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Abstract. Numerous studies by molecular biologists concern the relationships between several 
long DNA sequences, which are listed in rows with some gaps inserted and with similar positions 
aligned vertically. This motivates our interest in estimating the number of possible arrangements 
of such sequences. We say that a k sequence alignment of size n is obtained by inserting some (or 
no) 0’s into k sequences of n 1’s so that every sequence has the same length and so that there is no 
position which is 0 in all k sequences. We show by a combinatorial argument that for any fixed 
k 2 1, the number f(k, n) of k alignments of length n grows like (q)” as n+ co, where ck = (2l” - l)-k. 
A multi-dimensional saddle-point method is used to give a more precise estimate for f(k, n). 

1. Introduction 

Researchers in molecular biology are determining or reading DNA sequences at an 
increasing rate. As of spring 1986, over 6 x lo6 letters of DNA are known and 
organized in a data base, GenBank. Biology is concerned with the inference of 
biological properties from these sequences. This is sometimes accomplished by 
study of the relationships between several sequences suspected of having common 
function or evolutionary history. These studies are performed by listing the 
sequences in rows, one sequence per row, with the sequences arranged so that similar 
positions of each sequence are aligned vertically. Gaps are sometimes insertqdinto 
some of the sequences to bring the letters into the desired alignment. These gaps 
greatly increase the computational complexity of the task. Mathematics has contri- 
buted to these analyses with the invention of efficient algorithms for sequence 
comparisons. See Waterman [SI for a review of these methods. 

To give an example of these alignments we turn to a recent study by Ullrich et 
a1 [4] which presented some surprising and important ’findings. These workers 
determined the amino acid sequence of the human insulin receptor precursor, a 
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protein. As is now common they found the sequence of the DNA encoding the 
protein instead of directly sequencing the protein. Once the sequence was known 
they then, by sequence comparison, found unexpected relationships with the human 
epidermal growth factor receptor and the members of the src family of oncogene 
products. Oncogenes and these proteins in particular are implicated in certain 
human cancers. Some of the sequence alignment is given below, with the human 
insulin receptor sequence first, followed by the growth factor sequence and then 
three oncogene protein sequences. The dashes represent gaps inserted into the 
sequences to achieve the alignment. 

... LGQGSFGMVYEGNARDIIKGEAETRVAYKT ... 

... LGSGAFGTVYKGLWIPEGE-KVKIPVAIKE... 

... LGGGQYGEVYEGVWKKYSL----- TVAVKT... 
... LGQGCFGEVWMGTW--ND----TTRVAIKT... 
... IGRGNFGEVFSGRL--RAD---NTLVAVKS... 

... LGTG AFGKWEATAFGLGKEDAVLKVAVKM... 

It is natural to ask how many such arrangements of the sequences there are. For 
the case of two sequences, this question has been studied, beginning with Laquer 
[2]. He solved a general recursion and related the number of sequence alignments 
to the Stanton-Cowan numbers [3]. More recently Griggs et a1 [l] counted the 
number of alignments of two sequences of length n with matching sections of size 
at least b. In the present paper we study the number f(k,n) of alignments of k 
sequences of length n. In section 2 we show by a combinatorial argument that the 
exponential growth rate of f ( k ,  n) is (2'Ik - l)-k. In section 3 a multi-dimensional 
saddle-point method is used to give a more precise estimate. 

2. An Exponential Growth Rate 

We make the simplifying assumption here that all sequences have the same length 
n. We count only the possible alignments with respect to their relative positions, 
ignoring the actual elements in the sequences (biologically, the nucleotide bases or 
the amino acids in the genetic sequences). 

We start with k sequences of l's, with n 1's each. A k sequence alignment of size 
n isbbtained by inserting some (or none) 0's in each sequence so that every sequence 
has the same length, call it L, and so that there is no position which is 0 in all k 
sequences. Thus, a k sequence alignment of size n corresponds to a k x L (0,l)- 
matrix with all row sums n and no column sums 0. The latter condition, no column 
sums 0, ensures that for given k and n the number of alignments is finite, and is 
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motivated by the biological consideration that alignments are not allowed which 
have gaps (0’s) in all k sequences. We see that an alignment has length at least n 
(when every column is all 1’s) and at most kn (when each column has just a single 
1). We wish to study asymptotically the number of k sequence alignments of size n, 
denoted f(k, n). 

We first consider how f(k, n) behaves as n + 00 for fixed k. An indication of how 
quickly the number of alignments grows with the size n is given by merely counting 
the number of alignments with the maximum length, kn. In such alignments, there 
are, for each i, 1 5 i I k, n columns with a single 1 in row i and 0’s in the other rows. 
Thus, the number of such alignments is the number of ways of ordering these kn - - 

. Applying Stirling’s 
n, n,. . . , n 

columns, which equals the multinomial coefficient 

(kk)”as 
( 2 7 ~ n ) ( ~ - l @  

formula, one obtains that f(k, n) 2 ( kn ) which grows like 
n, n,. . . ,n 

n +  00. 

In this section, we describe the leading asymptotic behavior of f ( k ,  n), which 
means we find constants ck such that f(k, n) grows like (ck)” as n -+ 00. The proof of 
Theorem 1 actually gives f(k, n) up to a factor which is polynomial in n. Here we 
state the following weaker result. 

Theorem 1. For fixed k 2 1 

- lnc, 1nf (k, n) lim ~ - 
n+m n 

where ck = (2lIk - 

We can now describe neatly how the base ck in the exponential term describing 
k 

f ( n ,  k) grows with k. Let d,  = L(L) Jz In2 

We tabulate values of ck for selected k, to four or more places (Table 1). For 
comparison, we tabulate also the lower bound kk and the upper bound d, = 2“12 
(In 2)-, kk. We see that dk approximates ck quite closely, even for k very small. 

Proof of Theorem 1 .  Let [k] denote the set { 1,2,. . . , k}. A column C in the matrix 
corresponding to a k-alignment of sequences of size n has at least ,one 1, so the set 
S of indices of rows of C containing 1 is a nonempty subset of [k]. We call S the 
type of C. A k-alignment of size n is then constructed by taking some number A, of 
columns of type S, for each 0 # S E [k], and then arbitrarily permuting these 
columns of various types, where the As satisfy the conditions that for each row 
i E P I ,  

{A,li E S} = n. (2.1) 
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Table 1 

1 kk dk = - (k/ln 2 r  
f i  ck 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
20 
- 

1 
5.828 

56.95 
780.3 

13,755.3 
2.965 x lo5 
7.554 x 106 
2.221 x 108 

2.757 x 10" 
1.130 x loz9 

7.401 x 109 

1 
4 

27 
256 

3125 

8.235 x lo5 
1.678 x lo7 
3.874 x lo8 
1.OOo x 10" 
1.049 x loz6 

4 . w  x 104 

1.020 
5.887 

57.33 
784.2 

13810.4 
2.974 x los 
7.575 x 106 
2.226 x lo8 
7.417 x lo9 
2.762 x 10" 
1.131 x loz9 

The number of k-alignments with A, columns of type S, 0 # S s [k], for A, 
satisfying (2.1), is thus the number of permutations of these columns, the multi- - - .  - 

nomial coefficient (" # E Ck3'). In this symbol, the lower row denotes 
{As10 # S = Ckl) 

the multiset listing all sizes A,, repetitions allowed, e.g., for k = 2, n = 8, A[ , )  = 
I ,  

Aiz}  = 5 and A{l,z} = 3, we have (5,y3) = (5%). It follows that the total 

number of alignments is given by 

where the sum is over all possible parameters A, satisfying (2.1). 
With k and n fixed, the number of terms in this summation, i.e., the number of 

solutions to (2.1), is no more than, say (n + 1)2'-,, because each of the 2' - 1 
parameters A, is restricted to the range 0 5 A, I; n by (2.1). 

We will find the largest term in the sum (2.2), i.e., the largest exponential growth 
from among all the terms in the sum (2.2). The asymptotic behavior of f(n, k) is at 
most nzk-' times the largest such term, and this polynomial factor is dominated 
asymptotically for fixed k as n + 00 by the exponential. This reduces the whole 

subject to (2.1). Assume problem to locating the maximum value of 

henceforth that we are at such a maximum. 
Without loss of generality, we may assume that for 0 < j I k the parameters As 

with IS1 = j are approximately equal. That is, for n large, we may assume there exists 
some number aj E [0, 13 such that for all IS1 = j ,  lAsl - ajn. The reason is that if 
{As10 z S = Ckl) is a maximum, then we can replace each size A,, (SI = j, by the 

average (c {A, I I SI = j ) ) (  !) . The principle being used here is that a multinomial 

is increased by making the numbers t,, . . . , t ,  more nearly 

( { A s ) )  

J 
N 

coeficient ( t I Y . . . , t J  



On the Number of Alignments of k Sequences 137 

E 

i. 

equal. These new parameters satisfy (2.1) easily, because each row has the same 
number of l’s, by symmetry, which must be n. (We actually require all of these 

averages 

A,, IS1 = j ,  be equal asymptotically, so that integer values of such A,, nearly equal, 
can be arranged.) 

{ A ,  I (SI = j > /  to be integers, but only really require below that the 

Thus we must now maximize , where {ajn} denotes the multiset with 

values {aj.} repeated times each, and the aj E [O, 13 satisfy 

since for any row, say row 1, there are (; I :) choices for S c [ k ]  with 1 E S and 

JSI = j ,  and for each such S there are ajn 1’s in row 1 which contribute to the total 
number or 1’s. 

Again consider a collection of ais and corresponding columns which maximize 

the total ( ’ { ) . For any s, 2 I s 5 k such that a, > 0, we take a column with 

s 1’s and replace it by two columns, one with one 1 and one with (s - 1) 1’s 
and count the number of alignments with the new set of parameters As. This new 
value must be no more than the one before, by the optimality hypothesis. Let 

1 = i (f) ai, that is, 1 = L/n where L is total length ofthe alignments for the optimal 

selection. Then the ratio of the number of the alignments at optimality di- 
vided by the number obtained after replacing the one column by two must be at 
least one. Most of the factorials are identical and cancel out. However, the new 
collection has one more column total (which contributes a factor - h): one more 
column each of size 1 (contributing a factor -a ln )  and size s - 1 (contributing 
a factor N as-1 n), and one less of size s (losing a factor - asn). Considering where 
the factors came from, one obtains for large n: 

aj.1 

i = 1  J 

Conversely, if ai > 0 and as-l > 0,2 I s I k, if we replace two columns with 1 
and s - 1 l’s, respectively, from disjoint sets of rows, we obtain the reverse of the 
above: 

Since some value of s has a, > 0 at optimality, (2.4) forces a1 > 0, which then 
implies by repeated application of (2.5) that all aj > 0. Then by simplifying and 
combining (2.4) and (2.5), we obtain 

as-1 1 , s = 2 ,..., k. -=- 
as a1 
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Letting r denote this ratio, l /al ,  we obtain: 

aj = rk-jak, 

1 = rkak. 

Since 1 is defined in terms of the ais, plugging in with (2.6) yields: 

j = 1, .. ., k, 

so 

= ( 1  + ry - I f  

Thus 
2rk = (1 + ry, 
= (2'1k - 1)-1. (2.7) 

Next we apply the equations (2.3), (2.6), and (2.7) to obtain 
- 2-(k-lYk (2 l/& - l ) j - ' ,  j = 1, ..., k, 

(2.8) 
aj - 

1 = 2-&-1Yk(21/k - 1)-1.  

Now insert these parameters in terms of ak and r into and apply Stirling's 
- 

formula n! - n"e-"J2nn as n -, a: 

Here the powers of e all cancelled and we disregarded the factor of eo('""). Then the 
powers of akn all cancel, due to conditions on the a;s, and it all reduces to a power 
of the ratio r. Then realizing that we are really looking at f(k, n), taking logs, and 
dividing by n, we obtain 

(2.9) 
k 

kr'a, - c (k - j )  (5) +ak). 
n j=1 

& k - 1  
Next use C (k - j ) (5)rk- j  = ( )rk-j  = kr((1 + ry-' - r f - l ) ,  and plug in 

j=1 j=1 

(2.7) for r and (2.8) for ak, and simplify to obtain 

which proves the theorem. 0 
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Proof of Proposition. The assertion c k  < dk follows by showing that for all x > 0. 

which is equivalent to 

In 2 
2x 

Substituting u = -, so that e" = 2l/('"), we must show that 

1 
2u. 

(e'" - 1)- > e" (u > 0) 

k or 

e'" - 1 > h e "  (u > 0) 
It is simple to verify either by taking derivatives or by looking at the series 
expansion. 

To verify that ck - dk, we look at the exponential series: 
I c - (p - 1)-k 

k -  

- - (eln2/k - 1)-k 
1 

This line is equal to c ) - k 2 - 1 / 2 ( 1  - + O(k-')) which completes the proof. 

3. A More Precise Estimate forf(k, n) 

Recall that f ( k ,  n) is the number of 0,l matrices with no column of all 0's anbwith 
every row sum equal to n. In the last section we used a combinatorial argument to 
show that exponential growth rate of f ( k ,  n) is (2l1' - l)-'. In this section we use 
analytic approximation methods to give a more precise estimate for f ( k ,  n). We will 
prove the following result. 

Theorem 2. For a positive integer k, let p = 2'" - 1 and let r = p" = (2llk - l)-k. 
Then 

The proof of this result, which uses the multi-dimensional saddle-point method, will 
take the rest of this section. 1 
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Definition 3.1. For rl, ..., rk non-negative integers, define N(r, ,..., rk) to be the 
number of 0,l matrices with no column of all 0's and with the j th row sum equal 
to rj. 

The reader should note that f ( k ,  n) = N(n, n,. . . , n). 

Propition 3.1. With notation as above we have 
k -1 

1 N(t.1,. . 3 rk)Z;' . . zp = (z - n (1 + zj)) (3.1) 

Proof. Let Nu(rl,. . . , rk) be the number of k by u 0,l matrices having no column of 
all 0's and with row sums rl, . . . , rk. It is easy to see that 

)I1 9 . .  ..rk /=I 

m 

k -1 

= (2- n (1 + z j ) )  . 
j=1 

0 

We want an estimate for ~ ( n ,  n, . . . , n). We begin by estimating N(rl,. . . , rk) using 
Cauchy's Theorem and (3.1). Although Cauchy's Theorem could be applied 
directly to (3.1) it is more convenient to peel off one variable zk. For notational 
convenience we let A(z) = A(z,, . . . , zk-1) be the polynomial 

k-1 
A(z) = fl (1 + Zj). 

]=1 

With this notation, the left hand side of (3.1) can be rewritten as 

Applying Cauchy's Theorem to (3.3) we have 

In (3.4), the integrals are taken around circles lzjl = pi where the pi are chosen so 
that A(z)'(2 - A(z))-(~+~) is analytic in the region lzjl < pi. 

Let p = 2lIk - 1 and choose all the pi equal to p. This choice of the pj is moti- 
vated by the fact that the integrand in (3.4) has a saddle-point at (zl,. . .,zk-1) = 
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(p ,  p,. . . , p). We need to verify that A(z)'(2 - A(z))-('+') is analytic in the region 
lzjl I p. To see this note that if lzjl I p then 11 + zjl I2 ' "  so IA(z)l I 2(k-1)'k. 
Hence for (zl,. . . , zk-l) in the region lzjl I p we have 

12 - A(z)l 2 2 - 2'k-1"' = p(l  + py-1. (3.5) 

This proves analyticity in the desired region. Setting all the rj equal to n we obtain 
the following expression for f ( k ,  n). 

Make the substitution zj = peiej, j = 1,2, . . . , k - 1. The range of integration on 
6j will be - A  s 6j s A and we have 

dzj - = ip-ne-inej dej. 
z;+l 

Substituting in (3.6) we obtain 

d e , .  . .dek-,  
k-1 . (3.7) 

j=1 

k-1 

k-1 

j=1 
2 - fl (1 + peiej) 2 - n (1 + peiej) 

The integrand in (3.7) takes on its largest absolute value when all the 8;s are 
0. More generally we will show the bulk of the contribution to the integral on 
the right hand side of (3.7) occurs in a small region near (e,, . . . , = (0,. . . ,0) 
(for n large). 

Let 6 = (In n)/,/n. Write the right hand side of (3.7) as I ,  + I' where Il involves 
the integral over that part of the region where some 8, is in the range S < 10jl 5 A 

and I' involves the integral over the region -6 I 8,s 6 ( j  = 1,2,. . . , k - 1). We 
will show that for n large I ,  is small compared to I ,  and we will compute the 
asymptotic value of Zz. Our first step is to bound the absolute value of I , .  

Note that 

11 + peie12 = (1 + pcos 8)' + pz sin2 8 = 1 + 2p COS 8 + p2. (3.8) 
If 0 I E I A then 1 + 2pcos8 + p' 5 1 + 2pcos(~) + p' for E s (8) I A. So there 
is a positive real c, # 0 satisfying 

1 + 2pcose + p' I e-'c*e'(l + p)' 

for E s 181 I A. Also by comparing the first two derivatives of 1 + 2p cos 8 + p' and 
e-'ce2 (1 + p)' at 0 (with respect to 8) we have there exists an E', 0 < E' I A and a 
positive c,. # 0 such that 

1 + 2p COS 8 + p2 I e-'c*,e2( 1 + p)' 

for 0 I (81 I E'. 
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Choosing E = E' and c = min{c,, c,,} we obtain a positive c such that 

1 1  + peiel' 5 e-2"'(l + P ) ~ .  (3.9) 
for --II I 8 I a. Applying this estimate to the integrand of I, we obtain 

In the range 181 2 6 the function e-"' has maximum value e-"'. So 
e-~(B:+....+8:-1) e-ncd2 = e-eflnn)' 

for (el,. . . , & - I )  in the region of integration in (3.10). Hence 

which gives 
1, = o( p-kne-c(ln n)'). 

We now estimate the integral Z2. Note that 

(3.11) 

Simplifying we obtain 

(3.12) 

Before proceeding, it will be convenient to establish some notation. For a a positive 
integer, define pa(8)  and Pa(8) by 

k-1 

pa(8) = IejIa- 
j=l 
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Now note that 

In equation (3.13), substitute the right hand side of (3.12) for each ln((1 + peiej)/ 
(1 + p)). Doing so and simplifying we obtain 
&-1 

j=l 
n (1 + peiej)e-iej = (1 + p)k-' exp 

(3.14) 

Also 
k-1 

I=1 
2 - n (1 + peiej) 

2 P 2 ( q  + O(P3P)) * (3.15) ) = 2 -(I + p)k-'exp (%de) - 2(1 + P p) 
l + P  

Expanding the exponential on the right hand side of (3.15) and simplifying we 
get 

k-1 

j=1 
2 - n (1 + peiej) 

Hence 

(3.16) 

For our purposes, the important aspect of equation (3.16) is that in the exponential 
on the right hand side, the coefficient of pl(e) is 0. Substituting (3.16) into the 
integrand of Z2 we obtain 
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Let F(8,, . . . , ek-1 )  be the quadratic form 

In terms of this form, the last expression for Z, can be written as 

and 

Note that 

J-s, J - w  

du 
Substituting uj = n1/26, so --$ = dej we have 

exp( - nF(8))del . . . d e k - 1  ..-I-: 
W 

- - n-(k-1)/2 ' * exp( - F(u)) dul . . . d U k - ,  . 

It is well-known that any positive definite quadratic form E(ul,. . . , U k - 1 )  is con- 
gruent over R to the sum of u?. Using this fact it is easy to see that the integral of 
exp( - E(u)) over Rk-' is n(k-1)/2 Idet(C,)I-1/2 where C, is the matrix of the quadratic 
form E. In our case 
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where J is the matrix of all 1's. Recall that the (k - 1) by (k - 1) matrix XI + YJ has 
determinant Xk-'(X + (k - 1) Y). So 

det(C,) = k2-(k2-1)/k. 
Thus 

k-l/Zp-kn-l 2-(k2-1)/(2k) 
si = a(k-1)/2 n(k-1)/2 + O(p-kne-f(lnn)2)m (3.18) 

We now obtain bounds for S2 and S,. Observe that 

so 

) s2 = o(np-kn{m -Jm ~ , (e)exp(  -m)p2(e)del...dek-l n . (3.19) 

By symmetry of P3(0) in the variables el, ... , Ok-l we can rewrite (3.19) as 
-00 -m 

s2 = ~ ( ( k  - l)np-knJm -m . - . J m  -m ~ e l ~ ~ e x p ( - ~ ) p 2 ( e ) ~ e l . . . d e k - l ) .  

(3.20) 

e-Le2d0 = -. f i  We use this to integrate in (3.20) with respect to 
A 

02, . . . , ok-1.  Doing so we obtain 

Integration by parts gives 

Hence 

S2 = O(p-knn-k/2). 
The derivation of a bound on S, is similar. We have 

(3.22) 
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n 
It is easy to check that Iom 8, exp do, = 0 (i). Hence 

s 3 -  - o ( p - k n n - k / Z ) .  ( 3 . 2 3 )  

Combining the estimates (3.1 l), (3.18), (3.22) and (3.23) we obtain 

which was the statement of the main theorem of this section. 
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