
. , , I , I . . . , . I

. ..~.. ...

Bullr*rin of Murkemorirul Bioloyy Vol. 54. No. 4. pp. 521-536. 1992.
Printed in Great Britain.

0092-8240/9255.00 f0.00
Pergamon Press plc

0 1992 Society for Mathematical Biology

A LOCAL ALGORITHM FOR DNA SEQUENCE
ALIGNMENT WITH INVERSIONS

a MICHAEL SCHONIGER and MICHAEL S. W A T E R M A N
Departments of Mathematics and Molecular Biology,
University of Southern California,
Los Angeles, CA 90089-1 113, U.S.A.

A dynamic programming algorithm to find all optimal alignments of DNA subsequences is
described. The alignments use not only substitutions, insertions and deletions of nucleotides but
also inversions (reversed complements) of substrings of the sequences. The inversion alignments
themselves contain substitutions, insertions and deletions of nucleotides. We study the problem
of alignment with non-intersecting inversions. To provide a computationally efficient algorithm
we restrict candidate inversions to the K highest scoring inversions. An algorithm to find the J
best non-intersecting alignments with inversions is also described. The new algorithm is applied
to the regions of mitochondrial DNA of Drosophila yakuba and mouse coding for URF6 and
cytochrome b and the inversion of the URF6 gene is found. The open problem of intersecting
inversions is discussed.

1. Introduction. DNA sequence data continue to have a profound effect on
biology. The information content of genes is revealed in DNA sequence and,
consequently, inferences can be made about the relatedness of genes or more
generally about segments of DNA sequences. The sequences under study can
be found in different species such as human, chimpanzee and gorilla where a
question is to determine the closest relative to humans. The sequences can be of
the same gene chosen from members of a population, such as the ADH gene of
Drosophila. Finally the sequences can be related genes from a single organism,
such as a, /3 and 6 hemoglobin genes. In examples such as we have given the
sequences must be compared and similar or homologous positions identified.
Due to the large data set (over 50 x lo6 base pairs of sequence are in DDBJ,
EMBL and GenBank as of spring 1991) and the combinatorial nature of
sequence alignment, DNA and protein sequences are usually compared and
aligned using an algorithm implemented on a computer.

Dynamic programming algorithms are a method of choice for sequence
comparison. Other methods such as FASTA are used in database searches
because of speed and even these methods use dynamic programming at one
stage (Pearson and Lipman, 1988). The standard dynamic programming
sequence alignment algorithms produce alignments that maximize a specific
objective function. The objective function or score is the sum of weighted
matches and mismatches, usually with negative weights for insertions and
deletions. The resulting alignments give explicit relationships between the

52 1

. . . . '

522 M. SCHONIGER AND M. S. WATERMAN

I

1

I ' .

I :

sequences; the substitutions, insertions and deletions required to transform one
sequence into another. See Waterman (1984, 1989) for a general discussion of
these topics.

While dynamic programming is often used for sequence comparison, there
are some drawbacks. One is the limitation of the evolutionary transformations
to substitutions, insertions and deletions. Duplications and inversions are
common events in molecular evolution (Howe et al., 1988; Zhou et al., 1988).
Although Wagner (1983) has studied sequence comparison with inversions of
adjacent letters, his results are negative since including inversions is very costly
in terms of computer time. Also his inversions are transpositions of adjacent
letters, transformations of much less interest to us than inversions of longer
segments of DNA. Therefore including inversions has seemed computationally
impractical, and there has been no other rigorous work since Wagner. In this
paper we take a different approach and give a practical solution to sequence
comparison with non-overlapping inversions.

-

2. Dynamic Programming. Needleman and Wunsch (1970) introduced the
first dynamic programming algorithm for sequence comparison. It was recast
in its present form in Smith et al. (1981) where similarity and distance
algorithms were shown to be equivalent or duals of one another. Here we study
similarity algorithms. For explicitness let a = al.u2 . . . a, and b = b, b, . . . b, be
two DNA sequences. If a and b are letters of the individual sequences, s(a, b) is a
real valued function. Gaps are inserted by insertion of "-". Gaps of k
contiguous letters are given negative weight w(k) and were introduced by
Waterman et al. (1976). In the case w(k)= kw(1) the objective function is easy to
write out. Insert "-" in a and in b so that the new sequences a* and b* are of the
same (finite) length. The alignment:

u t a ; a;

bt b: . . . b;

should not have two aligned "-"s. Thus max(n, m } < Lbn+rn. Set:

A(a*, b*) = 1 s(aE b:)

where s(-, b) = s(a, -) = w(1) . Now the score S(a, b) for best alignment of a with
b is defined by:

S(a, b) = max A(a*, b*)

i> 1

d

where sit is the set of all alignments. If w(k)#kw(l) , some modifications must
be made to the definition.

"' , ,. , .

. .

ALGORITHM FOR DNA SEQUENCE ALIGNMENT 523

The beauty of dynamic programming is that it provides a simple recursion to
compute S(a, b). Set:

S(i, j)=S(a ,a , . . . ai , b ,b , , . . . b j)

where S(0, O)=O, S(O,j)=S(-, b , . . . bj)= w (j) and S(i, 0)= w(i) . Then:

S(i-1,j- l)+s(ai, bj), max { S (i - k , j) + w (k) } ,
l S k S i

max { S(i, j - I) + w(l)}
l < l < j

Of course S(n, m)= S(a, b). This algorithm takes time O(n2m + m'n) or 0 (n 3) if
n=m. In the case of a linear weight function w(k)=a+f lk, there is a nice
reduction of computing time to O(n2) due to Gotoh (1982):

E(i, j) = max{ E(i - 1, j) + f l , S(i - 1, j) + a + f l }
F(i,j)=max{F(i, j- I)+B, S(i , j - l)+a+B}

S(i,j)=max(S(i- 1, j - l)+s(ai, bj), E(i , j) , F(i , j) } .
and

In view of the mosaic nature of molecular sequences, the sequence alignment
problem of current interest is usually that of finding significant alignments of
segments (contiguous subsequences) of the two sequences. Such alignments are
known as local alignments. Smith and Waterman (1981) showed that a simple
modification of (1) gives a solution to the local alignment problem. The local
alignment problem is to find all alignments which have score:

H(a, b)=max{S(a,a,+, . . .a,, b,b,+, . . . 6 J : 1 < u d u < n , l<x<y<m}.

The algorithm can be obtained from H(0,O) = H(i, 0) = H (0 , j) = 0 for 1 < i < n,
1 < j < m, and:

H (i , j) = max{H(i- 1 , j- l)+s(ai, bj) , max (H (i - k , j) + w (k) } ,
l < k < i

max { H (i , j - I) + w(I)}, O}. (3 1
1 9 1 S j

The 0(n2) improvement for w (k) = a + flk yields:

E(i, j) = max{ E(i - 1, j) + p, H(i - 1 , j) + a + p}
F(i7j)=max{F(i,j-1)+jl, H(i, j - l)+a+j l }

H(i,j)=max{H(i-j,j- l)+s(ai , bj) , E (i , j) , F(i, j) , O}. (4 1
Of course H(a, b)=max{H(i,j): 1 < i < n , 1 < j < r n } .

524 M. SCHONIGER AND M. s. WATERMAN

4

In Waterman and Eggert (1987) a method was introduced to produce the
2nd, 3rd,. . . , Kth best segment or local alignments as well as the best. The
succeeding alignments are not allowed to have aligned pairs (ai/bj) in common.
The computing time of the Waterman and Eggert method is O(nZ + cF= L:),
where L, is the length of the lth best alignment. Since we can compute as many
non-intersecting alignments as desired, it is necessary to have an explicit
criterion for accepting an alignment. Therefore, we now turn to a discussion of
the statistical distribution of alignment scores.

It is a clichC that our ability to compute exceeds our ability to understand. In
the present context, we can compute alignments that look good to us but might
be no better than expected from random sequences. Since the goal of sequence
alignment is to find interesting biology, it is desirable to screen out alignments
that are not statistically significant. The solution is often Monte Carlo
simulation. Some progress has been made on theoretical aspects of the problem
(Waterman et al., 1987; Arratia et al., 1990). Detailed results are known for the
length of the longest run of identical letters (matches) as well as the longest
match with r mismatches. Recently this work has been generalized to the
distribution of the longest run with 01 proportion of matches where
a>P(match)(Arratia et al., 1990). This work rests on recent advances in
Poisson approximation (Arratia et al., 1989). There are two lines of study for
local algorithms with general scoring schemes. Arratia et al. (1988) provided
strong laws for the score as well as the statistical distribution of letters in the
alignment. Karlin and Altschul(1990) give the results for more general scoring
schemes as well as a Poisson approximation to assess statistical significance.
Another approach appears in Waterman et a!. (1987). For:

-

+1, a = b
-p, a # b

S(U, b) =

and w (k) = -6k, it is known that, except for points on a curve in (p, 6) ,
either:

or

H(n, n)/log(n)=d

The idea is that whenever p and 6 are “large enough H(n, n) behaves like

ALGORITHM FOR DNA SEQUENCE ALIGNMENT 525

' E

f z
i
i -

t

t

log(n). The results on scoredistribution provide us with a rich ifstill incomplete
theory for determining statistical significance of alignment scores.

The Poisson approximation arises in the following way. Set a test value t and
compute alignments satisfying { H > t > . The Waterman and Eggert algorithm
for the Kbest alignments requires the alignments to be disjoint; in the language
of Arratia et al., the events are declumped. Let 2 equal the number of
alignments { H > t> produced by this method, and let R. = E(Z) . Order the scores
by size:

Define:

T=max{S(x,x, . . . x i , y l , y 2 . . . y j) : i<n, j < m > .

The first Poisson approximation result states:
1P(T > x) P(H,,, < x) z e -

The remaining order statistics have approximate distribution:

This result can be rigorously proved for the case of no indels and no
mismatches. See Goldstein and Waterman (1992) for a generalization to
mismatches. We have presented these results here since we use the largest
scores in our new algorithm. Below we compute the Kbest local alignments as
input to our new algorithm. Since we cannot estimate P(T> x), the formula for
P(H;,., <x) cannot be used directly.

3. Inversions. Our first goal is to describe a dynamic programming algorithm
for optimal alignment of two DNA sequences with substitutions, insertions,
deletions and inversions. An inversion of a DNA sequence is defined to be the
reverse complement of the sequence. While the number of inversions is not
restricted, the inversions will not be allowed to intersect one another. Later we
will discuss the case of intersecting inversions. While we could describe other
versions of our algorithm, including full or global sequence alignment, here we
present the local alignment algorithm with a linear gap weighting function.
This is probably the most useful version of the method.

When we allow inversions, we must realize that the inverted regions will not
exactly match and must themselves be aligned. In addition one of the inverted
regions must be complemented to preserve the polarity of the DNA sequence.
Let us define:

i

I ‘

ALGORITHM FOR DNA SEQUENCE ALIGNMENT 527

,

. . .

We first apply the local algorithm with s,(a, 6) and w, (k)=a , + B , k to the
sequences a=al . . . a, and the inverted sequence b(i”v)=6m6m- . . .E,. The
extension of this algorithm from Waterman and Eggert (1987) gives the K best
(inversion) local alignments with the property that no match or mismatch is
used more than once in the alignments. Each time a best alignment is located
the matrix must be recalculated to remove the effect of the alignment. If
alignment i has length Li, the time required to produce the list 2’ of the K best
inversion alignments is O(nm+x,!!= L?). To reduce the time requirement we
chose an appropriate value of K. To further reduce running time we could
impose a score threshold C , chosen so that the probability two random
sequences have a Kth best alignment score 2 C , is small. See the discussion of
statistical significance in Section 2.

(1)
Algorithm; Best inversions.

apply Waterman-Eggert algorithm to a and bti””).
L?= h; i , j) , (9, h), (i , j)) : K best)

(11)
set U(i , j)= V(i , j)= W(i,j)=O if i=O orj=O.
forj=l to rn

for i = l t o n
{ U(i,j)=max(U(i-I, j)+fi , , W(i-1, j)+a2+f iz)

~ (i , j) = maxi V(i, j - 1) + fi2 , W(i , j - 1) +a2 + f i 2 }
W(i,j)=max{max {W(g-1 , h - l) + Z (g , h; i , j) } + y ,

1 W (i - l , j - - l) + ~ ~ (u ~ , 6 ~) , U(i , j) , V(i , j) ,O}.
(6) Y

best inversion score = max{ W(i, j): 1 < i < n, 1 < j < m } .
We have greatly reduced computation time. (I) of the algorithm can be done

in time O(nm) by (2). To execute (11) requires time proportional to nrn times a
constant plus the average number of elements in 9 that “ e n d at (i , j) . It might
seem that only one best inversion has this property, but recall that we align
agug+ , . . . a, with 6pj- , . . .E,. This allows the possibility of several elements
with “ e n d (i, j) . Still the list 9 is restricted to K elements. In the illustrative
example discussed next 191 = 2. Clearly part I1 of the algorithm best inversions
runs in time O(nrn+C!+J, L:).

For maximum flexibility we have allowed s,(a, 6) and s,(a, 6) as well as w1 (k)
and w2(k) to have different values. This might be advisable if the inversion
segments are thought to have evolved differently from the rest of the alignment.
We have experimented with these parameters with the example of Section 5
and did not improve results over s, =s2 and w , = w2. In general, values of
s(a, 6) and w (k) = ak + f i are chosen in an ad hoc fashion and by experience for
the standard alignment algorithms. More than twice as many parameters does

528 M. SCHONIGER AND M. S . WATERMAN

not make that task easier. We recommend setting s, = s2 and w l = w2. Still, y
and 12'1 are new parameters for the inversion algorithm. We recommend choice
of y> / w(1) and 191 as large as is computationally feasible.

To illustrate our algorithm we use the sequences a=CCAATCTAC-
TACTGCTTGCA and b = GCCACTCTCGCTGTACTGTG. The matching
functions are:

10 when a = 6
- 11 when a # b

s,(a, b)=s2(a , b) =

while:

The inversion penalty is y = - 2 while the list 9 is defined by K = 2. The two
alignments in 9 are shown in Fig. la where the matched-mismatched pairs are
boxed. The best local alignment with inversion is shown in Fig. lb. Figure 2 is a
schematic of Fig. 1. In Fig. 2a, 1 and 2 correspond to the best and second best
alignments, respectively. In Fig. 2b, 0 denotes alignment without inversion,
while 1 denotes alignment of inverted regions.

4. The J Best Alignments with Inversions. The algorithm for local alignment
with inversions allows us to find all alignments with the optimal score. Recall
that the Waterman and Eggert algorithm produces the Kbest local alignments
with the property that none of these alignments share a pair of matched (or
mismatched) letters. We have of course utilized that algorithm to produce list
.Y,IYl= K, which reduces computing time for alignment with inversions. In
this section we will describe a method similar to the Waterman and Eggert
algorithm for producing the J best alignments with inversions.

Next we review in some detail the Waterman and Eggert (1987) algorithm. In
that paper technical details are given so that one optimal alignment is chosen at
each stage (1,2, . . .). Occasionally many alternate alignments have the same
score; they often differ by small details. One guiding principle is to choose an
alignment of shortest length. This is relevant to our algorithm for inversions
since different alignment choices in 2' can in some cases create different overall
alignments.

Having chosen an alignment, the next task is to recompute the matrix H (i , j)
so that a new matrix H * (i , j) is defined to be the matrix obtained not allowing
any match (mismatch) from the alignments already output. The entire matrix
Hcan be recomputed to obtain H* in time O(nrn) but this is not necessary. The
upper left most alignment pair (p, q) is the first value that changes:

ALGORITHM FOR DNA SEQUENCE ALIGNMENT 529

C
T

C A C A G T A C A G C G A G A G T G G C

10 0
10 0

0 20
0 10
0 0
10 0

0 0
0 10

10 0
0 0
0 10
10 0

0 0
0 0
10 0

0 0

10 0 0 0 0 1 0 0 0
10 0 0 0 0 1 0 0 0
0 2 0 0 0 1 0 0 2 0 0
9 1 0 9 0 1 0 0 1 0 9
0 0 0 1 9 0 0 0 0

10 0 0 0 8 1 0 0 0
0 0 om0 0 0 0
0 1 0 0 om 0 1 0 0

20 0 0 0 o m l o 5
0 9 om 0 1 0 1 9 0
0 1 0 0 om 5 2 0 8

20 0 0 0 omlo 9
0 9 0 1 0 010a 0
0 0 1 9 0 0 5 0
10 0 0 8 0 1 0 0

0 0 0 1 0 0 0 0 4

10
10

0
0
0

10
0
0
10
0
0
18
0
9

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
7 0 0 0 0 1 0 0 0

10 0 10 0 10 0 20 10
1 9 1 4 9 4 0 0 0 9
28 8 3 0 0 1 0 0 0

10
10

0
0
0
10
0
0

10
0
0

10
0
0

20
0

T 0 0 0 0 0 1 0 0 0 0 0 1 4 8 1 7 0 0 0 1 0 0 0 0
G 0 0 0 0 1 0 0 0 0 0 1 0 9 2 4 4 2 7 7 1 0 0 2 0 1 0 0
C 10 0 1 0 0 0 0 0 1 0 0 0 2 0 4 1 3 7 1 6 0 0 0 9 2 0
A 0 2 0 0 2 0 0 0 1 0 0 2 0 0 0 9 1 4 2 1 7 5 0 0 0 0

Inversion Y 1 : g:10 h:10 i:15 j:15 2:39
TACTGC
I l l I I
TACAGC

Inversion 1.2: g: 7 h:13 i: 9 j:15 2:30
TAC
I l l
TAC

G C C A C T C T C G C T G T A C T G T G

c omlo 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0
c 01om 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0
A 0 0 O m l o 5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
A 0 0 0 1 0 D 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
T 0 0 0 5 Om 9 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0
C 0 1 0 1 0 0 1 5 g a l 9 2 0 9 1 0 0 0 0 0 1 0 0 0 0 0
T 0 0 0 0 0 25 19 20 9 10 0 0 20 0 10 0
A 0 0 0 1 0 0 5 1 4 8 9 0 2 0 0 0 9 0 0
C 0 1 0 1 0 0 2 0 0 1 5 9 4 0 2 8 3 0 1 0 5 0 0
T 0 0 0 0 0 3 0 1 0 2 5 17 40 20 15 10
A 0 0 0 10 0 10 19 14 14 8 17 18 27 ..I y4 5 20 29 9 4
C 0 10 10 0 20 5 20 9 24 4 18 13 .J 16 4 34 15 9 18 0
T 0 0 0 0 0 30 10 30 10 13 0 z.8 8 17 5 14 44 24 19 14
G 10 0 0 0 0 10 19 10 19 20 ..z 8 38 18 13 9 24 54 34 29
C 0 20 10 0 10 5 20 8 20 .. 30 10 18 27 76 56 51 46 43 36
T 0 0 9 0 0 20 0 30 10 9 10 40 20 28 5 6 a 66 46 56 36
T 0 0 0 0 0 10 9 10 19 0 5 20 29 30 51 45 55 56 45
G 10 0 0 0 0 0 0 5 0 29 9 15 30 18 46 40 55 65 66
C 0 20 10 0 10 0 10 0 15 9 39 19 14 19 41 56 50 65 74 54
A 0 0 9 2 0 0 0 0 0 0 4 1 9 2 8 8 3 3 6 3 6 4 5 6 0 5 4 6 3

used: Inversion #l
i:18 j:18 W:85
CCAATCTAC******TTG
1 1 1 I l l liiiiii I1
CCACTCT-C******CTG

Figure 1 . Best local alignment with inversions of a=CCAATCTAC-
TACTGCTTGCA and b = GCCACTCTCGCTGTACTGTG. (a) Shows the
matrix H for a and b(i"v) and the two alignments in 2'. (b) Shows matrix Wand the

best alignment.

530 M. SCHoNIGER AND M. S. WATERMAN

6""'
m h 1

1

g

i

n
a

b

1

g

i

n
a

Figure 2. A schematic of the output presented in Fig. 1 .

H(p- 1,4 - 1) +s(a,, bq) is eliminated from the maximum since aJbq is in the
alignment. The computation proceeds along the pth row from column 4 to
column r until:

and

532 M. SCHONIGER AND M. S. WATERMAN

b
1 h m

1

i

n
a

Figure 3. Schematic illustration of islands of recalculation.

13 546-15 282). The putative organization of genes in the sequences is as
follows:

Drosophila yakuba mouse
URF6 1-525 519-1 (inverted)
tRNA Glu 588-520 (inverted)
cytochrome b 529-1665 594-1737.

(Here position 1 in D. yakuba corresponds to GenBank position 9987 and
position 1 in mouse corresponds to GenBank position 13546.) This is a
difficult alignment problem, due to rapid evolution of mitochondrial genomes.

The scoring functions are:

and

+10 a = b
-9 a # b s,(u, b)=s2(a, b) =

w l (k) = w 2 (k) = - 15 - 5k ,

y = -20.

For 191 = 400, step I of the algorithm forms the list 9 of potential inversions.
Inversion No. 26 (in order of score) is the one ultimately used in the alignment.
We show 100 of the inversion alignment locations by straight lines in Fig. 4a.
While alignment No. 26 is shorter than most of others, it has approximately the
same 40% identity as the other, longer inversion alignments. The best local

534 M. SCHoNIGER AND M. S. WATERMAN

Mouse

500 lo00 1500

Figure 4. Inversion alignment algorithm applied to Drosophilia-mouse sequences.
(a) is a schematic of the candidate inversions. (b) is a schematic of the optimal local

alignment with inversions.

A B C

C(inv) B(inv)
A

a' - l-lLl.l-

b - 1-1.1-1-

Figure 5. An illustration of overlapping inversions.

ALGORITHM FOR DNA SEQUENCE ALIGNMENT 535

6. Extensions. Our algorithm for inversions avoids the computational
difficulties of past algorithms by omitting short inversions. In addition, to
obtain our solution we restricted ourselves to any number of non-intersecting
inversions. In the course of the evolution, it is likely that inversions can overlap.
Figure 5 provides a schematic of the effect of such events. To proceed from a to
a', the segment BC is inverted to become C(inV)B(inV). Then the a' segment A@"')
is itself inverted to become CA(i"v) in b. The effect of this (a-+b) is inversion of
the segments A and B, and the translocation of C from 3' of B in a to 5' of in
b. Given our method ofconstructing 9, the inversion list, it is likely that even if

and B(i"v) are statistically significant and can be found in 9, they will not
match exactly, at their ends. If the alignment of A with were to extend into
B, we might not find these adjacent inversions. While we could devel6p an
algorithm to search for inversions with overlaps such as we describe in Fig. 5 ,
we have not done so. Higher order intersecting events significantly complicate
the situation, and it remains an open problem to devise practical algorithms to
handle these cases. .-

This research was supported by the Deutsche Forschungsgemeinschaft, the
National Science Foundation, and the National Institutes of Health. We are
grateful to Mark Eggert for computing assistance and to Gary Churchill and
Arndt von Haeseler for helpful discussions.

LITERATURE

Arratia, R., P. Morris and M. S. Waterman. 1988. Stochastic scrabble: a law oflarge numbers for
sequence matching with scores. J. appl. Prob. 25, 106-1 19.

Arratia, R. A., L. Goldstein and L. Gordon. 1989. Two moments suffice for Poisson
approximation: The Chen-Stein method. Annls frob. 17,9-25.

Arratia, R. A., L. Gordon and M. S. Waterman. 1990. The Erdos-Renyi law in distribution, for
coin tossing and sequence matching. Annls Statist. 18, 539-570.

Clary, D. 0. and D. R. Wolstenholme. 1985. The mitochondrial DNA molecule of Drosophila
yakuba: nucleotide sequence, gene organization, and genetic code. J. molec. Evol. 22,

Goldstein, L. and M. S. Waterman. 1992. Poisson, compound Poisson, and process
approximations for testing statistical significance in sequence comparisons. Bull. math. B id .
in press.

Gotoh, 0. 1982. An improved algorithm for matching biological sequences. J. molec. Biol. 162,

Howe, C. J., R. F. Barker, C. M. Bowman and T. A. Dyer. 1988. Common features of three
inversions in wheat chloroplast DNA. Curr. Genet. 13, 343-349.

Karlin, S. and S. F. Altschul. 1990. Methods for assessing the statistical significance of molecular
sequence features by using general scoring schemes. froc. natn. Acad. Sci. U.S.A. 87,

Needleman, S . B. and C. D. Wunsch. 1970. A general method applicable to the search for

Pearson, W. R. and D. J. Lipman. 1988. Improved tools for biological sequence comparison.

252-21 1.

705-708.

2264-2268.

similarities in the amino acid sequences of two proteins. J. molec. Bid. 48,443453.

Proc. natn. Acad. Sci. USA 85, 2444-2448.

536 M. SCHoNIGER AND M. S. WATERMAN

Smith, T. F. and M. S. Waterman. 1981. Identification of common molecular subsequences. J.
molec. Biol. 147, 195-197.

Smith, T. F., M. S. Waterman and%. M. Fitch. 1981. Comparative biosequence metrics, J.
molec. Eool. 18, 3846.

Wagner, R. A. 1983. On the complexity of the extended string-to-string correction problem. In
Time Warps, String Edits, and Macromolecules: the Theory and Practice of Sequence
Comparison. D. Sankoff and J. B. Kruskal (Eds), pp. 215-235. London: Addison-Wesley.

Waterman, M. S., T. F. Smith and W. A. Beyer. 1976. Some biological sequence metrics. Adv.
Math. 20, 367-387.

Waterman, M. S. 1984. General methods of sequence comparison. Bull. math. Biol. 46,473-500.
Waterman, M. S. and M. Eggert. 1987. A new algorithm for best subsequence alignments with

application to tRNA-rRNA comparisons. J. molec. Biol. 197, 723-728.
Waterman, M. S., L.'Gordon and R. Arratia. 1987. Phase transitions in sequence matches and

nucleic acid structure. Proc. natn. Acad. Sci. U.S.A. 84, 1239-1243.
Waterman, M. S. 1989. Sequence alignments. In Mathematical Methods for DNA Sequences,

M. S. Waterman (Ed.), pp. 53-92. Boca Raton, Florida: CRC Press.
Zhou, D. X., 0. Massenet, F. Quigley, M. J. Marion, F. Moniger, P. Huber and R. Mache. 1988.

Characterization of a large inversion in the spinach chloroplast genome relative to
Marchantia: a possible transposon-mediated origin. Curr. Genet. 13,433439.

Received 5 August 1990
Revised 18 March 1991

