0 1 0  0 om 5 2 0  8 

20 0 0 0 omlo 9 
0 9 0 1 0  010a 0 
0 0 1 9  0 0 5 0 
10 0 0 8 0 1 0  0 

0 0 0 1 0  0 0 0 4 

10 
10 

0 
0 
0 

10 
0 
0 
10 
0 
0 
18 
0 
9 

0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 1 0  0 1 0  0 0 0 0 
0 1 0  0 1 0  0 0 0 0 
0 0 0 0 0 1 0  0 0 
0 0 0 0 0 0 0 0  
0 0 0 0 0 1 0  0 0 
0 1 0  0 1 0  0 0 0 0 
0 0 0 0 0 0 0 0  
0 0 0 0 0 1 0  0 0 
0 1 0  0 1 0  0 0 0 0 
0 0 0 0 0 0 0 0  
7 0 0 0 0 1 0  0 0 

10 0 10 0 10 0 20 10 
1 9 1 4  9 4 0 0 0 9 
28 8 3 0 0 1 0  0 0 

10 
10 

0 
0 
0 
10 
0 
0 

10 
0 
0 

10 
0 
0 

20 
0 

T 0 0 0 0 0 1 0  0 0 0 0 1 4  8 1 7  0 0 0 1 0  0 0 0 
G 0 0 0 0 1 0  0 0 0 0 1 0  9 2 4  4 2 7  7 1 0  0 2 0 1 0  0 
C 10 0 1 0  0 0 0 0 1 0  0 0 2 0  4 1 3  7 1 6  0 0 0 9 2 0  
A 0 2 0  0 2 0  0 0 1 0  0 2 0  0 0 9 1 4  2 1 7  5 0 0 0 0 

Inversion Y 1 :  g:10 h:10 i:15 j:15 2:39 
TACTGC 
I l l  I I  
TACAGC 

Inversion 1.2: g: 7 h:13 i: 9 j:15 2:30 
TAC 
I l l  
TAC 

G C C A C T C T C G C T G T A C T G T G  

c omlo 0 1 0  0 1 0  0 1 0  0 1 0  0 0 0 0 1 0  0 0 0 0 
c 01om 0 1 0  0 1 0  0 1 0  0 1 0  0 0 0 0 1 0  0 0 0 0 
A 0 0 O m l o  5 0 0 0 0 0 0 0 0 1 0  0 0 0 0 0 
A 0 0 0 1 0 D  0 0 0 0 0 0 0 0 0 1 0  0 0 0 0 0 
T 0 0 0 5 Om 9 1 0  0 0 0 1 0  0 1 0  0 0 1 0  0 1 0  0 
C 0 1 0 1 0  0 1 5  g a l 9 2 0  9 1 0  0 0 0 0 1 0  0 0 0 0 
T 0 0 0 0 0 25 19 20 9 10 0 0 20 0 10 0 
A 0 0 0 1 0  0 5 1 4  8 9 0 2 0  0 0 9 0 0 
C 0 1 0 1 0  0 2 0  0 1 5  9 4 0 2 8 3 0 1 0  5 0 0 
T 0 0 0 0 0 3 0 1 0 2 5  17 40 20 15 10 
A 0 0 0 10 0 10 19 14 14 8 17 18 27 ..I y4 5 20 29 9 4 
C 0 10 10 0 20 5 20 9 24 4 18 13 .J 16 4 34 15 9 18 0 
T 0 0 0 0 0 30 10 30 10 13 0 z.8 8 17 5 14 44 24 19 14 
G 10 0 0 0 0 10 19 10 19 20 ..z 8 38 18 13 9 24 54 34 29 
C 0 20 10 0 10 5 20 8 20 .. 30 10 18 27 76 56 51 46 43 36 
T 0 0 9 0 0 20 0 30 10 9 10 40 20 28 5 6 a  66 46 56 36 
T 0 0 0 0 0 10 9 10 19 0 5 20 29 30 51 45 55 56 45 
G 10 0 0 0 0 0 0 5 0 29 9 15 30 18 46 40 55 65 66 
C 0 20 10 0 10 0 10 0 15 9 39 19 14 19 41 56 50 65 74 54 
A 0 0 9 2 0  0 0 0 0 0 4 1 9 2 8  8 3 3 6 3 6 4 5 6 0 5 4 6 3  

used: Inversion #l 
i:18 j:18 W:85 
CCAATCTAC******TTG 
1 1 1  I l l  liiiiii I1 
CCACTCT-C******CTG 

Figure 1 .  Best local alignment with inversions of a=CCAATCTAC- 
TACTGCTTGCA and b = GCCACTCTCGCTGTACTGTG. (a) Shows the 
matrix H for a and b(i"v) and the two alignments in 2'. (b) Shows matrix Wand the 

best alignment. 
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Figure 2. A schematic of the output presented in Fig. 1 .  

H(p-  1,4 - 1 )  +s(a,, bq) is eliminated from the maximum since aJbq is in the 
alignment. The computation proceeds along the pth row from column 4 to 
column r until: 

and 
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Figure 3. Schematic illustration of islands of recalculation. 

13 546-15 282). The putative organization of genes in the sequences is as 
follows: 

Drosophila yakuba mouse 
URF6 1-525 519-1 (inverted) 
tRNA Glu 588-520 (inverted) 
cytochrome b 529-1665 594-1737. 

(Here position 1 in D.  yakuba corresponds to GenBank position 9987 and 
position 1 in mouse corresponds to GenBank position 13546.) This is a 
difficult alignment problem, due to rapid evolution of mitochondrial genomes. 

The scoring functions are: 

and 

+10 a = b  
-9 a # b  s,(u, b)=s2(a,  b )  = 

w l ( k ) = w 2 ( k )  = - 15 - 5k ,  

y =  -20. 

For 191 = 400, step I of the algorithm forms the list 9 of potential inversions. 
Inversion No. 26 (in order of score) is the one ultimately used in the alignment. 
We show 100  of the inversion alignment locations by straight lines in Fig. 4a. 
While alignment No. 26 is shorter than most of others, it has approximately the 
same 40% identity as the other, longer inversion alignments. The best local 
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Mouse 

500 lo00 1500 

Figure 4. Inversion alignment algorithm applied to Drosophilia-mouse sequences. 
(a) is a schematic of the candidate inversions. (b) is a schematic of the optimal local 

alignment with inversions. 

A B C 

C(inv) B(inv) 
A 

a' - l-lLl.l- 

b -  1-1.1-1- 

Figure 5. An illustration of overlapping inversions. 
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6. Extensions. Our algorithm for inversions avoids the computational 
difficulties of past algorithms by omitting short inversions. In addition, to 
obtain our solution we restricted ourselves to any number of non-intersecting 
inversions. In the course of the evolution, it is likely that inversions can overlap. 
Figure 5 provides a schematic of the effect of such events. To proceed from a to 
a', the segment BC is inverted to become C(inV)B(inV). Then the a' segment A@"') 
is itself inverted to become CA(i"v) in b. The effect of this (a-+b) is inversion of 
the segments A and B, and the translocation of C from 3' of B in a to 5' of in 
b. Given our method ofconstructing 9, the inversion list, it is likely that even if 

and B(i"v) are statistically significant and can be found in 9, they will not 
match exactly, at their ends. If the alignment of A with were to extend into 
B, we might not find these adjacent inversions. While we could devel6p an 
algorithm to search for inversions with overlaps such as we describe in Fig. 5 ,  
we have not done so. Higher order intersecting events significantly complicate 
the situation, and it remains an open problem to devise practical algorithms to 
handle these cases. .-  
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