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Random clone mapping of genomic DNA is a subject of great interest in molecular biology. E. 
coli has just been mapped and work is progressing on some human chromosomes. In this paper 
we give estimates of the fraction of genomic DNA which is not clonable by partial digest with a 
restriction enzyme. 

1. Introduction. A revolution in biology has resulted from the recent advances 
in manipulating and reading DNA from the genomes of various organisms. All 
48 502 base pairs (nucleotides) of A, a bacteriophage that infects E. coli, are 
known, as are all 172 282 base pairs of Epstein-Barr virus that infects humans. 
In spite of all the progress of the last decade, the task of sequencing all 4.7 x lo6 
base pairs of E. coli (Daniels and Blattner, 1986) is still formidable, although it 
should be accomplished in the next few years. Recently there has been much 
talk of sequencing the human genome of 3 x lo9 base pairs (Roberts, 1987). 
After much discussion, the work is proceeding by first mapping the genome. 
One approach to mapping is by overlapping clones (see below) along the linear 
sequence. E. coli has recently been mapped by overlapping clones and is the 
largest genome that has been characterized in this fashion (Kohara et al., 1987). 
Two other large mapping projects have recently been reported: yeast (Olson et 
al., 1986) and nematode (Coulson et al., 1986). 
~ 

Construction of recombinant partial digest DNA libraries is a standard 
technique in genetic engineering (Dahl et al., 1981), and is, among other things, 
preliminary to mapping. The technique was developed to overcome the 
difficulty of handling a long DNA molecule by obtaining various DNA 
fragments short enough to be more easily studied in the laboratory. (The length 
of a fragment is the number of nucleotides contained in it. The unit is normally 
1 kbp lo00 nucleotides.) The procedure involves essentially the following 
three steps (Dahl et al., 1981; Lewin, 1985). 

(1) Degradation of DNA molecules into shorter fragments by restriction enzyme 
digestion. This is carried out with the help of site-specific endonucleases which are 
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enzymes that cleave the DNA molecules at specific short sequences. A complete digest 
allows all the recognition sites (or restriction sites) of a specific restriction enzyme to be 
cleaved. In contrast, a partial digest is a digest that is interrupted before completion, hence 
only a certain fraction of the restriction sites are cut. 

(2) Cloning the DNA fragments. The DNA fragments are inserted into viral carriers 
which commonly are either the bacteriophage 1 vectors, plasmid vectors or cosmid vectors. 
There are restrictions on the size range of the DNA fragments that can be accommodated 
by the various vectors. 

(3) Selection (usually random) of the recombinant DNA molecules to form a library. 

One of the biologists’ major concerns about a recombinant library is how 
representative it is, i.e. whether the library contains all the genetic information 
of the genome. It is known that certain sequence patterns will cause any 
fragment containing them to be unclonable in a A vector. For mathematical 
purposes, we take the point of view that all clonable fragments are equally 
clonable. We identify two main causes for some nucleotides to be not 
represented in the library. Since a vector can accommodate DNA fragments 
within a certain size range, some nucleotides will not be clonable-they can 
only be contained in fragments of lengths unsuitable to be incorporated in the 
vectors. Furthermore, some nucleotides, even though clonable, could be 
unselected-they are contained only in fragments left out from the selection 
process and therefore missing from the library. (Our terminology differs 
slightly from the standard one used by molecular biologists.) Ideally only 
unclonable nucleotides are missing from the library. 

The fraction of nucleotides that are unclonable after a complete digest can be 
determined easily by consideration of the distribution of restriction sites and is 
well known to be smaller than that by partial digest. The estimates of the 
fraction of nucleotides that are not clonable by partial digest and the fraction 
unselected have been carried out in two pioneering papers (Seed, 1982; Seed et 
al., 1982). In work published by Seed in the journal Biopolymers (Vol. 21,1982), 
the fraction is derived by considering whether a nucleotide is located between 
any two restriction sites spaced some suitable length apart and is expressed as a 
product of recursively defined conditional probabilities. The solution by 
recursion is computationally expensive and does not give any analytical insight 
about the dependence of the fraction on the biological parameters. 

It is the purpose of this paper to obtain an estimate of the fraction of 
unclonable nucleotides in simple form for parameter ranges within practical 
regimes. A more practical consideration, considered by Seed et al. (1982) but 
not in this paper, is the coverage of the genome by a finite sampling of cloned 
DNA since all clonable fragments are not equally clonable. Our approach in 
this paper is of a combinatorial nature. The central idea is to describe the 
different patterns of the distribution of restriction sites with respect to an 
arbitrary nucleotide such that it is not clonable. It turns out that in some cases 
only four sites, two on each side of the nucleotide, are sufficient to characterize 
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these distributions, and we are able to express the fraction in closed form. In 
other cases where the four sites do not provide sufficient information, we obtain 
upper and lower bounds. Our study shows that the fraction unclonable 
depends mainly on the maximum clonable length (L + I), and in a minor way 
on the minimum clonable length (15). The main conclusion of this paper is that 
for most practical purposes, a reasonably good estimate of the fraction of 
clonable nucleotides is: 

1 -e-P(L+r)(l + p ( ~  + I)) - $p2L2e-P(L+ 2 r ) ( p ~  + 3), 

here p is the frequency of occurrence of restriction enzyme restriction sites. 
This paper is organized as follows. Various assumptions and definitions used 

in our calculations are given in Section 2. For better understanding of later 
sections the estimation of the fraction unclonable by complete digest is 
presented in Section 3, even though the expression has been derived in a 
somewhat different context (Kuhn, 1930; Montroll and Simha, 1940). The 
main results are stated in Section 4 [equations (11) and (12)] and are explained 
in detail in Sections 5 and 6. Section 7 contains a calculation to show that all 
clonable fragments are present in typical experiments, although we do not 
study the properties of small samples (a few genome equivalents) from this 
distribution. Numerical studies of the derived estimates and concluding 
remarks are contained in Section 8. 

2. Assumptions and Definitions. We basically adhere to the assumptions and 
notation of Seed (1982) with additional ones pertinent to our calculations. All 
the genetic information of an organism is assumed to be contained in one single 
large DNA molecule which can be taken as a random sequence of the four 
nucleotides. The fraction of unclonable nucleotides and the probability that an 
arbitrary nucleotide is unclonable are the same and will be referred to 
interchangeably. The total number of nucleotides in a genome is N and the 
number of (identical) DNA molecules in a sample prepared for complete or 
partial digest is denoted by K. 

The restriction sites of a particular restriction enzyme are, 'to first 
approximation, randomly distributed throughout the DNA molecule (Hamer 
and Thomas, 1975). Let p be the frequency of occurence of such sites. In 
practice N b  l/p. To be precise,p is the probability that an internucleotide bond 
can be broken by the restriction enzyme. For example, the sequence GAATTC 
is the restriction site for the restriction enzyme Eco R1 which cuts the site by 
breaking the bond between G and A. In this case p can be viewed as the 
probability that any bond in the DNA molecule is between G and A in the 
sequence GAATTC. Henceforth a restriction site refers to the bond that can be 
broken by the restriction enzyme. It is also assumed that all the bonds in the 
DNA molecule have equal probability p of being restriction sites, even though 
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two such bonds must be at least some distance apart (6 nucleotides in the case 
of Eco Rl). .As we will see in the next section, when p is small enough the 
average distance between two restriction sites is large, so the error introduced 
with this assumption will be negligible. 

For an arbitrary nucleotide b* in the DNA molecule, we will label the ith 
bond to the left and to the right of b* as positions - i and i respectively. If there 
are m restriction sites to the left of b* at positions x,, x,, . . . , x.l where 
- 1 2 x, > x, > . . . > x m ,  and n restriction sites to the right of b* at positions y ,  , 
y ,  , . . . , y ,  where 1 y ,  < y ,  < . . . < y , ,  the location of restriction sites (relative 
to b*) is denoted by: 

(x; y)b*=(xm, * * * 3 x2, y , ,  y 2 ,  a * * 3 Yn). 

We will call (x; y)b* the restriction sites conjiguration (rsc) with respect to b*. 
(The case of no restriction sites on either side of b* is not “generic” when N>> l/p 
and we assume in general there are restriction sites on both sides of b*.) The 
subscript b* will be conveniently dropped so (x; y )  refers to the rsc with respect 
to the nucleotide under consideration. 

The size range of DNA fragments that can be incorporated in a particular 
type of cloning vectors is between L + 1 and L + r. For many cloning vectors, 
r - 10 kbp and L varies between 0 and 2r. Moreover, both L and r are relatively 
small compared with N. When the difference is insignificant, L, instead of L + 1 ,  
is referred to as the minimum clonable length. In a partial digest where the 
restriction sites of one DNA molecule at x i ,  1 5 i $ rn, and at y j ,  1 $ j  5 n, are cut 
but those at xi- , , . . . , x, , y ,  , . . . , y j -  , are intact, the resulting DNA fragment 
containing b* is denoted by [ x i ,  y j ] .  The latter is called a clonablefiagrnent if its 
length l (xi ,  y j ) ,  given by: 

l ( X i ,  y j ) = y j - x i - l ,  

satisfies L < l (x i ,  y j )  5 L + r. We will say b* has a clonable conjiguration if its rsc 
(x; y )  is such that [ x i ,  y j ]  for some i and somej, 1 5 i 5 m, 1 5 j 5 n, is a clonable 
fragment when the appropriate restriction sites are cut. 

A consecutive sequence of bonds located from position k, to k, (with respect 
to b*) is denoted by the set: 

. 

{ k ,  , k,  1 = { k (  k, 5 k 5 k, } .  
Note the difference of this from the fragment [k,, k,] where the bonds at k, and 
k, must be restriction sites. The bond at position k, where k, 5 k 5 k, , is loosely 
referred to as the bond in the set {k, , k,}. The number of bonds in a set A is 
denoted by I A I. In particular, 

k, - k, + 1, if sgn(k,) = sgn(k,), 
k, - k, , otherwise. 
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Examples of some typical values of the various parameters are given in the 
appendix. 

3. Fractions of Nucleotides not Clonable by Complete Digest. Since all 
restriction sites are broken in a complete digest, all of the K DNA molecules are 
broken, always at the same bonds, and it suffices to focus our attention on any 
one of them. Moreover, we can consider the DNA molecule as being broken up 
randomly with each bond having equal probability p of being broken. 
Theoretical study of such processes have been undertaken (Kuhn, 1930; 
Montroll and Simha, 1940) and we give a brief description according to our 
notation. 

Let f ( Z )  be the probability that an arbitrary nucleotide b* is contained in a 
fragment of length 1 after complete digest. 

PROPOSITION 1. f(l)=l$(l--p)l-l. 
Proof. Observe that after complete digest b* can only be contained in the 

fragment [x, , y,], thereforef(1) is also the probability that (x; y) is such that 
l (x , , y , )=y , -x , - l= l .S incey l~  l,thevalueofx,canonlyvarybetween -1 
and - 1 .  For each fixed value of x,, there are 1- 1 bonds between x, and y, 
which must not be restriction sites and the probability for that to be the case is 
given by the geometric distribution p2(1 - p ) ' - ' .  Summing over all the possible 

Remark. Technically the above expression forf(1) is not true if there are less 
than 1 bonds on either side of b*. The correction term is however insignificant 
when NB l/p. 

Henceforth we will refer to the two restriction sites at x, and y, as the 
Junking restriction sites of b*. Also when p is sufficiently small we can express 
f ( 1 )  as: 

values of x, and we obtain the expression forf(1). 
. 

f(l)=lpZe-P('-,). (1) 

It is easily shown thatf(1) is maximum when 1 = l/p and is practically zero when 
1 is very large. The shape of the curve off(Z) is shown in Fig. 1. 

Let F; and FO be respectively the fraction of nucleotides which are clonable 
and unclonable by complete digest. Obviously: 

When L+r  is large enough, the summation in equation (2) can be 
I approximated by an integral: 
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Figure 1. Length distribution of fragment lengths after complete digest where 
p x 1 / 5  kbp-'. 

F: ~ J ~ ~ ' ~ f ( 1 )  d1. 

Expressingf(1) as in equation (1) and evaluating the integral, we obtain: 

Notice that F: is approximately the area under the graph off(1) between 
1 = L and 1 = L + r. If L 4 l/p and r B l/p, as in the case for most bacteriophages, 
F: corresponds to the area of a large region and the fraction of unclonable 
nucleotides is not very large. But if L a  l/p, as is the case for most cosmid 
vectors, F: is the area of a small region so that a large part of thegenome is not 
clonable. As an example, suppose the E. coli DNA molecule is digested with the 
enzyme Eco R1 where the corresponding restriction sites occur at p x 1/5000. If 
the DNA fragments are cloned by the phage Igt WES (L = 2.4 kbp, r = 15 kbp), 
F; x22  %. If the cosmid vector pJC74 (L= 19 kbg, r =  17 kbp) is used, 
F ,  ~ 9 0 % .  We will see later how much F; can be reduced if the DNA 
molecules undergo partial digestion. 

4. Fraction of Nucleotides not Clonable by Partial Digest. Let F -  be the 
fraction of nucleotides not clonable by partial dij@ If the flanking restriction 
sites of an arbitrary nucleotide b* are-too far apart (Z(x,, y , ) > L + r ) ,  b* will 
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never be contained in any clonable fragment. On the other hand, if they are too 
close together ( l ( x , ,  y l ) s L ) ,  b* might still be clonable if it has a clonable 
configuration and at least one of the K DNA molecules is cut by the restriction 
enzyme at appropriate restriction sites to yield a clonable fragment containing 
b*. The minimum clonable length is therefore not a major constraint. This is 
different from complete digest where the maximum and minimum clonable 
lengths are equally important constraints. It is thus clear that F -  -= F; . 

Let S +  and S -  be respectively the set of all possible forms of (x; y)  such that 
b* has and has not a clonable configuration. We distinguish two cases or events 
such that b* is not clonable: 

(All (x; Y k S - ;  
(A2) (x; y ) € S +  but none of the K DNA molecules is cut by the restriction 
enzyme in an appropriate fashion so that b* is contained in a clonable 
fragment. 

Let P(A1) and P(A2) be the probability of the two events respectively, then: 

I F -  = P(A1) + P(A2). ( 5 )  

For K large enough, it can be shown that P(A2) is effectively zero (see Section 
7), therefore: 

F- x P(A1). (6)  

Note that event A1 depends only on the distribution of restriction sites so F -  as 
expressed in (6) does not depend on the fraction of restriction sites cut in a 
partial digest. 

In order to calculate P(Al), we first partition S -  into two subsets S’ and S! 
where: 

the set of all rsc’s such that after partial digest b* can only be contained in 
fragments too long to be clonable, and: 

SZ ={(.; Y ) E S - I l ( X , ,  Y,)sJq’ 
the set of all those rsc’s such that b* can only be contained in fragments which 
are too short and/or too long to be clonable. Then P(A1) can be expressed as: 

P(Al)=P((x; ~ ) E S I  )+ P((x ;  Y)ESZ ). (7) 

Henceforth we will denote P((x;  ~ ) E R )  by P(R) for any subset R of S! or S! . 
Since any (x; y) in S! is characterized by the flanking restriction sites of b* 

being too far apart, we can easily express ~ ( s l )  in terms off(l): 
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where approximation is taken for very large Nand L + r. On simplification we 
get: 

(8) P(S' ) x (P(L + r )  + 1)e-dL+r). 

The expression for P(S!) is more complicated and we treat the case of 
L 5 r + 1 and of L > r + 1 separately. (Most bacteriophages satisfy L < r and 
most cosmid vectors satisfy r < L < 2r.) 

THEOREM 1. For L s r +  1: 
L 

P(SZ_)=p2(1 -p)2(L+r) (1 -p)-"+"g(t), (9 1 
t = l  

where: 

g(t)=p2t3/6 + p( 1 -p/2)tZ + (p2/3 -p + 1)t. 

See Section 5 for the proof of the theorem. Approximating the sum by an 
integral: 

where: 

Note that P 

G(L, r ,  p ) =  &2L2e-P'L+2r) (PL + 3). 

(Si) if L=O. 
Substituting (8) and (10) into (7), an estimation for P- for L s r +  1 can be 

obtained in closed form: 

F- =e-p(L+r)(l +p(L+r))+G(L, r, p). (11) 

Note that when r is large G(L, r, p) is small compared with the first term. This is 
consistent with our earlier remark that the maximum clonable length is the 
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major constraint in a partial digest. Numerical studies of this expression is 
carried out in Section 8. 

THEOREM 2. For L > r + l :  
(a) P(S5 )2G(L, r, p); 
(b) P(S?)<c(L)G(L, r, p) where: 

l+e-Prp(L-r)[l +p(L-r)/2], L $ 2r, 

c(L)= 1 +ep(L-Zr), 2r<L$4r, { + ~ P ( L - J ~ ) I ~  4r -c L. 

See Section 6 for the proof. The corresponding estimate of F- is: 

F -  -e-P(t+')(l +p(L+r))+c'G(L, r, p), (12) 

where c' varies between 1 and c(L). Note that when r is large, the upper bound 
and lower bound for L s 2 r  are very close to each other. For other values of L, 
the upper bound is only a very loose one. The comparison of the upper and 
lower bounds is carried out in Section 8. 

5. Estimation of F- for L$r+  1. For each (x; Y)ES! , define: 
t =  max Z(xi, yj). 

i.j, 
[Xl .YjIdL 

In other words, t is the maximum length of al1,possible fragments in which b* 
could be found after partial digest but are too short to be clonable. The two 
restriction sites which give rise to the fragment (containing b*) of length exactly 
t are labelled x, and yd respectively. 

LEMMA 1. For each (x; y)€S?, x,and y,as described above can be identijied and 
are unique. 

Proof. For each (x; y ) ~ S t  , Z(xl, yl) $ L, so t is well defined and the labelling 
of x, and yd is always possible. Suppose x, and yd are not unique and there exist 
3, and jjd such that Z(3, jjd) is also t. Without loss of generality assume x, < 2, 
(hence yd <jd) and note that - tsx,4 - 1. Since (x; y) does not have a 
clonable configuration, either Z(x,, jjd) 5 L or I(x,, j j d )  > L + r .  If the former case 
holds, [x?,jjd] is also too short to be clonable but longer than t, a 
contradiction. If the latter case holds, there are more than t- 1 nucleotides 

H 
For each t, 1 $ t 6 L, let C, be the set of all (x; y) in S! such that the longest 

between x, and ZaY again a contradiction. 

fragment too short to be clonable (namely [x,, yd]) is of length t. 
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THEOREM 3. The family of sets {CJ 1 6 t 5 L  forms a partition of S5, i.e. 
L u Ct = SZ_ and C,nC,=O for all t ~ s .  

t = 1  

L 
COROLLARY 1. P(S2_)= P(C& 

LEMMA 2. If(x; y)EC,,anybondin {yd+l ,x l+ (L+r)+ l }u{y , - (L+r) -1 ,  
x,- l} is not a restriction site. 

Proof. If(x;y)EC,,x,andy,must satisfy -tsx,s-l andy,=x,+t+I. 
Since all fragments of the form [x,, yj] are not clonable, we must have 
yj<xl + L + 2  or yj >xl + (L+r )+  1 for any yj. Similarly, we must have 
yj < x, + L + 2 or yj > x, + (L  + r) + 1 when considering fragments of the form 
[xa,yj]. Hence all bonds in { x 1 + L + 2 , x 1 + ( L + r ) + l } u { x , + L + 2 , x , +  
(L + r) + l} are not restriction sites. Observe that for L 6 r + 1: 

t = 1  

x1 + L + 2 - (x, + (L  + r )  + 1)s 1, 

which means {xl + L + 2, x1 + (L+ I ) +  l} u{x, + L+ 2, x, + ( L  + T )  + l} = 
{x, + L + 2 ,  x1 + (L+ r)+ l}. Next we consider bonds in {yd+ 1, x,+L+ I}. If 
any one of these is a restriction site, there will be a fragment [x,, yj] longer than 
t and still too short to be clonable, i.e. (x; ~ ) E C ,  where t < s s L ,  which is a 
contradiction. Analogous arguments show that all the bonds in {y, - (L + I )  - 

As a result of the last lemma, all (x; y ) ~  C, must be of the form indicated in 
Fig. 2. Note that it is not necessary to specify the restriction sites in {x,+ 1, 
x1 - l}u{yl + 1,yd- l}, Le. b* is not clonable whether the bondsin thesesets of 
(x; ~ ) E C ,  each of which characterized by the triple v =  (x,, xl, y,) instead of 
regarding all rsc’s in C, as being distinct. (The restriction site yd is omitted-it is 

1, x,- l} to the left of b* also cannot be restriction sites. 

I I I I ... : 0 0 - ...... -0- 0 : ... : 0- 0- ... - b’ - ... - 0 1  0 :  ... : 0- 0 -  ...... - 0 : 0 : ... 

\ I t  t t t l I  

Figure 2. The general form of restriction sites configuration in C,. The nucleotide 
under consideration is “b*”, while the other nucleotides are represented by “0“. An 
internucleotide bond is indicated by ‘‘D” ifit is a restriction site, by ‘‘-*if it is not, 
and are restriction sites or not. It is therefore natural to consider equivalence classes 

by “:” if it can be either. 
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determined by x,.) Let If be the set of all possible choices of x,, x1 and y,: 

If = { v = (x, , x 1 y1 )I - t 5 x, 5 - 1, x, 5 - 1, 1 5 y 1 5  yd = xa + t + I} * 

For each triple V E I ~ ,  let E,(v) be the corresponding equivalence class of (x; y). 
Then: 

P(c,)= P(Ef(V)). 
vs l t  

THEOREM 4. 

-1 c c-p2x,z + p2(1 + t)x, + (1 -p) (1 + tp)]. 
x.= - t  

Proof. All the rsc's in each equivalence class E,(v) are such that L e  bonds in: 

{ ~ 1 - ( L + r ) ,  x,-1}u{x1+1, - l}u{ l, y1- l}u{yd f 1, + (L+ l}, 

must not be restriction sites. Direct calculation shows there are M =  
2(L + r )  - (t + 1) bonds in the above set. The total number of bonds which must 
be restriction sites, on the other hand, can be 2,3 or 4 depending on whether 
x, =xl or yd=yl.  Let n(v) be the number of restriction sites determined by v. 
When x, is fixed let n, , n3 and n4 be corrspondingly the number of choices of x1 
and y, such that n(v)=2,3 or 4. Clearly, n, = 1. There are - (x,+ 1) choices of 
x1 such that xa#xl,andyd-l =x,+tchoicesofy, such that y ,  #yd, therefore 
n3 = t - 1 and n4 = - (x, + 1) (x, + t). Consequently: 

P(Ef (v)) = p " ( V ) (  1 - p )  M, 

and: 

which on rearrangement of terms gives the expression for P ( c )  in the statement 
of the lemma. H 
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The summation in Theorem 4 involves a quadratic polynomial in x,  and can 
be evaluated explicitly to give: 

QV), (13) 2(L+r ) - ( t+  1) P(C,)=p2(1 -P) 
where: 

~ ( t )  = p2t3/6 + p (  1 -p/2)t2 + (p2/3 - p  + 1)t. 

Hence by Corollary 1 we obtain: 

L 
p ( p ) = p 2 ( 1  - - p ) Z ( L + r )  c (1 -p)“f+”g(t). 

r = 1  

The last summation can be approximated by the integral: 

loL ePt& dt, 

which upon evaluation gives: 

GP 1 2,-p(L+2r) {pL3 + 3( 1 - p ) ~ ~  + 2pL + 2e-PL - 2}, 

(PL + 3), 1 2 ~ 2 ~  - p(L + 2r)  = i5P 

in (10). 
Remark. Our description of nonclonable rsc’s of b*, in particular Lemma 2, 

assumes that there are at least L + r bonds on both sides of b*. If b* is located at 
a distance less than L + r from either end of the molecule, it is clearly more likely 
to be unclonable. In practice, L + r is relatively small compared with Nand our 
description does not hold for only a negligible portion of the nucleotides. 

6. Estimation of F- for L > r + 1. When L > r + 1 Lemmas 1 and 2 do not hold 
in general. We illustrate this with the following example. . 

Example 6.1. Suppose L = 8, r = 2 and t = 7. Let (x;  y ) € E 7 (  - 6, - 2 , l ) .  Then 
the bonds at -9, -8, -7, 3, 4, 5, 8, 9, 10 cannot be restriction sites. If the 
bonds in { - 5, - 2) are not specified, there is no definite conclusion about the 
bonds at 6 and 7. This creates a “hole” to the right of b* (at (6,7}) instead of a 
consecutive string of bonds which must not be restriction sites. If there is a 
restriction site at 7 but not at - 2, - 3, -4, - 5 or 6, (x; y )  is still a rsc in E7( -6, 
- 2 , l ) .  If there are restriction sites at - 2 and 6, (x;  y) is also a rsc in E, (- 2, 
- 1,6). If the bonds at - 3 and 6 are restriction sites, (x; y )  is in C, . Lastly, if the 
bonds at -4 and 7 are restriction sites, (x;  y) is a clonable configuration. 

Let (x;  ~ ) E C ,  where there is a restriction site at k. Define: 
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k+t+2,  if kS -1, 
k-t-2, if k2 1, 

and : 

k+(L+r)+l ,  if ks -1, I k-(L+r)-kZl.  
k"= 

In order that there is no fragment (containing b*) of the form [k, -1 ( [ e ,  k]) 
which is longer than t and shorter than L + r ,  all bonds in {k', k"} ({ k ,  k'}) must 
not be restriction sites. A hole is created to the right of b* if 

x; >x;+ 1, 

and to the left of b* if 

y; <y:- 1. 

This is expressed more explicitly in the following lemma. 

LEMMA 3. Let (x; y)€C, There is exactly one hole if and only if LZr+2 ,  
(L + r)/2 + 1 5 t 5 2(L + r + 1)/3 and either: 

(a)  - t s x , S  -(L+r-t+2) and L + r + x , + l - t s x , s  -1, 

or : 

(b) L + r - 2 t + 1 5 x a s  -1 and 1jylSx,+2t-(L+r) .  

The hole is to the right of b* if (a) is satisfied and to the left if (b) is satisfied. 
There is simultaneously one hole on each side of b* if and only if L 2 2r + 3, 
t > 2(L + r + 1)/3 and both (a) and (b) are satisfied. 

For convenience sake, let I, = I,0uI,tuI,2 where It? is the set of those triples 
v = (x,, x, , y , )  such that the corresponding rsc contains no hole(s), and Itl and 
I,, are respectively the set of those satisfying (a) and (b) in Lemma 3. Also the 
hole to the right (left) of b*, i.e. the set of bonds in {XI+ 1, x; - l} '({y; + 1, 
y s -  l}), will be denoted by X( W), and the set of bonds between x, and x, 
(between y ,  and yb), by Y( V). 

When L>r+  1, the expression for P(CJ given by (13) still holds if 
t < (L + r)/2 + 1. On the other hand, an accurate derivation for P(C,) requires 
more information on the location of restriction sites other than x,, x, , and y ,  
when t 2 (L+r)/2+ 1. Since it is not feasible to keep track of all the possible 
ways the restriction sites can be located in X, Y, Wand Vsuch that b* does not 
have a clonable configuratiQn, we will determine upper and lower bounds-in 
closed form-for P(C,) and consequently for P(S! ). 
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Let ~ € 1 ~ ~  ult2. If (x; y) is a rsc in Et(v) where there are some restriction sites in 
X and/or W, in some cases (x; y) is also a rsc in Et(v’) where v # v’, as seen in 
Example 6.1. Therefore even though: 

u Et(v)=c , ,  
valt 

the family of sets: 

{Et(V)1vaIt 9 

does not constitute a partition of C, anymore. This gives an upper bound for 
P(S! ): 

L L 

P(S! )= c P(c,)< c c P(Et(v)). (14) 
t =  1 t = 1 volt 

This expression will be estimated by obtaining upper bounds of P(E,(v)) for 
different values of t and v.  We first establish a lower bound for P(S! ). 

If v € l t O ,  Et(v)nEt(v’)=O for any v’#v,  hence: 

W t ) =  c P(Et(v) )+P ( u E h J ) ) .  (15) 
valto vel t luIt2 

Consider Et(v) where v ~ 4 ~ u 4 ~ .  Let E:(v)cE, (v)  be the set of those (x; y) 
such that all bonds in Xand Ware not restriction sites. In that case the bonds in 
Y and Vcan be unspecified. Such forms of (x; y) are contained in some Ep(v) for 
exactly one triple v, so: 

P( u EtW)’ c P(Jmv)), 
vert1 u I t 2  veIt1ult2 

and hence: 

P(Ct)> c P(Et(v))+ P E V J ) ) .  ’ 
E l t o  V d t l  U I t 2  

The forms of all (x; y) included in the last expression are exactly the same as 
those described in the last section, so: 

dt) ,  (16) 2 ( L + r ) - ( t +  1) W = p 2 ( 1  -P) 
the expression on the right hand side of (13), is a lower bound for P(C,). Direct 
substitution of (16) into P ( S ! )  proves part (a) of Theorem 2. 

The next lemma gives the main idea to obtain upper bounds of P(E,(v)) for 
different values o f t  and v.  
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- LEMMA 4. Let ~ € 1 , ~  (~€4,)  and (x;y)~E,(v)\E:(v) such that there are n 
restriction sites in X (in W). Denote the location of the restriction sites in X (in W) 
by z(n) = (zl , . . . , z,) where z1 < 2, < . . . < z,. Then the total number of bonds in 
X u Y  (WuV) which cannot be restriction sites is IX I - n + M'(( W I - n + M') 
where: 

n - 1  

M'= M'(z(n))= L+  r - t + min(L + r - t, zi+ -zi). 
i =  1 

Proof. We prove the case of v €Itl. The total number of bonds in Xwhich are 
not restriction sites is obviously (XI - n. Consider the bonds in Y. Let Ai c Y be 
the set (26 zi}, 1 s i s n .  Note that ]Ail = L+r- t  for all i. Clearly the bonds in: 

n 

A =  u A i ,  
i= 1 

cannot be restriction sites, and the bonds in Y \ A  can be unspecified. If 
zi+ -zi 5 L+ r -  t ,  A i u A i +  = (26 zi+ 1> and thus (+Ai+ I = (Ail + zi+ - 
zi=L+r-t+zi+l--zi. If z,+,-z,>L+r-t, Ai and A i + l  are disjoint and 
hence lAiuAi+ I = 2(L + r- t).  Using induction on i, we get I A I = h4' and the 
proof is complete. 

COROLLARY 2. f l v ~ I ~ ~ \ I , , :  

P(E,(v))=p"(')(l -p)M{ 1 + E C pn(l - P ) ~ ' - ~ } ,  (17) 
n = 1 z(n) 

where the last sum is over all z(n) satisfying 1 s z l  <z2 < . . . <zn 5 1x1. 
THEOREM 5 .  I f r + 2 s L s 2 r + 2 ,  ( L + r ) / 2 + l s t s L  and vEIt1uIt2, then: 

P(E,(v))< pn(") (1 -p)"{ 1 +e -"'p(L-r) [l +p(L -r)/2]}. 

Proof. Note that v cannot be an element of both Ztl and I,, . We show the case of 
v E ; the same proof also applies when v €4,. Since I XI = x1 - x, + t - (L + r )  5 
2t- (L  + r )  - 1 5 L + r - t + 1 in this case, any z(n) satisfies zi+ -zi 5 L + r -  t for 
all l s i s n - 1 ,  hence M'(z(n))=z,-z, +L+r-t  for all z(n). Therefore: 

(1 - p ) M '  = I XI (1 - p ) L + ' - t ,  
z(1) 

and for n 2 2: 
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Consequently: 

E p" (l-p)M'-n 
n = 2  z(n) 

L+r-'  p" "5' (IXl-d)( d-1 ) ( l - ~ ) ~ - "  
n-2 = (1 -P) 

n = 2  d = n - 1  

= (1 -p)L+'- '  d-1 
d = l  

= (1 - p ) L + r - t - l  P 2 "E (I XI - d) 
d =  1 

=(l-p)=+r-'-lp2IxI(IxI-1)/2 
% p P ) L + r - ' - 1  P 2 JxJ2/29 

which together with the term for n =  1 gives: 

I Xlp(1 -p)L+'- ' -  (1 +PIX1/2). 

Since I XI 5 2t - (L  + r )  - 1 and t 5 L, the last expression is bounded above by: 

p(L-r-  1) (1 -P)~- ' ( I  +p(L-r-1)/2) 

e-Prp(L - r )  [ 1 + p(L - r)/2]. H 

It is not easy to estimate M'(z(n)) for any z(n) when L 2 2r + 3 and we only 
calculate a very loose upper bound. 

THEOREM 6. Suppose L 1 2 r  + 3. 
(a) I f tz (L+r) /2+1 and VEI,,\I,~ or V E I , ~ \ I , ~ ,  

P(E,(~))<p"(")(l-p)~{l +e(L-2r)p}; 

(b) if t>2(L+r+1)/3 and v ~ I , ~ n 1 , ~ ,  

P(E,(~))<p"(')(l-p)~{l +e(L-3r)p}2. 
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- Proof. (a) Since M(z(n)) 2 L + r - t + n - 1 for all z(n): 

=P"(v)(l-p)"{l+(l--p)L+'-'-' C(1 +P)lXl- 111 
<p"~"(l-p)"(l+(l-p)'-'[(l +p)L-r-l- 111 
% pn(v)( 1 - p )  "{ e(L - 2 ' ) ~  + 11. 

(b) If vEZr lnI t2 ,  either X, or W, or both can contain restriction sites, therefore: 

The proof is complete by noting that both 1x1 and I WI cannot exceed 3t 
- 2(L + r )  - 2. 

COROLLARY 3. (a )  If2r+3$L43r+p-'In(erP-2): 
P(E,(~))<p"(')(l-p)~{l +e(L-2r)p) 

for all V E I , ~ U I , ~  and for all tz (L+r) /2+ 1; 
(b) if L > 3r +p-l  ln(erP -2): 

P( E,(v)) < pn(")( 1 - p)"{ 1 + e(L - 3r)p} 2 ,  

forall vEIt1uIt2 andforall t=>(L+r)/2+1. (Whenr&p,p-'ln(erP-2)canbe 
replaced by r.) 

In summary, for all 1 5 t 4 L and v E I,: 

pn(')(1-p)"(1 +e-Pr[l +p(L-r)/2]}, r<L$2r, 
pn(v)( 1 - p )  "{ 1 + e(L- 2r)p} ,  2r < L 5 4r, 

4r < L. 
P(E, (v)) i p n W ( l  -p)"{ 1 + eW- 3r )p )  2 

Note that since r is very large in practice, terms like r + 1 and 2r + 3 are replaced 
by r and 2r to give simpler relation between L and r. Direct substitution of the 
above upper bound on P(E,(v)) into (14) proves Theorem 2(b). 

Remark. Our estimate of the upper bound on P(E,(v)) is very generous, 
especially when L >  2r, and we expect the actual value of F- to be closer to the 
lower bound than to the upper bound. This is corroborated in our simulation 
in Section 8. 
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7. Clonable Configuration and Clonability. In this section we show that P(A2) 
is practically zero if K is large enough. In other words, all nucleotides with 
clonable configurations can be considered as clonable. The argument is 
suggested by Louis Gordon. 

Since clonable range is between L + 1 and L +  r, the expected number of 
restriction sites between the two ends of a clonable fragment is between Lp and 
(L + r )p .  Let p be the fraction of restriction sites that are cut in a partial digest. 
The lower bound of the probability that any clonable fragment is obtained 
from one DNA molecule (one gehome) is approximately: 

ru2(1 -p)(L+r)P* 

Therefore, any clonable fragment will be obtained on the average once in not 
more than 

1 
p’ (1 - p)(L + r)P ’ 

DNA molecules. 
Suppose every restriction site is the left end of some clonable fragment@). 

There are approximately Np restriction sites and each is approximately the left 
end of rp distinct clonable fragments, so there are altogether Nrp’ clonable 
fragments. A very generous overestimate of the number of molecules required 
to yield all these fragments is: 

As an illustration, suppose E. coli is being digested with Eco R1 with p = 0.5, 
and the cloning vector is pJC74 where L=19x lo3 and r=17x lo3. The 
number computed from equation (18) is approximately 1.8 x lo6, which is well 
within the limit of a normal sample size of about 2 x lo9 molecules. 

8. Numerical Studies. We first see how the fraction unclonawe by partial 
digest compares with that by complete digest. For the same example at the end 
of Section 3, the fraction unclonable in a partial digest is about 14% and 0.7% 
respectively when Agt WES and pJC74 are used as cloning vectors. The 
improvement for pJC74 is remarkable. Since the maximum clonable length is 
the major constraint in a partial digest, most cosmid vectors, which can 
accommodate longer DNA fragments, are much better cloning vectors than 
bacteriophages in this respect. 

When r is large, the estimates given in (11) and (12) are very close to each 
other for L s  2r, and are also approximately the same as P(S?)xe-P(L+r)(l + 
p ( L + r ) )  (8). This can be seen in Fig. 3 where the fraction of nucleotides not 
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clonable corresponding to a restriction site frequency p = 1/5 kbp- and 
r = 15 kbp is plotted for L varying between 0 and 2r. This agrees with our earlier 
remark that the maximum clonable length is the major constraint. 

To test the validity of (11) and (12), a random number generator is used to 
assign restriction sites (p= 1/5 kbp-’) on a molecule of the size of the genome 
of E. coli. The fraction of unclonable nucleotides in that molecule is then 
obtained for r = 5 kbp and L varies between 0 and 4r. (While typically L < 2r in 
most A-vectors, in practice shorter fragments are discarded and the “usual” 
insert size in a R library is in the range of 15-20 kbp, i.e. Y =  5 kbp, L x  3r.) The 
process is repeated 10 0oO times and the mean as well as the 99% confidence 
interval of F -  are calculated and compared with the lower bound given by (1 1). 
The comparison, shown in Fig. 4, indicates very good agreement between the 
two. 

We conclude that a nucleotide is unclonable mostly because its flanking 
restriction sites are too far apart and for practical purposes e-fiL+‘)(l +p(L+ 
I)) + SP 1 2 ~ 2 ~ - p ( L + Z r )  (pL + 3) is a reasonably good estimate of the fraction of 
unclonable nucleotides. 

APPENDIX 

For E. coli, Nx4.7 x lo6. The restriction sites for the enzyme Eco R1 occur at probability 
p x  1/5000, and for Hae it is about 1/3500 (Hamer and Thomas, 1975). The weight of a typical 
sample for digestion is about 10 pg, which means K x 2  x lo9 for E. coli. The size restriction of 
different cloning vectors is given in Table 1. 

Table 1. Cloning capacity of some vectors 
recommended for cloning DNA fragments digested 

with Eco R1. (Adapted from Dah1 et al., 1981.) 

Phage Iz cloning vectors 
Phage L W P )  r W P )  

Igt WES 2.4 15 
Charon 3 0 8.6 
Charon 4 7.3 12 
Charon 21A 0 8.2 
NM 641 0 12.5 

Cosmid vectors 
Cosmid L W P )  r W P )  

pJC74 19 17 
pJC75-58 23 17 

29 15 
17 pJB-8 30 

MUA 31 17 

PHC 
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Figure 3. Comparison of the different estimates of F -  for p =  1/5 kbp-', r =  15 kbp 
and L varying between 0 and 2r. The broken line corresponds to P(S!.) and the 
upper and lower solid lines correspond respectively to upper and lower bounds for 

F - .  Note that the two solid lines are not that much different from each other. 

-3 
10 20 0 

Minimum donable length (L) in kbp 

Figure 4. The mean and 99% confidence interval of F -  calculated from 10 OOO 
randomly generated DNA molecules for p =  1/5 kbp-', r=5 kbp and different 
values of L is compared with the lower bound given by (1 1). When L is not too large 

the confidence interval is virtually of no width. 
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