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The construction of a restriction map of a DNA molecule from frugment length
data is known to be NP hard. However, it is also known that under a simple model
of randomness the number of solutions to the mapping problem increases expo-
nentially with the length of the DNA molecule. In this paper we define a hierarchy
of equivalence relations on the set of all solutions 1o the mapping problem and
study the combinatorics and characterization of the equivalence classes. © 199)
Academic Press, Inc.

1. INTRODUCTION

Restriction maps are one of the most fundamental data structures in
molecular biology. These maps show the order and location of sites (small,
specific sequences) at which restriction enzymes cut double stranded
molecules of DNA. For example, the restriction enzyme Hhal cuts at the
sequence GCGC. Almost all of the several hundred known restriction
enzymes cut at sequences of length 4, 6, or 8. These enzymes were only
discovered in 1970, and they have given biologists a powerful tool with
which to organize, manipulate, and analyze DNA.

As soon as a DNA sequence (a finite word over a four letter alphabet
{A4,C,G,T)) is known, restriction maps easily can be produced by in-
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spection. Even so, before computers were so widely used, biologists oc-
casionally overlooked an enzyme site with unfortunate consequences
to subsequent experiments. There are of course many programs to convert
a DNA sequence into a restriction map. However, restriction maps are
often constructed before a DNA sequence is determined. These maps are
sometimes preparatory in determining the sequence of the DNA, but their
construction also might be the first step in other experiments. See [6] for a
review.

Many biologists are presently involved in genomic analysis. A genome
refers to all the DNA of an organism. Until recently small segments of
length 100 to 10,000 letters were most often analyzed. To organize
genomic DNA, one approach is to make restriction maps of manageably
small pieces and to utilize these maps to detérmine overlaps of pieces and
thus construct a map that encompasses large parts of the genome. Kohara
et al. [4] have successfully used this strategy to map the entire genome of
E. Coli. Lander and Waterman [5] present a mathematical analysis of this
process, and one of their conclusions is that maps should be as detailed
and of as long a region as possible.

Interesting and difficult mathematical questions arise in connection with
the construction of restriction maps. There are several experimental
approaches to restriction mapping, each with its own advantages and
disadvantages. Here we will concern ourselves the problem of mapping
positions of the sites of two restriction enzymes. One way such a map is
constructed in practice is by measuring the fragment lengths (not order)
from a digestion of the DNA by each of the two enzymes singly, and then
by two the enzymes applied together. The problem of determining the
positions of the cuts from fragment length data is known as the double
digest problem (DDP). In Fitch ez al. [1] the map construction problem is
approached via the set partition problem: how to choose subsets of the
double digest fragments whose lengths consistently add up to the single
digest fragment lengths. In Goldstein and Waterman [3] the problem is
approached by a heuristic for the traveling salesman problem, stochastic
annealing.

How hard is DDP restriction mapping? One answer is given by
Goldstein and Waterman [3] who prove that it is NP hard. Therefore a
heuristic must be used. While approximate solutions might seem easily
obtainable, as in many variants of the traveling salesman problem, the
situation here is more problematic. A molecular biologist wishes to find
the correct map, the map consistent with the unknown DNA sequence.
Therefore a map that is “close” to optimal as measured by some arbitrary
objective function might be very far from acceptable to a biologist. Map-
ping algorithms should produce the smallest possible set of maps that
reliably include the biologically correct map.
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In addition to showing the DDP is NP hard, Goldstein and Waterman
prove another disturbing result. When the enzyme sites are modelled by a
random process, the number of solutions (orderings of the single digest
fragments) that produce the same double digest fragments is shown to
increase exponentially as the length of the DNA increases. Thus, not only
is it NP hard to find an answer, but there are an exponential number of
mathematically correct answers, only one of which is biologically correct.
The results described here hold for exact measurements of DNA length;
the large measurement errors in these data which occur in practice only
compound the difficulties we have pointed out.

The object of this paper is not to produce a better algorithm for
mapping DNA but to look more closely at the multiplicity of solutions.
The proof in [3] depends on the Kingman subadditive ergodic theorem and
is not constructive. Therefore nothing is known about the classification
and combinatorics of multiple solutions.

We begin by setting up a mathematical framework for the double digest
problem. The ordered set of integers from 1 to n is our model for a piece
of DNA, and a (single enzyme) restriction map is a partition of this set
into intervals. The set of all such partitions has a natural partial ordering,
which is extremely useful in that it allows us to present a clear formulation
of the double digest problem using the language of partially ordered sets.
We then define a hierarchy of equivalence relations on the set of all
solutions to a double digest problem, each of which partitions the set into
classes of solutions which are indistinguishable from each other, given that
one has a particular amount of experimental data about the problem. In
some cases it is very easy to describe, and count, the members of these
classes. But for one of these equivalence relations, the classes of indistin-
guishable solutions become very complicated, actually NP-hard to specify.
We give a partial description of these classes and leave it as an open
problem to completely characterize their elements.

Very little mathematical work has been done on restriction maps thus
far. We feel that such important data structures deserve much more
attention.

2. NoTATION AND Basic DeriNITIONS

Let ¢ and j be positive integers. The interval [i, j]is the set of integers
k such that i < k <j. Fix an integer n > 1, and let n denote the ordered
set {1,2,...,n). An ordered partition of n is an ordered set A =
{A,,A,,..., A,) of non-empty, disjoint intervals, called blocks of A,
whose union is n; and where i <j if and only if x <y for all x € 4; and
y € A;. The number of blocks of A is denoted by |4{, and the type of A is
the vector ||All = (a,,a,,...), where a; is the number of blocks of 4
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having exactly i elements. The size |a| of a vector a = (a,, a,,...) having
finitely many nonzero a;, is the sum La;, which is equal to |4| whenever a
is the type of an ordered partition A. For convenience we will sometimes
use the symbol 19129239 .| to denote a type vector a = (a,, a,,...).

Let (1, denote the set of all ordered partitions of n. , is partially
ordered by the relation 4 < B in 0, if and only if every block of A4 is
contained in some block of B. A good way of understanding the partially
ordered set {1, is by identifying each ordered partition 4 with the set of
locations, or cut-sites, at which the string {1,2,..., n} is divided in order to
obtain A. We will adopt the convention of identifying a cut-site, which
occurs between consecutive integers, with the integer immediately to its
left. More formally, let &, _, be the boolean algebra of all subsets of the
set {1,2,...,n — 1}. Construct a map ¢: Q, - %, _, by letting ¢(A) =
{max{A}1 <i<k -1}, forall 4 =(A4,,4,,...,A,)in Q,.

ProrosiTiON 1. The mapping ¢: Q, = B, _, is an anti-isomorphism of
partially ordered sets.

Proof. To see that ¢ is a bijection, we exhibit a two-sided inverse for
¢.LetU = {i},i5,...,i,} be an element of B,_,, with i, <i, < -+ <i,.
Letting iy =0 and i,,, = n, define w(U) to be the ordered partition
(A, Az, Ay ), where A, =[i; + 1,i;,,], for 0 < j < k. It is easy to
check that 7 is the required inverse map. Also, it is immediate from the
definition of ¢ and the ordering of Q, that 4 < B in Q, if and only if
#(A) 2 ¢(B) in B, _,. Therefore ¢ is an anti-isomorphism. O

Hence Q,, is a boolean algebra, and thus for all 4, B € ), the greatest
lower bound, or meet, of A and B exists, and the least upper bound, or
join, of A and B exists. These operations can be expressed via the
correspondence ¢ as A A B =¢ NpA)U HB)), and AV B =
¢~ (¢(A4) N $(B)), respectively. The meet of A4 and B can be written
explicitly as

ANB={A;NBl4,€A,B;e€Band A4,N B, + §).

However, the join of 4 and B is most easily described as above, i.e., as
the ordered partition whose set of cut-sites is the intersection of the sets of
cut-sites, which we call the set of coincident cut-sites of the pair (A4, B).
The restrictions of the pair (A4, B) to each of the blocks of 4 V B are the
connected components, or simply, the components of the pair (A, B). The
number of components of (A4, B) is given, via proposition 1, by

|4V Bl = |4] + |Bl - |14 A BI. (1)

In the case when the pair (A4, B) has no coincident cut-sites, the number
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of blocks of the meet A A B is given by the formula

|4 A Bl = |A] + |B| — 1.

3. Tue DousLE DIGEST PROBLEM AND EQUIVALENCE CLASSES
OF SOLUTIONS

3.1. The Double Digest Problem

A restriction map (of a single restriction enzyme) is simply a linearly
ordered partition of n. Let QX denote the subset of ), consisting of
restriction maps having k blocks, or fragments. Given A € Qf, and a
permutation o € S,, a new restriction map A7 = {A], A3,..., A7} is
uniquely defined by the condition |A47| = |4, for 1 <i < k. The rule
o: A = A° thus defines an action of symmetric group S, on the set Qk,
The orbit of a restriction map A under this action is the set of all
restriction maps A’ with | 4’|l = || All. For the purposes of visualization, it
is helpful to think of a permutation o as actually permuting the fragments
of the restriction map A in order to obtain the map A°. One must bear in
mind, however, that o is really only permuting the locations of the
fragments of A4, while the order of the underlying set, n, remains fixed.

In the double digest problem, one is given a set of data consisting of a
triple of vectors (a, b, c), where a = [[All, b = ||Bll, and ¢ = [|4 A B, for
some specific (but unknown) pair of restriction maps (A, B), correspond-
ing to a map of two restriction enzymes. The problem is then to try to
recover the pair (A4, B) from the given data (a, b, ¢). As mentioned in the
Introduction, there are two major difficulties that one encounters in trying
to solve this problem. First of all, the solution to a particular double digest
problem is usually far from unique. In fact, Goldstein and Waterman (3]
showed that under a certain probability model, there are an exponentially
increasing number of solutions as a function of segment length n with
probability one. The second difficulty (also shown in [3]) is that the
problem of finding even a single solution is NP complete.

In the following sections we study the set #(a, b, ¢) of all solutions to
the double digest problem DDP(a, b, ¢) defined by some fixed set of data
(a, b, ¢), where |al = k, |bl = m, and |c| = r. Given any pair of solutions
(A, B) and (A4, B') in #(a, b, ¢), we can always write (4, B’} = (4°, B™),
for some (not necessarily unique) pair of permutations o € §,, and
m € §,,, where necessarily, 4 A B™ = (A A B)” for some vy in §,. Rela-
tionships between the solutions (A4, B) and (A4', B') often can be expressed
most easily in terms of properties of the permutations o, 7, and y. There
are several natural equivalence relations that can be defined on this set,
each of which partitions .#(a,b,c) into classes consisting of solutions
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Fic. 1. Reflection of solutions.

which are indistinguishable from each other, assuming a certain level of
knowledge about the problem at hand.

3.2. Reflections and Physical Solutions

Let (A4, B) € #(a,b, ¢) be a solution, and suppose the permutations o
and 1 reverse the order of the sets {1,2,...,k} and {1,2,..., m}, respec-
tively. The pair (A7, B™), called the reflection of (A, B), is clearly also in
(a,b, c) (Fig. 1).

The pairs of restriction maps (A, B) and (A4', B') in Fig. 1 are reflec-
tions of each other, and they are both solutions for the same double digest
problem. In a very strong sense, they represent the same solution to the
problem, since they differ only by an arbitrary choice of orientation, and
no experimental data could possibly serve to distinguish one from the
other. Therefore we define the set #(a,b,c) of physical solutions to
DDP(a, b, ¢) to be the set of all solutions .~(a, b, ¢) modulo the reflection
relation.

3.3. .Overlap Equivalence of Solutions

Throughout this section, we suppose the problem DDP(a, b, ¢) is defined
by the (unknown) pair of restriction maps (A4, B), where the sizes of all the
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blocks of A are distinct and the sizes of all the blocks of B are distinct.
Then in addition to the data a = ||Al, b = ||Bll, and ¢ = |4 A B, it is
possible (in principle) to obtain a complete set of overlap data for A and
B. That is, for each block A; of 4 and each B; in B, one can determine
whether or not A; and B; have non-empty intersection. Experimentally
this can be accomplished by first digesting with enzyme A, then digesting
each fragment with enzyme B, and then repeating this procedure with the
roles of A and B reversed. In this way one can identify which blocks of 4
and B contain each block if A A B, and from this point the overlap data
can be determined easily (see [7] for details about this last step). The
overlap data of a pair (A, B) is nicely represented by the interval graph
G( A, B), whose vertices are the (labelled) set of blocks A U B and whose
edges are the set of all pairs {A4,, Bl-}, such that 4; N B; is non-empty.
Interval graphs of restriction maps are studied in [7], where also a linear
time algorithm is presented for finding a pair of restriction maps having a
given set of overlap data. Knowing the overlap data is usually not sufficient
to determine the physical solution corresponding to (4, B) uniquely; but it
is a relatively simple matter to describe the classes of solutions in #(a, b, ¢)
which have the same overlap data. These will be called the classes of
overlap equivalent solutions to DDP(a, b, ¢).

If the pair (A4, B) has ¢ connected components, then the components
may be permuted in any of ¢! ways, and any subset of the set of
components may be reflected, and we will obtain a solution which is
clearly overlap equivalent to (A, B). Reflecting any component which
consists of one block from each of 4 and B does not give a new solution.
Thus if there are r such components, then (A4, B) is one of 2'~"t! overlap
equivalent elements of .#(a,b,c) which can be obtained by such rear-
rangement of the components of (A, B). Note that this number is inde-
pendent of the choice of (A4, B) in #(a,b,c), because by Eq. (1), the
number of components ¢ = |4 V B| is the same for all (4, B) in .#(a, b, ¢).

Another manner in which overlap equivalent solutions can occur is
described as follows: For each B; € B, let &7 be the set of all integers u
such that 4, < B;, and for each A; € A4, let %; be the set of all u such
that B, c 4, Notice that each of the sets &/ and % consists of
consecutive integers and is thus an interval in the ordered set 4 or B. We
call the o and %, the intervals of uncut fragments of A and B,
respectively. If o € S, maps each & to itself, while fixing all elements of
{1,2,..., k} which are not contained in any &, and similarly, m € §,
permutes each &, while fixing the rest of {1,2,...,m}, then the pair
(A4°, B™) is clearly a solution which is overlap equivalent to (A, B). Any
solution which is overlap equivalent to (A, B) must be obtainable by such
permutations within intervals of uncut fragments and/or rearrangement
of components of (A4, B). The reflection of any component which contains
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Fic. 2. Rearrangement of components.

only one block of 4 and/or B can be affected by a permutation of uncut
fragments. Thus if (A4, B) has exactly s such components then the overlap
equivalence class which contains (A4, B) consists of exactly

k m
2 TTleg I [T

i=1 j=1

different solutions to DDP(a, b, ¢), where ¢ is the number of connected
components of (A4, B). For example, the pairs (A4, B) and (A4', B') shown
in Fig. 2 are two of the 237!312! = 48 different overlap equivalent solu-
tions (all rearrangements of components) to DDP(a,b,c), where a =
11223241 b = 12224!5', and ¢ = 152232,

The pairs of restriction maps shown in Fig. 3 are two of 2 - 2!3!= 24
different overlap equivalent solutions (permutations within intervals of
uncut fragments and reflections) to DDP(a, b, ¢), where a = 1'2!3!5'6!,
b = 1!31419! and ¢ = 13223%4!,
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Fic. 3. Permutation within intervals of uncut fragments.

3.4. Overlap Size Equivalence of Solutions

When either (or both) of the restriction maps 4 and B contain more
than one piece of the same length, the equivalence classes of potentially
distinguishable solutions become much more complicated. Given a pair of
restriction maps (A4, B), and a block C, € 4 A B, we have C, =4, N B;
for some unique 4; € A and B; € B. The overlap size data of the palr
(A, B) is defined to "be the (unordered) set of ordered triples of integers

{(lc.114,),18;1)[c, € 4 A B).

Two solutions to DDP(a, b, ¢) are said to be overlap size equivalent if they
have the same set of overlap size data. In the case where each of 4 and B
consist of fragments of distinct lengths, knowing the overlap size data is
equivalent to knowing the complete set of overlap data for (A4, B). But
when A or B contains multiple fragments of the same length, the overlap
size data gives less information about the pair (A, B) than the complete
set of overlap data and is all that can be determined from the experiments
described above. This loss of map information corresponds to our inability,
using such experiments, to separate and thus distinguish between different
pieces of DNA having the same length in a given digest.
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FiG. 4. Permutation of uncut fragments.

Given a solution (A, B), the problem of describing the set of all
solutions which are overlap size equivalent to (A4, B) is much more
difficult than describing those solutions which are overlap equivalent to
(A, B). For example, in Fig. 4 the overlap equivalence classes of the pairs
(A, B) and (A', B’) are disjoint from each other, each containing 23~3(3!)3
= 216 pairs, while (A, B) and (A4, B’) are overlap size equivalent.

This simple example indicates one of the essential difficulties in trying
to describe the overlap size equivalence class of an arbitrary pair of
restriction maps (A, B): the uncut fragments no longer need be permuted
only within intervals. Suppose that fragments B; and B; of B have the
same length. Let &7 and & be the intervals of uncut fragments of A
contained in B, and B;, respectnvely, and let L; be the sum of the lengths
of the fragments in M. Then in the process of finding all solutions which
are overlap size equivalent to (A4, B), one must determine all subsets S of
&, U &7 such that the sum of the lengths of the elements of S is equal to
L. But this is a version of the set partition problem (see [2]), which is
known to be NP-complete.

Given a pair of restriction maps (A4, B) and an interval I €A A B, the
cassette defined by /. is the pair of intervals ¢ = (I, I), where 1, and I,
are the sets of all blocks of 4 and B, respectively, which contain a block
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Fic. 5. Exchange of cassettes.

of I.. Let m, and m, in n be the minimal elements of the left-most blocks
of 1, and Iy, respectively. If m, # m,, then the left end fragment of € is
the block of I, or Iy which contains the smaller of these numbers. If
m, = m, then the cassette " has no left end fragment. The left overlap
of & is the distance |m, — m,|. The right end fragment and right overlap
of ¢ are defined similarly, by substituting the words “maximal” and
“right-most” for the words “minimal” and “left-most” in the above.

Suppose two cassettes ¢ and ¢” within a solution (4, B) to DDP(a, b, ¢)
have left end fragments and overlaps of the same length and right end
fragments and overlaps of the same length. Then these cassettes may be
exchanged as in Fig. 5, and one obtains a new solution (4’, B’) which is
overlap size equivalent to (A, B).

Also, if the left and right end fragments of a single cassette ¢ in (A, B)
have the same length, and the left and right overlaps are the same size,
then the cassette may be reversed or reflected as in the example of Fig. 7.
The components of a pair of restriction maps are special examples of
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cassettes (they are cassettes having no end fragments), and thus rearrange-
ments of components are special cases of compositions of exchanges and
reflections of cassettes.

As we have seen in the last section, the overlap equivalence classes of
solutions are generated by permutations within intervals of uncut frag-
ments and rearrangements of components. We have just described gener-
alizations of these two types of permutations which preserve the overlap
size data of a solution. An interesting question to ask at this point is: What
other types (if any) of fundamental “moves” are needed in order to
generate the entire overlap size equivalence class of a solution?

4. AN ExaMPLE

The general occurrence of multiple solutions to the double digest
problem was discovered in {7] where the stochastic annealing algorithm
was tested on DDP(a, b, c), where a = 1'3%212', b = 112'3%24'6!, and ¢ =
14233'6!. The data was obtained from the pair of maps (A, B) in Fig. 6.
The algorithm returned the pair of maps (A4', B’) from Fig. 6, which is also
a solution to DDP(a, b, ¢). In this section we examine this example in more

detail.
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Fic. 6. An example of muitiple solutions from {3].
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This problem has 208 different solutions which fall into 26 different
overlap equivalence classes: 13 classes with 4 members each, and 13
classes of 12 members. The solution (A, B) in Fig. 6 has an overlap
equivalence class containing 4 elements, which are generated by the
reflection of the whole pair, and the reversal of the uncut fragments of
length 3 and 6 in B. The overlap equivalence class of the solution (A’, B')
contains 12 elements: 3! = 6 permutations of uncut fragments in B multi-
plied by a factor of 2 for the reflection of the pair.

Somewhat surprisingly, the overlap size equivalence classes do not
correspond precisely to the overlap equivalence classes in this rather small
problem. There are 25 overlap size equivalence classes of solutions to this
DDP(a, b, ¢): 11 classes of 4 members, 13 classes of 12 members, and 1
class having 8 members. The solution (A4, B) in Fig. 6 is a member of this
unique class of eight solutions, which is the union of two different
4-element overlap equivalence classes, which are related by the cassette
reversal illustrated in Fig. 7.
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2 4 6 3 300
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Fic. 7. Cassette reversal.

DNA RESTRICTION MAPPING PROBLEMS 425

frequency

1 [ ]

T
10 15 20 25 30
number of classes

ol

10
1

frequency

T

<«
] T{—H_l H ‘ | l
T T T 1
100 200 300 400 500

number of pairs of maps

Ih

Fic. 8. (a) Frequency of occurrence of problems with a given number of overlap size
equivalence classes of solutions. (b) Frequency of occurrence of problems with a given
number of solutions.

]
700

O




426 SCHMITT AND WATERMAN
8
&
3
i
[N
&
€
s
®
g ..—
]
@
£
H
™
0 1 2 3

number of coincident cuts

Fi16. 9. Number of pairs of maps with a given number of coincident cuts.

We now consider the set of all pairs of restriction maps (A, B) with
l4ll = a = 1'3212" and ||Bll = b = 1'2!324'6!. There are 416! /212! = 4320
different pairs having this data, with 37 different vectors ¢ = il4 A Bl ie.,
there are 37 different double digest problems DDP(a, b, ¢) having these
values of a and b. Figure 8a shows the frequency of occurrence of
problems in this set having a given number of overlap size equivalence
classes of solutions. For example, 10 of these problems have a unique
(overlap size) equivalence class of solutions, while 20 have three or fewer
classes of solutions.

Figure 8b gives the frequency of occurrence of problems having a given
number of pairs of restriction maps as solutions. For example, four of
these problems have greater than or equal to 80 and less than 100
solutions.

It is interesting to note that the problem considered above, with ¢ =
1423316' is the only one of these problems having the maximal number,
25, of classes of solutions, while it is composed of 208 solutions.

Given the above values of || 4| and ||B]}, it is possible for the pair (A4, B)
to have 0, 1, 2, or 3 coincident cuts. Figure 9 shows the number of such
pairs of maps having a given number of coincident cut-sites.
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