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We present a statistical analysis of the problem of 
ordering large genomic cloned libraries through 
overlap detection based on restriction fingerprinting. 
Such ordering projects involve a large investment of 
effort involving many repetitious experiments. Our 
primary purpose here is to provide methods of maxi- 
mizing the efficiency of such efforts. To this end, we 
adopt a statistical approach that uses the likelihood 
ratio as a statistic to detect overlap. The main advan- 
tages of this approach are that (1) it allows the rela- 
tively straightforward incorporation of the observed 
statistical properties of the data; (2) it permits the ef- 
ficiency of a particular experimental method for de- 
tecting overlap to be quantitatively defined so that al- 
ternative experimental designs may be compared and 
optimized; and (3) it yields a direct estimate of the 
probability that any two library members overlap. 
This estimate is a critical tool for the accurate, auto- 
matic assembly of overlapping sets of fragments into 
islands called “contigs.” These contigs must subse- 
quently be connected by other methods to provide an 
ordered set of overlapping fragments covering the en- 
tire genome. Q 1990 Academic press, Inc. 

1. INTRODUCTION 

We consider the problem of constructing ordered 
covering libraries for relatively large genomic regions 
such as chromosomes. Such libraries are made by frag- 
menting the DNA and cloning the fragments in a mi- 
crobial host. The task is then to extract a subset of 
these clones that together contain all of the source 
DNA and to reconstruct the native order the fragments 
had in the genome. 

Our analysis is confined essentially to approaches 
based on libraries formed by “random” overlapping 
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fragmentation of the DNA. These approaches seek to 
produce fragments having sufficient overlaps that a 
continuous path can be constructed by passing through 
a series of overlapping nearest neighbors. Discovering 
the original order of the cloned fragments is then de- 
pendent on detecting the necessary overlaps. Our anal- 
ysis is further restricted largely to approaches in which 
overlap detection is based on “restriction fingerprint- 
ing.” This involves digesting each cloned fragment to 
completion with restriction enzymes and measuring the 
lengths of the fragments produced using electrophoresis. 

Our study of this problem was undertaken primarily 
to support an effort under way at Livermore to con- 
struct an ordered cosmid library of human chromosome 
19 (Carrano et al., 1989). Previous ordering efforts of 
this type have been undertaken by others, principally 
that of Coulson and co-workers ( 1986) in the nematode 
Caenorhabditis elegans and that of Olson and co-work- 
ers (1986) in the yeast Saccharomyces cereuisiae. 

2. T H E  MAGNITUDE OF T H E  PROBLEM 

Considerations of strategy for these problems are 
dominated by the effective size S of the genomic region 
defined as the ratio of the actual size of the genomic 
domain being analyzed G to the average size of a cloned 
fragment L: S = G/L.  For reasonable coverage efficiency, 
approaches based on randomly selected clones require 
that a minimum of 5 X S cloned elements be analyzed, 
while some strategies require many times this number 
(Michiels et al., 1987). Thus, even a small human chro- 
mosome (ca. 50 Mb) , cloned in a cosmid vector (average 
insert sizes of 40 kb) , involves the characterization of 
at least 7 X lo3 clones, and each of the approximately 
25 X lo6 distinct pairwise combinations of these must 
be analyzed for possible overlap. Only about 25 X lo3 
true overlaps (at a five-fold covering) would be expected 
in this collection, so that a false positive error rate of 
one in a thousand would produce nearly as many false 
as true overlaps. A very stringent rejection of false pos- 
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itives must therefore be achieved at the inevitable cost 
of an increased false negative rate. 

These limitations become more severe as the effec- 
tive size of the genome region is increased. The ratio 
of the number of false positive overlap to the number 
of true overlaps increases linearly with effective genome 
size ( a  S )  . Further, even when about 5 X S clones are 
analyzed, and perfectly unbiased cloning is assumed, 
a large number of gaps (several hundred in our ex- 
ample) will remain for statistical reasons alone. Inef- 
ficient overlap detection can increase the number of 
elements required for even this relatively limited degree 
of reconstruction by an order of magnitude or more. 
Moreover, in most schemes, all elements must be char- 
acterized by the same procedure so that they can all 
be compared in pairwise combinations for indications 
of overlap. 

3. PREDICTING THE RATE OF PROGRESS 

The number of clones one must analyze to achieve 
a given degree of map completion is critically dependent 
on the sensitivity of the method used to detect overlap 
(that is, on the average amount by which clones must 
overlap for the overlap to be detected). This was first 
shown by Lander and Waterman ( 1988), who analyt- 
ically analyzed a probabilistic model of ordering ran- 
dom clonal libraries. Their results relate quantities that 
characterize the progress achieved to the number of 
cloned elements analyzed and other parameters. We 
have extended their analysis somewhat by performing 
Monte Carlo simulations of the same problem, and be- 
gin our discussion by summarizing the main points that 
result from these two complementary approaches. 

The relevant result of Lander and Waterman ex- 
presses the expected number of contigs in terms of the 
number of library elements analyzed and the overlap 
fraction needed for detection. (A “contig” ( Staden, 
1980) is a collection of two or more cloned segments 
each of which is connected to all others by at least one 
path of pairwise overlapping elements.) In a form that 
is independent of the size of the domain being mapped, 
this expression can be written 

where N is the ratio of the number of contigs found to 
S, the mapping size of the genome defined above; C is 
the redundancy of coverage, i.e., the ratio of number 
of cloned elements analyzed n to S ( C  = n / S  = nL/ 
G )  ; and 8 is the overlap fraction required for detection. 
The major assumptions involved in deriving this for- 
mula are: ( a )  all inserts are of the same length; ( b )  
each cloned insert is considered to result from a fresh 
random sampling from all possible positions in the ge- 

nome being mapped to select the location of one end 
of the insert (where all possible locations are equally 
probable) ; and (c ) the overlap of two inserts is detected 
if and only if the overlap is larger than a specified frac- 
tion of their length. That is, there are no false positives 
and all false negatives are those whose overlap is less 
than a specified fraction of the length of the inserts 
(Lander and Waterman also analyzed a more complex 
case in which both the insert length and the required 
overlap fraction were random variables). 

The above assumptions (particularly “b” and “c” ) 
simplify the real experimental situation in a manner 
that introduces an optimistic bias. We have attempted 
to estimate this bias and to investigate other aspects 
of the experimental situation by performing Monte 
Carlo simulations of the same problem. 

In the present simulations, we begin with a complete 
“restriction site” model of the chromosome. Assuming, 
as in the Lander-Waterman model, that such sites are 
uniformly distributed, we assign both the location of the 
“cloning” restriction sites (i.e., those involved in pro- 
ducing the cloned segments by partial digestion) and 
the location of the fingerprinting sites (i.e., those that, 
by complete digestion, form the fragments whose lengths 
constitute the restriction fingerprint used to characterize 
the cloned insert). A restriction fingerprint in this model 
is a list of lengths that indicate that at least one fragment 
of that length both was produced by the digest of the 
cloned segment being fingerprinted and was of a length 
that fell within the observational range of the electro- 
phoresis method used to measure them. The details of 
the Monte Carlo simulation calculations are described 
in the first section of the Appendix. 

Perhaps the most important simplifications common 
to both sets of results are the assumptions that restric- 
tion sites are uniformly distributed and that all frag- 
ments in the allowed size range are equally clonable. 
In the simulations presented here, the process of contig 
construction is also simplified to one of simple assembly 
based on pairwise determination of overlap. In the 
simulations, however, overlap determination is based 
on a statistical assessment of the fingerprints involved 
not merely on the actual amount of overlap present. 
As a result, both false positive and false negative over- 
laps occur in the simulations. More importantly, be- 
cause the simulations employ fixed restriction sites, 
the effects of the statistical clustering of these sites 
persist independent of the level of sampling. Certain 
regions can therefore have little or no probability either 
of being represented in the library or of being spanned 
by members having detectable overlap. 

In Fig. 1, “progress curves” that give the number of 
contigs found as a function of the number of cloned 
inserts analyzed are presented. Such curves initially 
rise when the process is dominated by finding overlaps 
between previously unplaced elements, and then fall 
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FIG. 1. Ordering progress curves: progress in number of contigs found versus effort in number of cloned fragments analyzed. Both axes 
are normalized to the size of the genome; ordinate, log,, ((number of contigs found)/S) ; abscissa, log,, ((number of cloned inserts analyzed)/ 
S); S = (size of the genomic domain in bases)/(average size of cloned inserts in bases). (a) The results of our simulations of the yeast 
experiments of Olson’s group (20) (upper curve, open circles), and the same simulations except assuming that all overlaps are detected (lower 
curve, filled circles). Multiple points on the upper curve with the same abscissa show the results of independent simulations starting with 
different random number seeds (the points at C = 10 represent 11 independent calculations). The single point indicated with the filled square 
is the state of progress reported by Olson (20). (b) The curves obtained using the analytic formula of Lander and Waterman (16) (Eq. [I] 
in text), with the simulation points from (a) superimposed for ease of comparison. Each of the curves corresponds to a different value of the 
parameter 0, the fraction of overlap assumed to ensure overlap detection; curves for five values are shown: 0 = 0.0, 0.2, 0.5, 0.7, and 0.855. 

when the process is dominated by finding overlap con- 
nections between previously formed contigs. 

In Fig. la,  the results of two simulated progress plots 
are shown. Both curves are based on a simulated library 
that was constructed to reflect the properties of the 
one used by Maynard Olson and his colleagues in their 
ordering of the yeast genome (Olson et al., 1986; see 
Fig. 1 legend for details). The curve connecting the 
solid circles shows the progress obtained when it is 
assumed that all true overlaps in the library are de- 
tected. The curve through the open circles shows the 
same library analyzed by methods simulating those re- 
ported by Olson et al. ( 1986), which include ( 1) the 
size distribution of the fingerprint fragments and the 
accuracy and size limitations of the electrophoretic 
methods and ( 2 )  the statistical criteria used for de- 
tecting overlap (except, however, for the imposition of 
what these authors termed “topological constraints” ) . 
In this latter curve, multiple points with the same ab- 
scissa correspond to the different outcomes obtained 
from repeat calculations using different initial settings 
of the random number generator. They give an indi- 
cation of the statistical fluctuations of the points in 
this curve. 

In this situation, about 10 times more inserts must 
be analyzed to achieve the same level of closure as the 
ideal case and complete closure is not obtained even 
after over 100 genome equivalents have been analyzed. 
The dramatic difference between the two curves shown 
in this graph means that a large fraction of the true 
overlaps are not being detected by the simulated pro- 

cedure used here. Only about 15% of the overlaps pres- 
ent in the simulated data were detected; this corre- 
sponds roughly to those pairs that overlap by about 
85% or more of their length. We see, therefore, that 
not only are most overlaps being missed, but those 
missed have moderate or small overlaps, exactly those 
most valuable in generating order. The single point 
marked with the solid square in Fig. l a  indicates the 
progress reported by Olson et al. ( 1986). We emphasize 
that only- “statistical” limitations are represented in 
these results, since we have assumed that no cloning 
bias exists. 

These results suggest that it is worthwhile to know 
how the efficiency of contig construction varies with 
overlap detection eficiency and whether economical 
means exist for achieving high overlap detection effi- 
ciency. 

We address the first of these in Fig. lb,  which shows 
the results obtained using Eq. [ 11 (smooth curves) su- 
perimposed on the simulation results presented in Fig. 
l a  (the solid and open circles) to aid comparison. The 
analytic curves are parameterized by the quantity 8, 
the fractional amount by which two inserts must over- 
lap for the overlap to be detectable. Curves for five 
values of 8,0,0.2,0.5,0.7 and 0.855, are shown. As was 
emphasized by Lander and Waterman, the curves show 
clearly that the efficiency of contig assembly exponen- 
tially worsens as the amount of overlap required for 
detection increases. 

The general agreement between the analytic and the 
simulation results, particularly in the limit of perfect 
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overlap detection, is evident. Also evident is the sig- 
nificantly poorer progress achieved in the simulations 
particularly as the number of cloned elements analyzed 
increases and as larger amounts of overlap are required 
for detection. This discrepancy arises primarily because 
of two consequences of the simulations’ use of fixed 
(albeit randomly distributed) locations of restriction 
sites. First, because of fluctuations in the density of 
cloning restriction sites, some locations in the genome 
will be too sparsely populated with such sites to be 
spanned, with reasonable probability, by a clonable 
segment. Most of the discrepancy in this simulation, 
however, is due to the analogous clustering of the re- 
striction sites used for fingerprinting. Some small re- 
gions of the genome are too sparsely populated with 
these sites for an overlap within them to be detected 
with sufficient statistical confidence. 

The above results emphasize the value in being able 
to detect relatively small overlaps. A scheme capable 
of detecting 20% overlap requires analysis of roughly 
10-fold fewer elements than one requiring 80% overlap. 
Further, there is relatively little gain in being able to 
detect overlaps of less than 20%. The efficiency of con- 
tig construction at  that level is nearly as high as the 
efficiency at  one in which all overlaps were detected. 

The results also allow the value of a change in pro- 
cedure to be assessed. We should adopt a more “costly” 
alternative procedure that reduces 0 only if the con- 
sequent reduction in the total number of clones it was 
necessary to analyze was worth the increase in cost per 
clone. The results also make it clear that ordering 
methods based on random clone selection become ex- 
ponentially less efficient after covering depths much 
over fivefold are reached. 

The remainder of this paper is devoted to an analysis 
of the problem of designing an efficient contig assembly 
strategy based on restriction fingerprinting. Our anal- 
ysis is based on using the likelihood ratio as the statistic 
for detecting overlap together with an “information- 
theoretic” extension of the likelihood ratio formalism 
to obtain a means for quantitatively assessing and 
comparing alternative experimental strategies ( Kull- 
back, 1968; Good, 1983). 

4. INFORMATION PRESENT IN THE 
FINGERPRINTS FOR DETECTING OVERLAP 

4.1. Detecting Overlap from Statistical Data 
Our problem is to assess the weight of the evidence 

presented in a pair of restriction fingerprints for or 
against the hypothesis that they overlap. This could 
be treated as a conventional problem of statistical hy- 
pothesis testing in which the goal is to develop criteria 
for accepting or rejecting the hypothesis of overlap. 

For example, in the standard Neyman-Pearson ap- 
proach to this problem, the likelihood ratio is used as 

a test statistic for an acceptance/rejection criterion 
that achieves minimum false negative errors for fixed 
false positive errors (see, for example, Hoe1 et al. 1971; 
Cox and Hinkley, 1986; Kiefer, 1987). We have adopted 
a different approach in which the likelihood ratio sta- 
tistic is used to capture the strength of the evidence 
for or against overlap (Good, 1983; Kullback, 1968). 
Having the overlap likelihood ratio for all pairs of fin- 
gerprints proves to be useful both for contig assembly 
and for assessment of the reliability of the results. 

One advantage to this choice of statistic for this 
problem is the relative ease with which it permits com- 
plex and nonideal properties of the data to be properly 
taken into account. Experimental errors and the ob- 
served statistical characteristics of the fingerprint- 
generating process are examples. This use of the like- 
lihood ratio also permits the effects of additional in- 
dependent ekperifrental evidence bearing on the same 
question to be alculated. 

Our likelihood ra io ‘approach at this point is com- 
mon statistical practice (Cox and Hinkley, 1986). A 
biological example is the now common use of the lod 
score in genetic linkage analysis (see, for example, 
Lander and Botstein, 1986; Conneally and Rivas, 1980; 
Ott, 1974). The likelihood ratio further leads to an 
information-theoretic formulation with which the ef- 
ficiency of different experimental approaches can be 
measured and compared. 

4.2. The Likelihood Ratio Statistic 

We must decide between two alternative explana- 
tions (that two cloned DNA fragments overlap or not) 
for an experimental outcome (their restriction finger- 
prints) where the data are statistical in character and 
where both alternatives could produce the result. The 
intuitive notion that explanations should be favored 
in the proportion that they predict the outcome is given 
formal expression through the quantity called the like- 
lihood ratio, defined next (see Cox and Hinkley, 1986; 
Edwards, 1987, presents an extended discussion). 

We discuss below (Section 5.1) how a pair of re- 
striction fingerprints characterizing two clones will be 
abstracted into a “datum” for the purpose of detecting 
overlap. Here we merely symbolize that datum by the 
notation xi,,, where i and j label the two segments being 
fingerprinted. The likelihood ratio L ( x i , , )  “in favor of 
overlap” is the ratio 

where p(xi,,l  0) and. p ( x i , j l N )  are, respectively, the 
probability that the restriction fingerprint pair xi, j  

would occur given that the two cloned segments either 
did, 0, or did not, N ,  overlap. (Michiels et al., 1987, 



GENOMIC ORDERING 355 

used a similar approach in the analysis of genomic or- 
dering strategies based on probing with random se- 
quence oligonucleotides.) A useful experimental pro- 
cedure will generate.data such that L(xi , j )  is %l for 
virtually all overlapping pairs and <1 for most non- 
overlapping pairs. Our ability to classify overlapping 
and nonoverlapping pairs will depend on how the dis- 
tribution of this statistic for nonoverlapping pairs in- 
tersects with that for overlapping pairs. We address 
this question in Section 7 below. 

To employ this approach, however, we must be able 
to calculate the probability distribution function not 
only for what we might call the “null” hypothesis, i.e., 
p ( xi , ,  I N )  , given any pair of fingerprints, but also for 
that of the non-null hypothesis, p ( x i , ,  I 0 ) .  

We note that the likelihood ratio is a “sufficient sta- 
tistic” for distinguishing between the two hypotheses 
appearing in its definition (Kullback, 1968, pp. 43-45; 
Cox and Hinkley, 1986, pp. 18-25). Using the likeli- 
hood ratio also leads to a way of measuring the hy- 
pothesis-testing efficiency of alternative experimental 
approaches as outlined in the next section. 

4.3. Weighing the Efficiency of Different 
Experimental Designs 

The log of the likelihood ratio I ( x i , , )  = log(L(xi,j)) 
can be interpreted as the information in the observation 
xi , ,  in favor of the hypothesis that the two fragments 
overlap versus the alternative hypothesis that they do 
not (Kullback, 1968. See also: Basu, 1988; Good, 1983). 
If, for example, the outcome xi,, is as likely to occur 
with nonoverlapping clones as with overlapping ones, 
then L(xi, ,)  = 1, and I ( x i , , )  = 0; i.e., the observation 
yields no information on the question of overlap. The 
information measure defined in this way has the ex- 
pected additive property in that if two statistically in- 
dependent fingerprinting experiments are performed 
on the same pair of elements, the information provided 
by the two experiments considered together is the sum 
of the information provided by the two individual ex- 
periments. (For a discussion of a generalized class of 
such measures, see Sarndal, 1970.) 

Further, the expectation value I( ON; x )  of the in- 
formation of the set of observations x = { xi,,} distrib- 
uted according to the non-null hypothesis is given by 

I(0N;x) = c p ( x i , j I o ) I ( x i , j ) .  [31 
X L J  

This quantity was introduced by Kullback and Leibler 
( 1951) as the average information per observation from 
the distribution of the hypothesis 0 for discriminating 
in favor of the hypothesis 0 against the hypothesis N .  
In the expression I (  ON;x), x makes explicit the de- 
pendence of average information per observation on 
the particular experimental method employed. This 

same expression has been used.in other contexts under 
many different names, principally that of “relative en- 
tropy” ( Arratia and Gordon, 1989). We refer to it as 
the “Kullback-Leibler information,” or K-L infor- 
mation, produced by the experiment and use it, through 
its dependence on the experiment used, as a way of 
measuring the hypothesis-testing efficiency of an ex- 
perimental procedure (in the Appendix we present a 
brief discussion of the reasons for giving it this inter- 
pretation). 

To illustrate one application of this concept, we make 
use of the additive property of information mentioned 
above and consider that two statistically independent 
experimental procedures x1 and x2 are performed to 
detect the overlap of two cloned fragments. The final 
outcome can be interpreted as resulting from two se- 
quential applications of Eq. [ 31 (see Eq. [ 51 below and 
the discussion in Section 3 in the Appendix), with the 
result that the likelihood ratio of the total result is the 
product of the likelihood ratios of the two component 
experiments: 

L(XlX2)  = L(x,) x L(x2). [4a1 

It then follows directly that if n statistically independent 
repeats of the same procedure are performed, we have 

I ( O N : n  X x )  = n X I(0:N;x). [4b1 

From this we can conclude that if an “improved” ex- 
perimental approach y is found which yields approx- 
imately twice the K-L information in favor of overlap 
versus nonoverlap as does the original x, 

the same amount of information could alternatively be 
produced by repeating the first procedure twice (using 
different restriction fingerprinting enzymes to achieve 
statistical independence). Which alternative we choose 
would presumably depend on whether we find it more 
desirable experimentally to perform the new procedure 
once per clone or the first twice per clone. 

4.4. Computing Overlap Probabilities 

Given the likelihood ratio for any pair of cloned 
fragments, the “posterior” probability that they overlap 
can be calculated using Bayed theorem (Box and Tiao, 
1973; Good, 1983; see also Appendix Section 3). Let 
p (  O)i,j represent the “prior” probability of overlap (the 
probability that two fragments i ,  j drawn at random 
from the collection of clones overlap). As explained in 
Section 3 in the Appendix, this probability is the same 
for all pairs and is approximately 2/S, where S, defined 
in Section 2 above, is the ratio of the size of the DNA 
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domain being mapped to the average size of the cloned 
fragments. Given fingerprint data for this pair, i.e., x i , j ,  
Bayes’ theorem says that the posterior probability that 
the pair overlap ( p (  01 x i , j ) )  is given by 

where O D ( x )  = p ( x ) / ( l  - p ( x ) )  is called the “odds” 
of the event x (see Section 3 of the Appendix). 

In the next section, we show how restriction finger- 
print data can be used to compute values for the like- 
lihood ratio statistic. 

5. CALCULATING THE LIKELIHOOD RATIO 

The restriction fingerprints that are the raw data for 
this type of problem typically consist of a “signal” curve 
containing a series of peaks that reflect the presence 
of DNA fragments separated by length. Such data are 
produced from autoradiographs by gel scanners (Suls- 
ton et al., 1988) or directly in automated fluorescence- 
based electrophoresis systems ( Carrano et al., 1989). 
We ignore for the present the important problems of 
feature abstraction and fragment length determination 
that such data present. We are still left with a range 
of possibilities about how the data should be charac- 
terized for the purpose of computing likelihood ratios. 

5.1. The Data Abstraction 

At one extreme, the attempt could be made to frame 
the competing hypotheses of overlap and nonoverlap 
so that fairly detailed features of such data, including 
peak area and peak shape, for example, were predicted. 
However, such features generally show poor reproduc- 
ibility, and taking them into account entails very con- 
siderable computational costs. At the other extreme, 
we might specify simply the number of bands that ap- 
pear to be in common between the two fingerprints (as 
done by Sulston et al., 1988), or count the number of 
apparently common bands together with the total 
number of bands as was done by Olson et al. ( 1986). 

There is also the question of whether the hypothesis 
of overlap is framed in terms of a measure of the extent 
of agreement and disagreement between two finger- 
prints or as a specific partitioning of the fragments in 
the two fingerprints into those that are presumed to 
be shared between the two DNA segments being fin- 
gerprinted and those not shared. 

In the approach described here we adopt the former 
choice, and we have taken a middle course as to how 
detailed a description of the pattern of agreement and 
disagreement between fingerprints is made. Our rea- 
sons for this are as follows. 

(1 )  The dependence of the probability of generating 
a restriction fragment on the fragment’s length can 

lead to an order of magnitude difference in the prob- 
ability of finding two bands in common between the 
shortest and the longest fragments in a fingerprint. 

(2)  The probability of obtaining a fragment of some 
length depends on the length of the piece of DNA being 
digested; even with cosmid cloning, the difference in 
insert lengths can be as large as 30%. 

( 3 )  In a comparison of two restriction fingerprint 
patterns, at least three types of events occur that are 
informative about overlap: positions at which there are 
common bands, positions at which neither gel has a 
band, and positions at  which one of the gels has a band 
but the other does not. Only the latter events provide 
information disfavoring the overlap hypothesis. Both 
“band agreements” and “blank agreements” contribute 
information favoring the overlap hypothesis. 

( 4 )  The underlying probabilities on which all of the 
relevant statistical inferences depend are those for 
finding a band corresponding to any specific fragment 
length in an individual fingerprint. While various a 
priori assumptions (e.g., randomly distributed cutting 
sites ) about these probabilities and their dependence 
on fragment length can be made, experience indicates 
that the frequency distributions in real biological sam- 
ples deviate significantly from such expectations. 
Moreover, certain specific fragment lengths may occur 
a t  highly anomalous frequencies (i.e., those produced 
by repetitive elements) and may have correlated fre- 
quencies of occurrence. For these reasons, it is worth- 
while to be able to incorporate the actual measured 
frequencies for bands at all different fragment lengths 
from the total data set, along with whatever significant 
interband correlation frequencies are found. 

( 5 )  As the number of bands in a gel pattern in- 
creases, so does the probability that two fragments are 
present in a single band. This effect reduces the sig- 
nificance of observing common bands between finger- 
prints. On the other hand, reducing the band density 
to the point where this effect can be neglected makes 
inefficient use of the information-producing capacity 
of the system (see Section 6.3).  An approach that can 
properly take the probability of coincident fragments 
into account is therefore needed. 

( 6)  Finally, more detailed experimental information 
characterizing the digests could be usefully taken into 
account in computing the likelihood ratio for any given 
pair of fingerprints. Most important examples are the 
experimentally determined performance parameters 
characterizing the quality of the data: the repeatability 
of band position estimates and false positive and false 
negative frequencies in band detection. 

In our experimental work we have adopted a data 
abstraction and a related method of computing the 
likelihood ratio that takes into account, a t  least in ap- 
proximation, all of the above issues. For our present 
purposes, however, we employ a relatively simple data 
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abstraction, called here the “trinomial model,” which 
addresses only a few of the issues mentioned above. 

5.2. The Trinomial Model 
Suppose, first, that fragment lengths can be repro- 

ducibly resolved to one base ( a  fairly good approxi- 
mation for polyacrylamide gels in the range below 300 
bp) , second, that the probability that a fingerprint di- 
gest will produce a fragment of a given length is the 
same for all lengths, and, third, that all cloned inserts 
have the same length. Thus, in this model, each pair 
of fingerprints can be characterized in terms of just 
three numbers: n,  the number of places on the gel where 
both fingerprints have bands, m ,  the number of places 
on the gel where separate bands could be resolved and 
detected but at which neither fingerprint has a band, 
and 1, the number of places on the gel where one fin- 
gerprint has a band but the other does not; 1 = M - m 
- n ,  where M is the total number of bands that could 
be resolved in the electrophoretic analysis. Put another 
way, at each band position only one of three possible 
events can occur: a band either is present in both fin- 
gerprints or is present in neither, or is present in only 
one (this is diagrammed in Fig. 2) .  Thus, the outcome 
at  all gel positions corresponds to tossing a three-sided 
coin, with the same probabilities a t  all positions (frag- 
ment lengths). Therefore (see Section 2 in the Ap- 
pendix), entire coincidence patterns correspond to M 
such samplings and their probabilities are distributed 
according to the trinomial distribution. 

In subsequent calculations, it is usually assumed that 
the electrophoresis system is capable of reproducibly 
resolving about 400 separate fragment lengths, i.e., M 
= 400 (this seems approximately what fluorescence- 
based polyacrylamide systems can deliver: Carrano et 
al., 1989). In this case it is feasible to compute results 
for all possible outcomes. An outcome is a choice for 
the three numbers n ,  m ,  and 1 consistent with n + m 
+ 1 = M (see above) of which there are, with M = 400, 
only about 80,000 ( M (  M - 1 ) /2  ) . 

Computing the probability of a coincidence pattern 
under the assumption of overlap requires an indirect 
step because the probabilities for the band-specific co- 
incidence events (a  band in common, for instance) de- 
pend strongly on the amount by which two fragments 
overlap. The desired probability can, however, be di- 
rectly expressed if an arbitrary but specific amount of 
overlap is assumed. The probability of the evidence given 
that there is any overlap at all can then be written as a 
weighted sum over the overlap-specific probabilities. The 
details of the computation of the likelihood ratio in the 
trinomial model are presented in the Appendix. 

6. RESULTS USING T H E  TRINOMIAL MODEL 

We next describe the results of calculations ob- 
tained using the trinomial model. The first point ad- 

short long 

Fingerprint #1 

h 
Fingerprint #2 

I 
Camaarison 

FIG. 2. Abstraction of fingerprint data and coincidence patterns 
in the trinomial model. The fingerprint data are first size-calibrated 
to assign an equivalent fragment size in terms of base pairs to each 
position in the fingerprint pattern. The presence or absence of a 
band at each resolvable position (assumed to be one such for each 
different number of base pairs between the smallest and largest frag- 
ments detected) is then noted in each fingerprint. In the trinomial 
model approximation, we then compare two fingerprints by deter- 
mining three numbers: n the number of positions at which they both 
have a band (band agreements, W )  , n the number of positions at 
which neither has a band (blank agreements, 0 )  , and 1 the number 
of positions at which one has a band and the other does not (dis- 
agreements, H) . 

dressed is how overlapping and nonoverlapping events 
are distinguished by the statistical distribution of their 
likelihood ratio statistic. 

6.1. Distinguishing Overlapping from Nonoverlapping 
Pairs of Clones 

The problem of contig assembly is strongly affected 
by the statistical properties of overlap detection. In- 
sight into this connecting is gained by determining how 
the probability of obtaining a specific value of the test 
statistic A depends on whether overlapping or non- 
overlapping clones are considered. We expect, of course, 
that L values very much larger than 1 should result 
much more frequently from overlapping pairs than 
from nonoverlapping ones, while the opposite should 
be true for L values less than 1. Formally, the trans- 
formation from a datum x to the statistic L ( x )  for that 
datum, x + L(x) ,  defines a new random variable, L,  
whose distribution under the two contending hy- 
potheses we now examine. We recall that in the tri- 
nomial model a datum is a triplet x = ( n ,  m ,  1 )  , where 
n + m + 1 = M .  

A representative example is shown in Figs. 3a and 
3b. In Fig. 3a, values ofp(L(x) lO)  andp(L(x) lN)  
are plotted against their corresponding log L values; 
i.e., two points are plotted ( p  ( L  ( x )  I 0) , log L(  x )  ) and 
( p  ( L  (x) IN) , log L (x) ) for each of the possible coin- 
cidence patterns x = ( n ,  m ,  1 ) .  These plots have a 
seemingly multivalued, space-filling character because 
events with very close L values can have quite different 
probabilities, ranging up to a maximum that varies 
smoothly with log L. 
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FIG. 3. Distribution of overlapping and nonoverlapping events for the likelihood ratio statistic. (a) The probability of getting an outcome 
x ( a  specific ( n, rn , 1 )  triplet) assuming either overlap or no overlap (p ( x  I 0) and p ( x  I N) are the probabilities of the outcome x = ( n , m , Z), 
given, respectively, overlap and nonoverlap) is plotted as a function of the log of the likelihood ratio L associated with that outcome. The 
nonoverlapping events form the sharply peaked distribution on the left and the overlapping events form the nearly uniform distribution 
extending to the right. These plots have a space-filling character because different (n,  m,  1 )  outcomes with nearly equal L values can have 
sharply differing probabilities, ranging from zero to a maximum value that defines the smoothly varying envelope of these plots. Under the 
assumptions made, the distribution for overlapping events continues as depicted up to nearly 10'Oo. (b) The same data are represented using 
cumulative distributions. For overlapping events the cumulative distribution itself is plotted ( F (  x IO) = p  (log L < x IO), which is the probability 
that the log likelihood is less than the value of the abscissa; for nonoverlapping events one minus the cumulative corresponding distribution, 
1 - F (  x I N), is plotted. The calculations are based on the trinomial model (see text and the Appendix), assuming 400 resolvable events in 
each fingerprint and a probability of 0.77 that any given position in a single restriction fingerprint will be empty. 

We see in Fig. 3a that the probability of obtaining a 
particular likelihood ratio from nonoverlapping events 
peaks very sharply between log L = -2 and log L = 0 
and drops off quickly for values above 0. In sharp con- 
trast, the overlapping events have a nearly flat distri- 
bution in log L from roughly -1 to above +20 and only 
a very small fraction of this distribution overlaps visibly 
with the nonoverlapping events. 

In Fig. 3b cumulative plots for these same data are 
shown to give a clearer perception of the magnitude of 
the overlap between the two distributions. We show 
the cumulative distribution, F( x I 0 )  = p (  log L < n I 0) , 
for overlapping events, and one minus the cumulative 
distribution, 1 - F( x IN) = p (log L > x I N) , for non- 
overlapping ones. We see that almost 90% of the over- 
lapping events have log L values above 1, while the 
same is true of only about 3% of the nonoverlapping 
events. However, if false positive (classifying non- 
overlapping events as overlapping) errors must be held 
below 1 in lo6 painvise tests, then, in these model cal- 
culations, events with log L values below 4 must be 
rejected. Using this critical value would nevertheless 
correctly identify over 74% of the overlapping events 
for a false negative rate of less than 27%. One in a 
million false positive errors would imply about 30 false 
overlap determinations in ordering 7.5K elements, al- 
though we argue in Section 8 that a contig assembly 

strategy exists that can detect and exclude the majority 
(about 80% in a 5X library) of these errors. 

The favorable tradeoff between false positives and 
false negatives degrades rapidly as lower L values are 
considered. To reduce the false negative rate by only 
3.5%, we would,have to accept about 13-fold more false 
positives. Ori the other hand, almost all overlapping 
pairs have overwhelming likelihood ratios; over 60% 
of such events have L values above 10 lo and, in a prob- 
lem where S = 1500, yield posterior odds in favor of 
overlap above lo' to 1. 

6.2. Detection Probability as a Function of Overlap 
Some idea of what this means in terms of overlap 

detection efficiency (expressed in the Lander-Water- 
man terms of the minimum overlap required for de- 
tection) is obtained by calculating the L values for the 
most probable coincidence state ( n ,  m ,  1) as a function 
of the amount of overlap. This plot is shown in Fig. 4. 
It reveals an extremely steep rise in L with overlap; 
the most probable L value for events with an overlap 
fraction of about 27.5% is 10'. We might then expect 
that this model system would function as a good overlap 
detector for overlaps at  or above about 25%. 

6.3. The Optimal Density of Bands 
To illustrate the use of the K-L information measure 

in optimizing experimental design, we consider the 
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FIG. 4. as function of the amount of overlap. The most prob- 

able value of the likelihood ratio defined for a specific fractional 
overlap (i.e., the likelihood ratio defined with respect to overlap by 
a specific fractional amount 6’ is evaluated for the most probable 
event (n, m, I )  given that overlap; see Section 2 of the Appendix) 
is plotted for overlap as a function of 6’. 

question of the optimal number of fragments in the 
fingerprints. We seek the optimum choice between the 
extremes of too many fragments (with degraded sig- 
nificance of fragment agreements between fingerprints) 
and too few (with increased risk of having no infor- 
mative fragment in the region of overlap). This can be 
found by evaluating the expression given in Eq. [ 51 for 
the K-L information for different choices of the prob- 
ability that the restriction digest, labeling, and elec- 
trophoretic procedures produce a recognizable fragment 
of any specific length. The results of such a calculation, 
within the assumptions of the trinomial model, are 
shown in Fig. 5. The conclusions can be summarized 
as follows. The optimal density of cuts is that which 
yields, on average, a band in about 30-35% of the re- 
solvable segment of the electrophoresis run. This cor- 
responds to about 120 to 140 bands in a system that 
can resolve 400 different fragment lengths. However, 
informativeness turns out to depend rather weakly on 
the density of fragments so that I (X ) has dropped by 
less than 20% if as few as 10% of the resolvable slots 
are filled. And although the rate of loss from that point 
on becomes increasingly steep, one must drop to as few 
as 2.5% of the resolvable slots filled before I ( X )  has 
decreased to 0.51(X)max. 

More rigorous calculations (not presented) show that 
most of the complicating aspects of real fingerprint 
data, such as the exponential dependence on fragment 
length of the probability of getting a fragment, modify 
these conclusions only slightly, placing the optimal 
density somewhat lower. However, significantly lower 
fragment densities (reduced by at  least 40 to 50% ) are 
indicated if realistic estimates of the errors in fragment 

ascertainment and fragment length determination are 
taken into account. Because the magnitudes of such 
errors depend sensitively on the experimental methods 
used, precise general conclusions cannot be given. 

Another perspective on the significance of band den- 
sity is shown by comparing the cumulative probability 
distributions for overlapping events assuming two well- 
separated choices (23 and 5% filled) for the density of 
bands; these results are shown respectively in Fig. 6, 
curves A and C. Whereas a cutoff of L 2 lo5 would 
lead to a false negative rate of 30% for the higher band 
density, it would produce a false negative rate of over 
40% for the lower density. Because all extents of over- 
lap are equally probable, this implies that the more 
dense design would correspond, in the Lander-Water- 
man model, to a 30% overlap detector, while the less 
dense design would correspond to a 40% overlap de- 
tector. 

6.4. The Contribution of Blank Agreements 

In characterizing the degree of similarity between 
fingerprints we have counted “blank agreements,” i.e., 
the number of locations at which neither fingerprint 
had a band, as well as the number of band agreements 
and band disagreements. How much additional infor- 
mation is brought in by considering the blank agree- 
ments? In Section 2 of the Appendix, we outline how 
the formulas presented there can be used to estimate 
this contribution. We find that a t  “optimal” band fre- 
quencies, the blank agreements contribute about as 

1 .o 60 
0.6 0.7 0.8 0.9 

q 
FIG. 5. Informativeness versus band density. The informative- 

ness Z of the procedure by the Kullback-Leibler measure (the ex- 
pectation value of the log likelihood ratio in the overlapping distri- 
bution; see Eq. [3]  in text) is plotted as a function of the average 
fraction of empty positions in the fingerprints q. Calculations are 
made using the trinomial model assuming 400 resolvable events in 
each fingerprint. 
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FIG. 6. The effects of reduced resolution and suboptimal num- 
bers of bands. Cumulative probability distributions for overlapping 
events, as defined in the legend to Fig. 3b, are plotted under the 
assumption of ( A )  400 resolution bins, 23% of which are filled on 
the average; (B)  200 resolution bins, 36% of which are filled (assumes 
that the same number of fragments as in A is distributed among half 
the number of bins); and ( C )  400 resolution bins, 5% of which are 
filled. 

much of the favoring overlap information (40 to 60% ) 
for discriminating overlaps (those overlapping by 20 
to 30%) as do the band agreements. 

6.5. The Effect of Electrophoresis Resolution 

Perhaps the single most important parameter in the 
design of a system for overlap detection is the resolving 
power of the electrophoresis system used. This issue 
reduces to two questions: ( 1 )  how reproducible is frag- 
ment length determination, and how closely can it ap- 
proximate the ideal of single-base definition; ( 2 ) how 
many different fragments can be resolved in a single 
electrophoresis run? These two issues can trade off 
against each other to some extent and one advantage 
of the likelihood ratio statistic is that it allows the direct 
incorporation of the actual performance of the exper- 
imental system in both these respects. A detailed anal- 
ysis of this issue is rather complex and will not be un- 
dertaken here. However, a rough upper limit on the 
consequences of reduced resolution can be obtained 
within the confines of the trinomial model by approx- 
imating the effects as simply reducing the number or 
resolvable bins in a fingerprint. The informativeness, 
expressed in terms of the K-L information measure 
( I  ( ON;  X ) ) , can be calculated as a function of the 
number of resolution bins M using, as before, Eq. [ 61. 
Such calculations show, as expected, that the infor- 
mativeness of the procedure, per electrophoresis lane, 
is roughly proportional to the number of resolvable 
elements that can be distinguished in that lane. Com- 

paring curves A and B in Fig. 6 shows the effects of 
resolution loss modeled in this way on the cumulative 
probability distributions for overlapping events. 

In practice, however, the consequences of deviations 
from perfect fragment length determination are sig- 
nificantly more troublesome. This is largely the result 
of fragment length imprecision compounded by the 
imperfect correlation between fragment length and 
electrophoretic migration velocity. Single-stranded 
fragments produced in high-resolution denaturing gels 
migrate in a sequence-dependent manner so that the 
measured lengths of two fragments with the same 
length often differ significantly, occasionally by more 
than 1%. This has the consequence that fragments of 
different length can appear to have the same length no 
matter how accurate the measurement. It also implies 
that the best estimate of a fragment’s length may in- 
volve fractions of a nucleotide, e.g., 100.6 k 0.25 nt. As 
a result, two fragments whose real lengths differ by, 
for example, 2 nt will often have apparent lengths that 
differ by less than 1 nt and confidence intervals with 
substantial overlap. Further, since band agreement or 
disagreement must be judged by how far separated two 
nearby bands appear to be, there is an unavoidable 
tradeoff between missing true band agreements and 
including false agreements. As a result, the information 
contribution is reduced for all classes of comparison 
events (band agreements, blank agreement, and band 
disagreement). In our experience, these and other error 
effects make a large contribution to the “true” value 
of the likelihood ratio and it is correspondingly im- 
portant that they be taken into account in the calcu- 
lation of the overlap statistic. A treatment of this issue, 
however, is beyond the scope of the present paper. 

7. ALTERNATIVE FINGERPRINTING SCHEMES 

Quite a few of the alternative methods of overlap 
detection that have been proposed, or are being used, 
are based on direct hybridization (Evans and Lewis, 
1989), recombination, oligo probing (Lehrach, 1987), 
or other methods of restriction fingerprinting such as 
partial digestion restriction mapping (Kohara, 1987). 

We briefly consider partial digestion strategies. 
These are attractive because they reveal the order of 
the digest fragments produced and this greatly in- 
creases the information on the question of overlap pro- 
vided by a given number of fragments. However, this 
gain is set off against a number of disadvantages. One 
is the difficulty in doing partial digestions reliably on 
many different DNA samples without laborious titra- 
tion and testing trials. In addition, if one attempts to 
detect most of the true overlaps, partial maps that ex- 
tend from the end of each insert well toward the middle 
would be required. Otherwise, very large overlaps would 
go undetected. Fingerprinting such digests would have 
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to be done on agarose with the consequence that the 
fragments generated be both few and large. This has 
several negative consequences. First, the probability 
would be increased that the most important overlaps, 
i.e., small ones, would be missed because they would 
not contain enough partial digest sites in their region 
of overlap. Also, the accuracy of fragment length de- 
termination is significantly degraded ( l ) because 
length determination is relatively poor in agarose and 
( 2 ) the lengths that must be compared between digests 
are the small differences between large, poorly deter- 
mined numbers. Our current estimate of the magnitude 
of these factors and their consequence for the amount 
of ordering information achievable by partial digest 
methods, while preliminary, have led us in our own 
efforts to prefer the limit digest approach, at least for 
a first-pass processing of a library of cosmid clones. 

Finally, suppose we find an alternative experimental 
approach that could deliver near perfect overlap de- 
tection. Under what conditions should we adopt it? On 
the basis of the progress curves in Fig. 1, we could 
achieve the same degree of contig closure with this al- 
ternative by analyzing only about half the number of 
clones as the 30% overlap detecting method. If, how- 
ever, the “better” method was more than twice as costly 
(in whatever sense matters to us) to perform as the 
original 30% method for each clone analyzed, we would 
not be advised to adopt it. Such consideration argues 
against some alternative fingerprinting methods al- 
though they offer much greater intrinsic detection ef- 
ficiency. 

8. CONTIG ASSEMBLY 

For genomic domains thousands of times longer than 
the size of the average cloned fragment, the problem 
of contig assembly is, in principle at least, daunting. 
In the “small chromosome” example considered above, 
one would be faced with “ordering” at least 7000 to 
8000 elements, which amounts to seeking the best so- 
lution out of, for example, 7000! = alternatives. 
Even with a good way to define the quality of a can- 
didate solution, searching all alternatives is clearly im- 
possible computationally. How much easier the real 
problem is than this worst case depends mainly on the 
frequency with which contending alternative place- 
ments must be tested and decided between. Of course, 
smaller overlaps are most likely to be ambiguously in- 
dicated in the data, while being, at the same time, the 
most valuable to detect. 

While this issue is not discussed in detail here, we 
want to emphasize two points. First, having the ability 
to rank all possible overlaps as to their probability of 
overlap is very useful for automatic contig assembly. 
As will be discussed in detail in a separate publication, 
building contigs by assembling the pieces in decreasing 

order of confidence of overlap ’ aids substantially in 
avoiding errors, reducing the number of gaps, and per- 
mitting order within contigs to be defined automati- 
cally. This is because this method permits information 
gained from the placement of the higher confidence 
overlaps to be used in avoiding misplacements of the 
lower confidence ones. Simulation studies indicate that 
highly reliable contig assembly can be achieved with 
this approach, and within these contigs, near-minimal 
“spanning subsets” that allow the end elements of the 
contig to be identified with high confidence can be ac- 
curately defined. The latter fact is of practical impor- 
tance because it allows subsequent computational and 
experimental investigation to focus on the end elements 
and their potential overlaps. Moreover, the confidence 
ranking of all possible overlaps between these end 
clones, or involving end elements and isolated clones, 
ranks these clones in the order in which any further 
experimental characterization would be most fruitfully 
accomplished. We note that contig assembly can be 
viewed as a problem in interval graphs for which it has 
been shown that a solution can be found in linear time 
when overlap information is perfect ( Waterman and 
Griggs, 1986). 

Second, the very sharply peaked nature of the dis- 
tribution of L values among nonoverlapping pairs of 
clones (Fig. 3)  has the consequence that only a small 
fraction of all candidate overlaps, those whose L values 
fall in a relatively narrow range, present the possibility 
of ambiguous but resolvable placements, especially 
when placement is carried out in order of decreasing 
confidence. Thus, further computational and experi- 
mental effort can be focused on these few cases. 

Finally, we note two significant issues neglected in 
the treatment of overlap detection and its relation to 
contig assembly presented here. The first concerns the 
desirability of having a statistical measure of the con- 
fidence to be attached to a complete contig (rather than 
just that of its constituent pairwise overlaps). A de- 
rivative point is that of giving the proper statistical 
weight to the evidence concerning a particular overlap 
contributed by all other members of the contig that 
cover the overlap segment. These issues also relate to 
the second issue neglected in our treatment. A hy- 
pothesized contig structure implies a partitioning of 
the fragments found in its members and it is desirable 
to make proper statistical use of the consistency re- 
quirements that result from this partitioning. That is, 
a particular contig hypothesis may be viewed as a se- 
quence of contiguous regions each of which is covered 
by a different subset of the contig membership. All of 
the fragments found in the contig’s members are then 
assigned by the hypothesis to exactly one of these re- 
gions (see Olson et d., 1986). This assignment supplies 
additional information that bears on the probability 
that a given contig structure is correct. 
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APPENDIX 

1.  Methods Used in the Monte Carlo Simulations 
The stochastic simulation calculations were carried 

out as follows. Assuming a specific genome size, a li- 
brary of potentially overlapping “inserts” of this ge- 
nome was produced ( a  list of pairs of numbers giving 
the order in the genome of the first and last base in 
the insert). Potential digest sites were assigned ran- 
domly along the genome at  a specified probability per 
base pair. Inserts based on these sites were generated, 
simulating a partial digest, by sequentially choosing 
(with a predetermined probability) which of these sites 
would be “cut”; two consecutive cuts define the ends 
of a digest fragment. This was repeated in serial pas- 
sages over the genome until an insert collection of a 
specified number was obtained (in the simulations 
presented here about 7.5K elements were selected, cor- 
responding to a multiplicity or coverage of roughly 5X).  

A collection of randomly terminated, potentially 
overlapping segments with a specified average length 
is thus obtained. The cloning step was then modeled 
by picking randomly, from the partial digest collection, 
members whose size fell within a predetermined range 
of clonable sizes until a specified number was selected. 
This method allows for repeat selections of the same 
element, and was adjusted, in the present simulations, 
to reflect the frequency of duplicate selections (ap- 
proximately 20% at  a 5X coverage) reported by Olson 
et al. ( 1986) , Le., approximately one chance in five for 
a coverage of 5X. 

Similarly, cut points for the restriction enzyme sites 
corresponding in frequency to the restriction en- 
zyme (s)  used for the fingerprinting step were randomly 
assigned along the genome. The “limit digest” (i.e., 
complete not partial) fingerprint fragment lengths were 
then determined, as the segments between consecutive 
restriction sites, for each member of the cloned library. 
Those whose size fell within the range assumed to be 
observable by the electrophoretic method being used 
are recorded as the restriction fingerprint for that 
cloned segment. 

Statistical criteria designed to detect overlap were 
subsequently applied to pairs of such fingerprint pat- 
terns, and the true existence and extent of overlap, if 
any, recorded for each pair. Finally, in the present sim- 
ulations, contigs were assembled simply by placing to- 
gether all elements connected by “statistically certain” 
overlap (i.e., whose overlap likelihood ratio was greater 
than lo5) .  

2. Likelihood Ratio Calculations based on the 
Trinomial Model 
In the trinomial model we assume that the proba- 

bility of a band occurring is independent of the position 

on the gel, and that both segments being analyzed have 
the same number of fragments v (the latter assumption 
is made for convenience in the derivations and calcu- 
lations). The model is based on the assumption that 
individual fragments lengths can be reproducibly re- 
solved to the base pair and that two such fingerprints 
can be aligned and compared to determine how many 
of the locations have each of three possible outcomes: 

( a )  both have bands, =a, the number of which is 
called n ,  

( b )  neither has bands, = b ,  the number of which is 
called m ,  

(c )  only one has a band, =c, the number of which 
is called 1, 
where the sum of these numbers is equal to the number 
of resolvable locations in the fingerprint, M = n + m 
+ 1 ,  and a possible experimental outcome x is specified 
by a triplet of integers x = ( n ,  m ,  1 ) .  The trinomial 
distribution gives the probability of obtaining such an 
outcome under any assumption concerning overlap Y 
as 

where 

M !  , and M = n + m + l .  

The quantities p ( e  I Y )  for e = a ,  b ,  or c are the indi- 
vidual-band comparison event probabilities to be cal- 
culated below, and the assumption concerning overlap 
can be overlap by any amount ( Y  = 0), overlap by a 
specific amount 0 ( Y  = 0,) , or no overlap ( Y  = N )  . 

The likelihood ratio in this notation is 

And, as noted in the text, the probability p ( n ,  m ,  1 I 0) 
can be expanded into the sum over all possible extents 
of overlap 0 (since they form an exhaustive and mu- 
tually exclusive set ) and written as 

We make the approximation that 8 is measured in 
number of fragments and not in bases; i.e., 0 = l / v ,  2/ 
v, * - , v / v  = 1, where v is the expected number of 
fragments in the digest. 
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We further make the approximation that cloned in- 
serts of the same length have the same number of frag- 
ments. In this case, the probability that the inserts 
overlap by a specific amount, given that they overlap 
at  all, is independent of the amount of overlap so that 

and we obtain 

From this equation it follows directly that the L for 
arbitrary overlap, L ( x ,  0), is given by the correspond- 
ing sum of the L values for the specific amounts of 
overlap L ( x ,  0,) , 

The task is now to define the individual comparison 
event probabilitiesp(e I X) , where e stands for any one 
of the three possible band comparison events (i.e., a, 
b ,  or c )  , and X stands for one of the hypotheses (e.g., 
either 0 0  or N )  . Define 

q = probability that a gel slot is blank. 

It follows easily that, for the case of no overlap 

To compute the probabilities assuming overlap, q , 
the probability of not having a fragment of a given 
length in the digest, must be related to the length of 
DNA being digested. Since we have assumed that the 
lengths of the fragments produced in a given digest are 
uncorrelated, digesting a stretch of DNA into v frag- 
ments can be regarded as approximately equivalent to 
sampling v times from the fragment length distribution. 
Because of the finite length of the DNA being digested, 
one fragment in the collection will be shorter than it 
would be under this assumption. If g is the probability 
of not getting a fragment of a given length in a single 
sampling, then one can write 

We then assume that the two cloned inserts being 

compared, both of which are v fragments long, overlap 
by some integral number of fragments v,. The com- 
parison events whose probabilities are desired can then 
arise either from sampling from the two independent, 
nonoverlapping domains (each being v - v, fragments 
long) or from sampling from the single overlapping 
domain v, fragments long. Thus, the probability of get- 
ting a blank agreement assuming overlap by u, frag- 
ments can be written as the probability of not getting 
the fragment from either of the two nonoverlapping 
regions times the probability of not getting it from the 
single overlapping region, 

(where q = q (v), and t9 = v , / v ) .  Similarly, in the case 
of mismatch, the probability of getting a fragment from 
the nonoverlapping part of either of the two inserts 
while having no matching fragment from the entire 
length of the other insert is 

Finally, the probability of getting a band agreement 
assuming overlap by t9 can be obtained by invoking the 
conservation equation 

The probability of obtaining the outcome (n, m, 1 )  
for a specific amount of overlap 6 can therefore be ex- 
pressed in terms of these quantities as 

The likelihood ratio with respect to the hypothesis 
of overlap by t9 (versus no overlap) is therefore 

where 
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It is useful to calculate the most probable value of 
this likelihood ratio among the events that overlap by 
a specific amount 8. This quantity, which we denote 
E ( @ ,  is by definition L ( f i ( 8 ) ,  E(@), t (@)IO,) ,  the 
value of the likelihood ratio for the most probable out- 
come ( f i (  @), (81, t( 8) ), given a specific amount of 
overlap 8 (where 8 need not be the same as the I9 
referred to in the definition of the likelihood ratio). 
We can approximate this quantity by noting that the 
function p ( n ,  m ,  1 I 0,) , the probability of the outcome 
( n ,  m,  1 )  given 8,  is approximately maximal at the val- 
uesofn,m,andIgivenbyri(B) = M p ( a ( O 8 ) , n i ( 8 )  = 
Mp ( b  IO,), and t( 6) = Mp ( c  I 0,) (the approximation 
involves assuming the crude form of the Stirling ap- 
proximation for the logs of the factorials of n ,  m ,  and 
1 ,  i.e., log(n!) = n log(n), etc.). It follows that 

where 

We can, for example, use this expression to estimate 
the relative amounts of information in favor of overlap 
contributed by band agreements and blank agreements, 
respectively. By taking the log of the equation for 
t( e) ,  we see that Mp ( a  1 Oe) log (L (e),) is the infor- 
mation in favor of overlap brought in by the band 
agreements in the “most probable” event involving 
overlap by 8, and Mp ( b  I 00) log( L (e),) is the same 
for blank agreements. Thus, for example, assuming q 
= 0.8, and 8 = 0.2, we can determine that in such 
events, almost half of the total overlap favoring infor- 
mation in these fingerprints is due to the blank agree- 
ments. 

3. Posterior Overlap Probabilities and the Likelihood 
Ratio Statistic 

The connection between the posterior probabili- 
ties of overlap and the likelihood ratio is outlined 
below. 

Let p ( 0 ) i . j  be the prior probability that two cloned 
elements ( i ,  j )  overlap, and p ( 0 I x i , j )  be the posterior 
probability given the data x i , j .  In our case xi , j  stands 
for the pair of restriction fingerprints i and j .  

The relationship between the posterior and prior 
probabilities involves the likelihood ratio and is called 
the Bayes rule (Box and Tiao, 1973), which is a con- 
sequence of the definition of conditional probabili- 
ties, 

which we can rewrite as 

OD(Olxi, j)  = O D ( 0 )  X L ( ~ i , j ) ,  

where 

is the likelihood ratio and where OD ( A  ) = p ( A  ) / ( 1 
- p ( A  ) ) defines the “odds” of an event A whose prob- 
ability is p ( A )  (Section 4.4).  The above equation is 
the form of the Bayes rule applicable to our problem. 

To a good approximation, the prior overlap proba- 
bilities for two otherwise uncharacterized, randomly 
chosen elements are all the same and roughly equal to 
2 / S ,  where S is the “effective” genome size defined 
above (Section 2 ) : p ( O )  = 2 / S  so that O D ( 0 )  = 2 /  
S .  That is, with a chosen segment of L bases in a ge- 
nome of size G bases, the chance that a second such 
segment will overlap is the chance that its left end falls 
either within the L bases of the first segment or within 
the nearest L - 1 bases to the left of the first segment. 
The probability is thus = ( 2 L  - 1)/G = 2 / S .  The 
probability of nonoverlap is 1 - 2 / S  = 1. 

Therefore if we want the posterior odds for some 
overlapping pair to be >0.9 (an odds of 9 ) ,  then we 
need a likelihood ratio of approximately 9 X ( S / 2 )  
x 5400. But, as argued above, the real issue for the 
present problem is the avoidance of false positives, and 
therefore the distribution of L ( x )  values for nonover- 
lapping pairs. As we will see later, this, in general, re- 
quires that we generate substantially larger L values 
for the overlapping pairs we wish to detect. 

4. The Kullback-Leibler Distance and Experimental 
Efficiency 

The K-L information (see Eq. [ 31 ) can be viewed 
as a measure of the distance between two probability 
distributions and as a measure of the difficulty distin- 
guishing between the distributions, or equivalently of 
the two hypotheses they represent, using the specified 
procedure. It has also been characterized, in the ter- 
minology of our problem, as the information per ob- 
servation in the experiment for distinguishing in favor 
of overlap as against nonoverlap, and as the “relative 
entropy’’ in the non-null distribution with respect to 
the null distribution (Kullback, 1968). 

In the text, we have used the K-L information mea- 
sure, through its dependence on the experimental pro- 
cedure used, as a linear measure of the hypothesis- 
discriminating efficiency of alternative experimental 
methods. Our arguments supposed, for example, that 
two different experimental methods for answering the 
same question are of equal efficiency if the K-L dis- 
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tances between the two hypotheses a t  test are the same 
under the two methods. This use of the K-L infor- 
mation measure was adopted in the context of a hy- 
pothesis-testing problem, which we argued was not 
simply one of classification but rather one in which 
the accurate assignment of posterior probabilities of 
overlap for each pair of clones was also important. 

Two types of arguments support this use of the K- 
L distance. First, we can take the log of the odds ratio 
given in the previous section, and then average these 
terms over the distribution of overlapping events to 
obtain the result 

I(1:2; X )  = p(slO)L(x;  X )  
x 

characterized by the type 1 and type 2 misclassification 
rates that result. While it is not true that two proce- 
dures that yield the same K-L information will nec- 
essary yield, for example, the same type 1 errors for 
fixed type 2, such a connection does exist as a form of 
asymptotic relation for large samples. 

For example, if I( 0 : N )  is the K-L information from 
a single repeat of an experiment to distinguish 0 from 
N ,  then 

where a,* is a lower bound on the type 1 errors for fixed 
type 2, say p = Po (Kullback, 1968, pp. 74-77). There- 
fore, if for two alternative experimental methods, X 
and Y ,  we have that, respectively, nx and n, are 
“asymptotic” in the above sense, and if 

which we can rewrite as 
n,I( 1:2; X )  = n,I( 1:2; Y ) ,  

(In O D ( 0 l X ) )  = I(0:N; X )  + In O D ( 0 ) .  
In these expressions, X stands for the particular ex- 
perimental procedure used to produce the randomly 
distributed experimental outcomes x .  The above equa- 
tion says that the K-L distance is equal to the difference 
between the expected value (with respect to the dis- 
tribution of overlapping events) of the log of the pos- 
terior odds in favor of overlap and the log of the prior 
odds in favor of overlap. Thus the K-L information, 
or “distance,” is equal to the amount by which the 
experiment has increased the average log-weighted 
odds in favor of overlap for overlapping events. This 
quantity is a measure of the average confidence with 
which overlapping events are correctly identified as 
weighted to value easy calls (exponentially) less than 
hard ones. Notice also that this quantity increases lin- 
early with the number of independent repeats of a given 
method 

(In O D ( 0 l n  X X ) ) ,  = O D ( 0 )  + n X I ( 0 : N ;  X ) ,  

where n X X denotes n independent repeats of the pro- 
cedure X. The K-L information measure can be used 
as a means of comparing one alternative experimental 
strategy against another, since, given two alternative 
experimental strategies X and Y ,  we can imagine rep- 
licating the X experiment n times and the Y experiment 
m times until n X I ( X )  is as close to m X I ( Y )  as we 
care, and then ask ourselves, on the basis of effort or 
other criteria, which of the two alternative methods of 
obtaining the same K-L information we prefer. 

The second line of argument comes from adopting 
the approximation that our problem is essentially one 
of classification and thus its performance is adequately 

then n, repeats of X yields the same performance in 
terms of type 1 error rates for fixed type 2 errors as 
does n, repeats of Y .  

Finally, consider the “ergodic” assumption that, av- 
eraged over pairs of clones from the same distribution, 
the K-L information per observation produced by n 
independent repeats of the “same” fingerprinting pro- 
cedure on the same pair of clones is equal, for n large 
enough, to the average information produced by using 
the procedure on n different pairs of clones randomly 
selected from the same population. To the extent that 
this is a valid approximation, we may also use the above 
result to estimate that “on average” a single execution 
of the X-experiment is worth 

I ( 0 : N ;  X )  
I ( 0 : N ;  Y )  

= 

repeats of the Y experiment. 
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