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We study approximations to the distribution of counts of matches in 

the best matching segment of specified length when comparing two long 
sequences of i.i.d. letters. The key tools used are large-deviation inequali- 
ties and the Chen-Stein method of Poisson approximation. The origin of 
the problem in molecular biology is indicated. 

1. Introduction. A strand of DNA can be represented as a long string of 
letters from the four-letter alphabet {u, c ,  g ,  t ) .  Currently, a large amount of 
laboratory effort is being expended in the determination and subsequent 
compilation of genetic information from various organisms. This information 
consists of listings of these long strings. A natural question arises from 
comparison of two or more such strings, by biologists' efforts to determine 
when a comparison detects an unusual congruence shared among the com- 
pared strings. Such statistical problems are naturally cast in the usual hypoth- 
esis-testing context, in which we need to compute the tail probability (the 
biologists' p-value) for a seemingly unusual event. 

The work we report here is motivated by the scientific desire to compute the 
sort of tail probabilities of interest to molecular biologists in their evaluation of 
closely matching regions of different biological sequences. Until recently, the 
standard tool used in computing tail probabilities was a probabilistic use of the 
Bonferroni inequalities as pioneered in Watson (1954). Such calculations 
essentially establish a Poisson approximation for the distribution of counts of 
weakly dependent rare events. See, for example, the moment calculations in 
Karlin and Ost (1987) and the discussion in Karlin, Ghandour Ost, Tavare and 
Korn (1983). Use of the Bonferroni inequalities requires computation of 
moments of arbitrarily large order; the task is always tedious and frequently 
technically demanding. 

A promising alternative to using Bonferroni methods to establish the 
Poisson approximation for dependent events is to use methods developed in 
Chen (1975) and Stein (1986). In Arratia, Goldstein and Gordon (1989), the 
Chen-Stein method of Poisson approximation is generalized to a multivariate 
context, and various examples relevant to sequence matching are presented. 
Indeed, the realization that the results of Arratia, Gordon and Waterman 
(1986) can be obtained without the high-order moment calculations required 
by Bonferroni methods has enabled us to cope successfully with problems 
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whose difficulty we previously thought insurmountable. The mathematical 
motivation for this paper is to present the tools needed to apply the Chen-Stein 
method to sequence comparison problems. 

In this paper, we consider the simplest problem of possible statistical 
interest, matching segments from two independent sequences of independent 
identically distributed letters. Surprisingly, in Section 7, we shall see that even 
such a naive formulation might be useful in a biological context. Our main 
results, Theorems 3 and 4 of Section 6.3, give the asymptotic distribution of 
unusually rich matches between independent sequences. These approxima- 
tions are described in terms of corresponding distributional results for unusu- 
ally head-rich regions found in a single random sequence of i.i.d. coin tosses. 
The latter distributions are given in Theorem 1 of Section 4 and in Theorem 2 
of Section 6. Our notation and a discussion of the applicability of the Poisson 
approximation in the context of unusually head-rich regions for coin tossing 
appear in the rest of this introduction, and continue in the following four 
sections. 

The method for analyzing the probability of occurrences of long runs of 
heads or matches involves a Poisson approximation. There are two distinct 
issues: The expected number of events (A or A’) must be approximated, and the 
dependence among the events being counted must be controlled. The first 
issue, handled in part by Lemma 1, is the same for coin tossing and for 
matching independent, i.i.d. sequences. The second issue is handled easily in 
the case of coin tossing (Theorems 1 and 2) and is very complicated in the case 
of sequence matching (Theorems 3 and 4). 

Let 0 < p < a I 1 and let . . . , Z-l, Z,, Z,, Z,, . . . be an i.i.d. sequence with 
p = P(Zi  = 1) = 1 - P(Zi  = 0). Let R, = RP, be the length of the €ongest 
consecutive run, contained within the first n tosses, in which the fraction of 
1’s is at least a. We refer to R, as the length of the longest quality a head 
run. Erdos and R6nyi (1970) proved that 

where 

H ( a , p )  = alog - + (1 - a)log - K 1 (:I;) 
is the relative entropy of a and p, with H(1,p) = log(l/p). Deheuvels, 
Devroye and Lynch (1986) prove a refinement of this which, in the case of coin 
tossing, essentially says that for p < a < 1, I 

In this paper we attempt to analyze the distribution of R,. Define centering 
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constants c, = c;, 

(log(n) - i loglog(n)) /H(a,p)  i f p  < a  < 1, 
if a = 1. { log( n 1 /log( 1 /P ) 

(4) c, = 

Our result implies that the family {R, - c,) of random variables is tight and 
yields explicit bounds on the tails of the distribution of R, - c,. The distribu- 
tion of the longest pure head run, which is the case a = 1, was analyzed by 
Goncharov (1942). 

For fixed positive integers t and n, let Snit  be the maximum number of 
heads occurring among t consecutive tosses starting within the first n tosses. 
Theorem 1 gives a simple approximation to the distribution of Sni t :  for 
integers s with p < s / t  I 1, 

P ( S , ; ,  < s) isclose toexp 

together with explicit bounds on the error in this approximation. This approxi- 
mation is useful when P(S , ; ,  < s) is not extremely close to 0 or 1, which for 
large n requires that t have order of magnitude log n and that s be not far 
from at, where a E ( p ,  13 satisfies t = log(n)/H(a, p ) .  Similar distributional 
approximations are given for more general summands, but without the explicit 
location constant [corresponding to the factor ( ( s / t )  - p ) ]  and without rates of 
convergence, in Deheuvels and Devroye [(1987), Theorem 61. See also K6mlos 
and Tusniidy (1975) and Naus (1979, 1982) for related results. Having rates of 
convergence lets us prove a sharp version of the law of the iterated logarithm 
for Sni t .  See Corollary 2 of Section 4. 

The two families, {RZ: a E ( p ,  11) and {S,;+ 1 I t I n)  are closely related. 
At the level of statements with a normalizing factor that tends to infinity, such 
as (1) and (3), results as n 3 for RZ with a E (p, 11 are equivalent to results 
for Sni t  as n, t + 00 with t/log(n) 3 c and l/c E (O,log(l/p)]. At the level of 
distributional results, however, there is a significant difference between the 
two families. In particular, knowledge of the values of P(S, , ,  < s) for all n,  t 
and s is not enough to yield a good approximation to the distribution of RZ, 
although it is enough to imply our tightness result for {RE - e,"). The reader is 
urged to pause and react: Is there a paradox here? 

There is a paradox, if one is guided by the study of pure head runs, 
corresponding to the extreme case a = 1. In sharp contrast to the situation 
for pure head runs, with a < 1 and t a positive integer, it is possible for there 
to be a quality a run of length t or greater, but none of length exactly t. For 
example, with a = i and t = 6, there is a quality a run of length t + 2, but 
none of length t, in the sequence * 0000011OOO01100000.. . . By inserting 
a region of length I with Tal 1 ones into the middle of the above example, we get 
an example with a run of length t + I + 2, but none of length t + I .  For 
example, with the inserted region 010101 of length I = 6, the new example 
. . .000001100010101001100000.. . has a quality i run of length 12 + 2 but 
none of length 12. 
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Such examples have a substantial chance of happening at random: if n, t 
and a are such that P ( R ,  < t )  is not close to 0 or 1, then there is a 
substantial chance that the longest quality a run has length slightly less than 
t. By placing a few extra ones outside each end of this run, we can create a run 
of length greater than t without creating a run of length exactly t. 

The method for analyzing the distribution of S,; ,  is the following. The 
event { S , ; ,  < at} is the event that, starting in the first n tosses, there is no 
run of quality a and length exactly t. Consider the places at which there is a 
quality a head run of length t. Such places occur in clumps, and we define a 
random variable W which represents the number of clumps that occur in the 
first n tosses. Using the Chen-Stein method, as presented in Arratia, 
Goldstein and Gordon (19891, we show that the distribution of W is close to 
the Poisson distribution with parameter A = E W  and, in particular, 
P(S , ; ,  < at) is close to P(W = 0), which is close to exp(-A). We then give a 
simple approximation to A,  namely, A* = n(a - p ) P ( Z ,  + * +Z, = Catl). The 
net result is that P(S , ; ,  < at) is close to exp(-A*), with an explicit bound on 
the error. 

There is a nice heuristic, in the language of Aldous (1989), to explain the 
value of A*, as follows. Every clump of windows of length t and quality a starts 
with a window having exactly [at]  heads, and nP(Z, + * +Z, = [atl) is the 
expected number of such windows. An argument using the ballot theorem 
shows that the average number of such windows per clump is approximately 
l/(a - p ) ,  so that the expected number A of clumps is approximately A* = 
n(a - p ) P ( Z ,  + . * +Z, = Catl). 

The method for analyzing the distribution of R: is similar to that for S,;,.  
Fix a test length t and consider the places in the first n tosses at which there 
is a quality a head run of length t or greater. Such places occur in clumps, so 
we define W to be the number of clumps that occur. Using the Chen-Stein 
method, we show that the distribution of W is close to the Poisson distribu- 
tion with parameter A’ = EW, so that, in particular, P ( R ,  < t )  is close to 
exp( -Af). Unfortunately, we can’t find a simple asymptotic formula for A’-it 
is easy to approximate the expected number of windows of quality a and 
length t or greater, but we don’t know how to approximate the average 
number of such windows per clump, corresponding to the factor l/(a - p )  in 
the case of Sni t  which involves windows of length exactly t. Given the Poisson 
approximation that P ( R ,  < t )  is close to exp(-h’), the tightness of the family 
{ R ,  - c,} is equivalent to having lower and upper bounds on A’ which imply 
that as n , t  + m, A’ + 00 if t - c, + -m and A’ + 0 if t - c, + m. 

The results for sequence matching can best be expressed in terms of the 
result for coin tossing. Let A,, A,, . . . , A, and B,, B,, . . . , B, be independent 
integer-valued random “letters,” with distribution p for the A’s and v for the 
B’s. Let p = C l e Z p l v l ,  so that V i, j ,  p = P(Ai  = Bj) .  A single sequence of 
p a i n  tosses, whose length is the product mn, may or may not mirror the 
matchings that occur between the m + n letters. Whether this is the case 
depends on p ,  v and a, as well as on the relative magnitudes of m and n. 

. 
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Let a E ( p ,  11. Let MZ,, be the length of the longest “quality a” matching 
consecutive segment common to the two sequences A,. . . A, and B, . . . B,. 
Let N,,,;t be the maximum number of matches occurring between two 
segments of length t, one segment from each sequence. We show that for large 
m and n, the distribution of M;,, is close to that of R”,, and P(N, ,n; t  < at) 
is close to P(S,, , ,  < at), provided that a ,  p, v and the ratio log(m)/log(n) 
satisfy a certain sufficient condition, which is summarized by (33); we do not 
believe that this condition is necessary. The condition is esentially the require- 
ment of no blowup of the second moment of the number of places in the two 
sequences where the highly matching segments occur. For the important 
special case p = v and m = n, this condition is not satisfied for all cases of a 
and p,  although for each p it is satisfied in a neighborhood of a = 1. 

The almost sure limit of MZ,,/[log(mn)/H(a,p)], as m,n  + Q) with 
log n/log(mn) + p E (0, l), always exists; if the distribution of MZ,, is close 
to that of R“,, then this almost sure limit must be 1. In Arratia and 
Waterman (1985), it is shown how to identify the almost sure limit for the case 
a = 1; the limit is a continuous but not analytic function of ( p ,  v, p). There are 
cases, both with a = 1, p = v, m # n and with a = 1, m = n, p # v, in which 
the almost sure limit is not 1, so the distributional approximation of M;,, by 
RE, must fail. That 1985 paper uses “analysis by pattern,” in contrast to the 
“analysis by position” in this paper. For the relatively crude task of deriving 
strong laws, analysis by pattern is quite robust, handling general p,  v, m, n 
and extending easily to the case of Markov chains, but for the more delicate 
task of deriving a distributional approximation such as Theorem 2, analysis by 
pattern would be much more complex than analysis by position. A paper by 
Arratia and Waterman (1989) extends the analysis by pattern to the case 
p < a < 1, although for simplicity only the case p = v, m = n is handled 
there, and in these cases, the almost sure limit always is 1. Thus there are 
cases, with a < 1, p = v, and m = n, in which the method of this paper fails 
to establish the distributional approximation, but the failure is not detected by 
the almost sure limit, which is still 1. 

2. The expected number of clumps of head runs. The indicator 
Y, = Y(a,  s, t )  of the event that a run of length t containing s heads begins at 
position a in the sequence of coin tosses is defined by the formula 

The indicators Y, and 5 for la - PI < t are highly correlated, so that 1’s in 
the sequence Y tend to occur in clumps. To get a Poisson approximation, we 
must count the clumps, so we define the indicator that a clump begins at a to 
be 

In spirit, X, is like the indicator of a renewal at a, but there are two 
differences. First, the indicator X, is measurable with respect to a block of 
2t - 1 coins, which makes it easier to work with, compared to the indicator of 

(5) Y, 3 l(s = 2, + z,+, + * * .  +Za+t-,). 

( 6 )  x, = Y,( 1 - Y,-,)( 1 - Y,+?) * * (1  - Y,- t ) .  
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a renewal, which depends on the entire past. Second, there is a slight differ- 
ence between EX, and the probability of a renewal at a, arising from 
situations like the following. In the case a = 1, a run of heads of length several 
t following a long tail run is counted as several renewals spaced exactly t 
apart; but only the first of these is counted by an X,. 

Our goal in this section is to show that, with s = [a t ] ,  we have, as t + m, 
E X , / P ( Z ,  + +Z, = s) + a - p ;  this result together with error bounds is 
Lemma 1. There are two intuitively appealing ways to describe this result 
in the language of Aldous (1989). First, in terms of occurrences of windows 
of length t with exactly [at1 heads, the expected clump size tends to 
lim EYJEX, = l/(a - p ) .  Second, in terms of occurrences of windows 
of length t and quality a ,  i.e., with rat1 or more heads, the expected clump size 
tends to  ( a  - a p ) / ( a  - P ) ~ ,  since elementary computation gives 
P(Z, + . - +Z, = s ) / P ( Z ,  + * * + 2 , ~  s) + ( a  - p ) / ( a  - up). In the spe- 
cial case a = 1, we observe that the two notions of clump coincide, and also 
Lemma 1 applies with s = t so that the lower and upper bounds are equal. 

LEMMA 1. Let s and t be positive integers with s 5 t ,  and let a = s / t .  Let 
X I  and Y, be the indicators defined by (5)  and (6), let the Zi be p-coins and let 
H ( a ,  p )  be the relative entropy of p-coins and a-coins, as defined by (2). Then 

(7) j = l  

EX,  a - p  I - < a  - p  + 2(1 - a ) P  
EY, - 

PROOF. For motivation, we think of a window of length t ,  placed initially 
over [l, t ]  and then slid backward one step at a timer with- Di being the 
decrease at step i in the number of heads having indices inside the window. 
Let Di = -Z,-i + Z,+l-i and Sk = D, + +D,. On the event Yl = 1, 
X ,  = 1 ( s k  z 0 for k = 1,. . . , t ) .  

Let U be the number of positive terms among D,, . . . , D,, and let V be the 
number of negative terms. By the ballot theorem [Feller (19681, volume 1, 
chapter 31, 

IV-VI u + v  IU-VI 
P ( S ,  z Ofork = 1 ,..., t lU,V,Y, )  = ~- = -. u + v  t t 

The last factor, (U + V ) / t ,  corresponds to the requirement S, z 0. The ballot 
theorem is applicable because the family {(Z,+, Zt+l-i): i = 1, . . . , t }  con- 
ditional on Y, is exchangeable. Notice that Di E { - 1, 0,1} and that if Di = 1, 
then Zt+l-i = 1, while if Di = - 1, then Zt+l-i = 0. Thus, conditional on 
the event {Y, = 11, the distributions of U and V are binomial(s, 1 - p )  and 
binomial(t - s, p ) ,  respectively and independently. In particular, 

E(  U - qY1 = 1) = S( 1 - p )  - ( t  - S ) P  at - p t .  
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Hence, 
1 
t 

P ( X ,  = lIYl = 1) = -E(IU - v((Y, = 1) 2 a -p. 

Our notation for the positive and negative parts is x = x+- x-. Note that 
(U - v( = U - V + 2(U - VI-. For an upper bound on E((U - V)-IY, = 111, 
we observe that the maximum possible value of V - U on the event Y, = 1 is 
( t  - s), so that E((U - V)-IY, = 1)) I ( t  - s)P(V - U > OIY, = 1). Let Q be 
binomial& p )  in distribution. Now, conditional on Yl = 1, the distribution of 
V + s - U is that of Q, so P(V - U > OIY, = 1) = P(Q > s) I: exp(-tH(a, p ) )  
is the usual exponential upper bound from large deviation theory. 0 

3. The Chen-Stein method for Poisson approximations. To keep 
this paper self-contained, we present briefly the Chen-Stein method for estab- 
lishing Poisson approximations, as given in Arratia, Goldstein and Gordon 
(1989). See also Stein (1986) or Barbour (1982) and Barbour and Holst (1989) 
for more on this method. 

Let I be an arbitrary index set, and for a E I, let X ,  be a Bernoulli random 
variable with P ( X ,  = 1) = 1 - P ( X ,  = 0) > 0. Let 

W = C X , ,  and h = E W .  
f f € I  

We assume that A E (0, m). Denote by 2 a Poisson(h) random variable. 
For each a E I, suppose we have chosen B, c I, with (Y E B,. We think of 

B, as a “neighborhood of dependence” for a, such that X ,  is independent or 
nearly independent of all of the X ,  for /3 not in B,. Define 

b l =  C EX,EXB, 
CrEI P E B ,  

b z =  C C ‘ ( X a X , ) ,  
a s l  a # p ~ B ,  

b, = sa, where sa = EIE{X,  - (EX, ) la (X , :  /3 E I - B,)}I. 
a € I  

Loosely speaking, when b,, b, and b,  are all small, then the total number 
W of events is approximately Poisson, the locations of the dependent events 
approximately form a Poisson process and the dependent events are almost 
indistinguishable from a collection of independent events having the same 
marginal probabilities. In this setup, b, measures the neighborhood size, b, 
measures the expected number of neighbors of a given occurrence and b,  
measures the dependence between an event and the occurrences outside its 
neighborhood. 

In many applications, such as those in this paper, the natural choice of B,  
makes X ,  independent of d X , :  /3 E I - B,), so that b, = 0, and this can be 
verified without performing any calculations. In these situations, if the neigh- 
borhoods are small, as measured by b,, then checking that b, is small is 
essentially equivalent to checking that the second moment of W is well 
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behaved, since b, - b,  = E ( W 2 )  - A - A2 = E ( W 2 )  - E(Z2) .  Two recent stud- 
ies of sequence matching, Arratia, Gordon and Waterman (1986), and Karlin 
and Ost (19871, established Poisson approximations by the method of inclu- 
sion-exclusion (which essentially requires that all moments of W are well 
behaved) and thus required stronger restrictions on the distributions of the 
sequences being matched. 

We denote the total variation distance between the distributions of W and 
z by 

II2( W )  - J ( Z ) l l =  SUP 1 Eh( W )  - E h ( Z ) I  
Ilhll= 1 

= 2 SUP I P (  W E A )  - P( Z E A )  I. 
A 

LEMMA 2. Let W be the number of occurrences of dependent events, and let 
Z be a Poisson random variable with E 2  = EW = A .  Then 

I 2( b,  + b, + b3) ,  
and 

( b ,  + b, + b3)( 1 - e -A)  
A 

[ P ( w = o )  - e - * [ <  < ( 1  A A- l ) (b ,  + b, + b3) 

For a E I ,  let Y, be a random variable whose distribution is Poisson with 
mean EX,, with the Y, mutually independent. The total variation distance 
between the dependent Bernoulli process X = (X,), E I and the Poisson process 
Y on I with the same intensity, Y 

Il=-f(X) - J(Y) I I  < 2(2b1 + 2b2 + b3). 
For a E I ,  let X; have the same distribution as X,, with the X; mutually 

independent. The total variation distance between the dependent Bernoulli 
process X = (X,), E I and the independent Bernoulli process X' = (X;),  E I 

having the same marginals satisfies 

I l J ( X )  - J(X')ll I 2(2b, + 2b2 + b3) + 2 C  (EX,)Z. 

(Y,), E I ,  satisfies 

Observe that the total variation distance I l J ( X )  - J(X')ll can be inter- 
preted as twice the minimum value of P(X # X') over all realizations of both 
processes on the same probability space. 

4. The Erdos-Rhyi law for coin tossing: The best region of a given 
length t. Let Zi  be p-coins, i.e., an independent sequence with p = P ( Z i  = 
1) = 1 - P(Zi  = O), and let Sn;t  be the maximum number of heads occur- 
ring in a window of length t ,  starting within the first n tosses: Snit  = 
maxi ,(Zi + * * . +Zi++ ,). In this section we approximate the distribution 
of Sn;$ .  
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For integer a and 

and 

positive integers s I t, define indicators 

\ k = O  ) 

t 
x, = X (  a ,  s, t )  = Y, n ( 1  - Y,- j ) .  

j=l 

Let I = { l ,  2 , .  . . , n}, and define 

w =  W(n , s , t )  = x,. 
f f € I  

Informally, Y, is the indicator that a window of length t containing s heads 
starts at a. If two such windows overlap, we say that they belong to the same 
clump, and X ,  is the indicator that a clump starts at a. The random variable 
W is the number of clumps that begin within the first n tosses. Apart from 
“boundary effects,” the event { S n i t  < s} agrees with the event {W = 0). The 
error in this approximation can be controlled by observing that {W # 0) c 
{ S n i t  2 SI, and 

{sn;t  2 s , w =  0) c {Y ,  + . * *  +yt > o j  u (2, + * * .  +zt > SI. 

O I P ( W = O )  - P ( S , ; $ < S )  I t E Y , + P ( Z , +  * * *  + Z , > S ) .  

Hence, 

(9) 

We now establish a Poisson approximation for W using the Chen-Stein 
method. Let A = EW. The indicator random variable X ,  is measurable with 
respect to the 2t coins Zj at a - t , .  . . , a + t - 1. Thus, we let 

B,  = { p  E I :  (a - < 2tj for a = 1 to n ,  

so that b,  = 0 and b, < (4t  - l)AEX,.  [It would be b,  = (4t  - l)AEX, if the 
index set were a circle.] If la - PI I t, then E(X,X , )  = 0, but if t < la - PI < 
2t,  then we can only conclude that E(X,X , )  I (EXJEY,, so that b2 < 
2tAEY,. 

Using the Chen-Stein method as presented in Lemma 2, we have 

IP(W=O) - e - E W  I I ( b l  + b 2 ) O  A l / A )  

( 1 0 )  I 2tA(2EX1 + E Y , ) ( l  A 1 /A)  
I GtEY,. 

Combining the upper bound (9) on boundary effects with the result (10) of the 
Chen-Stein method, and spelling out EY, in terms of the underlying p-coins 
Zi, we have 

I P (  S n i t  < s) - e-EW I I 7tP( 2, + - +Z, = s) 

+ P ( Z ,  + * ’ *  +zt > s).  
( 1 1 )  
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The other main ingredient in approximating the distribution of Sn;t  is 
provided by the elementary relation A = h(n, s ,  t )  = EW = nEX, combined 
with the clump size bounds from Lemma 1, 

S EW S 

t t nP(E4=1 zj = s) 
(12) - - p s  

To summarize these findings, we present the following theorem. 

THEOREM 1. LetZi bep-coins, andletS,; ,  = max,,,,,(Z, + + Z i + t - l ) .  
For all positive integers n ,  s, t ,  with s I t and s / t  > p ,  

(13) P (  Sn; t  < s )  is approximately exp 

with the error in this approximation controlled by (11) and (12). 

From the explicit error bounds in Theorem 1 it is easy to extract various 
less explicit statements about the rate of convergence, such as the following 
two: For fixed E > 0, as n + 03, 

11 P ( S , ; ,  < s} - exp - n  - - p  P(Z, + +Zt = s) 
s , t :  ~ < E W < l / ~ , s / t > p + &  SUP [ (: 1 

= .( F). 
11 sup I P ( s , ; ,  < s j  - exp[ - n (  - ~ ) P ( z ,  + +zt = s) 

S , t :  S / f > p + E  

(log( n ) 1 
= o (  n ) *  

The sharpness of the error bound 0b-l  log n )  in the first of the above 
statements can be shown by using inclusion-exclusion to analyze P( W = 0) in 
the case s = t = llog,,,(n)l. 

Along the same lines as the remark preceding Lemma 1, Theorem 1 could 
be stated as follows: with a = s / t ,  

P (  S,;  < s) is approximately exp - n ( a  - p ) 2 P  zj 2 s  , [ a - a p  ( j I 1  1) 
which can be interpreted as saying that Sn;t is distributed like the maximum 
of n(a - ~ ) ~ / ( a  - up) independent copies of 2, + +Zt, where a E ( p ,  11 
satisfies n = exp(tH(a, p) ) .  

Theorem 1 may be the cleanest way to summarize our understanding of the 
distribution of Sni t .  In order to get tightness and convergence in distribution 
statements out of Theorem 1, it only remains to use asymptotics for 
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P(Z, + - +Z, = s). Furthermore, by using the error bounds of Theorem 1, 
it is easy to derive sharp versions of strong laws as corollaries. We carry this 
out below for the case t, n -+ 00 with t/log(n) -, c > l/log(l/p). 

If both s and t - s are large, then a good approximation to P(Z, + * - + 
2, = s) is provided by Stirling's formula [Feller (1968)l: with a = s/t, 

(14) exp( c,) < P( 2, + - +Zt = ~)e"("~P)42.rra( 1 - a ) t  < exp(c,), 

where 
1 - 1 1 1 1 1 

c = - -  
12t + 1 12s 12(t - s ) '  12t 1 2 s +  1 12(t - s )  + 1 * 

c1 = 

Observe that the derivative with respect to a of the relative entropy H ( a ,  p )  
may be expressed, for 0 < p, a < 1, in terms of the odds ratio, 

r r ( a , p )  = p ( 1  - a ) / ( u ( l  - p ) ) .  

Note that aH(a,  p ) / d a  = -log r(a,  p ) .  When s/t is close to a E ( p ,  l), in- 
creasing s by 1 decreases A by a factor close to r(a,  p ) .  

Define centering constants b(n, t)  E b(n, t; a, p )  by 

+ logl/,(a - P). 

If a E ( p ,  1) satisfies t = log(n)/H(a, p ) ,  then b(n, t) gives the location of the 
"center" of the distribution of S n i t ,  in a sense made precise by Corollary 1. 
Crudely stated, if s = b(n, t) is an integer, then among n tosses of the p-coins 
Zi, the expected number of clumps of windows of length t having s heads, 
which is approximately n(a - p ) P ( Z ,  + * * +Z, = s), is close to 1, thanks to 
Stirling's approximation. To see this, observe first that if we only used the first 
term of b(n, t), taking s = u log(n)/H(a, p )  would yield s/t = a, and the 
principal factor of Stirling's approximation to P(Z, + * +Zt = s) would be 
exp(-tH(s/t, p ) )  = n-l. The remaining terms of b(n, t) involve log,/, and 
should be viewed as the change in s needed to compensate for the factor of 
(a - p )  and the remaining factors in Stirling's approximation,' in order that 
n(a - p ) P ( Z ,  + * - +Zt = s) be close to 1. 

COROLLARY 1. 
requirements that 

For t and n with t > log,/,(n) define a 3 a(n, t )  by the 

n = p < a < 1. 

Then for each E > 0, uniformly as t, n + 00 with 1 + E I t/log,,,(n) I 1 / ~ ,  

sup(P(S,;, - b( n ,  t) < x) - exp( -rx)l -, 0, 
X 

where the supremum is taken over x E R such that x + b(n, t) E 2. 



550 R. ARRATIA. L. GORDON AND M. S. WATERMAN 

PROOF. This corollary follows from elementary manipulation of Theorem 1 
together with the asymptotics (14) for large deviations in the binomial distri- 
bution. 0 

Let V have the extreme value distribution, P(V < x )  = exp(-e-"). Then 
P(V/log(l/r(a,p)) < x )  = exp(-rX) for all real x ,  so the above says that 
Sn;t - b(n, t) converges in distribution to -f + 1 f + V/log(l/r(u,p))l if n, 
t + 00 with t - log n/H(a, p )  and b(n, t) (mod 1) -P f E [O, 1) for fixed a E 

The strong laws for the case a = 1, pure head runs, with form similar to 
( p ,  1). 

Corollary 2, appear in Erdos and Mv6sz (1975) and Mv6sz (1978). 

and 
S n ; t  - b(n, t )  - log,/, log n 

log 1/ r log log n 
1 = P limsup i = 1). 

More generally, for any monotone function f with f (n)  - log,,, log n,  

according as 
P ( (  Sn i t  2 b( n ,  t )  + f (  n )  infinitely often)) = O (respectively, I ) ,  

PROOF. This is a straightforward application of the Borel-Cantelli lemmas 

To prove the left tail result, for positive integers s and the corresponding 
together with the approximate distribution of Snit  given in Theorem 1. 

positive real constant c define the event 

Uniformly for logc in any compact interval, as n + 00 we have A = 
A(n,t,s) - cloglogn and, by Theorem 1, the error in approximating the 
distribution of Sn;t is IP(E(n, s)) - exp(-A)l = O((1og nXloglog n/n). Since 
we always argue via the Borel-Cantelli lemmas along an exponentially increas- 
ing skeleton, such as n = n(k) = exp(ek.1, the crucial property is that the sum 
over k of these errors in the approximation is finite. 

To prove the lower bound for the liminf, fix a small E > 0. Let n = n(k) = 
Lexp(Ek)J and choose s = s(n) such that log,/,(c) E [ E ,  1 + E). Since c 2 
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( l /r)& > 1, as k 00 we have A - c log(ek) - clog k and C,exp(-A) < 03. 

Thus, C , P ( E ( n ( k ) ,  s)) < w, so the Borel-Cantelli lemma implies 0 = 
P(E(n(k ) ,  s) i.0. (k)). The behavior of Snit  - b(n, t )  as n + 00 is controlled by 
the behavior along the skeletons n = n(k) because Sn;t  is nondecreasing as n 
increases, and b(n(k + 11, t )  - b(n(k),  t )  + EU/H, which is small for small E .  

This proves that lim inff * * ) 2 - 1 almost surely. 
To prove the upper bound for the liminf is harder since we need inde- 

pendence to use the converse Borel-Cantelli lemma. Given E > 0, we can 
choose, for all sufficiently large k, a value n = n ( k )  E [exp(kl+"), 
exp(k'+€ + 2H(a,p)/a)], and an integer s = s ( k )  such that s = b ( n , t )  - 
log,/,(c loglog n) with c E [ l  - 3 ~ ,  1 - 2.51. Note that we have a superexpo- 
nential time skeleton, with n(k - l)/n(k) + 0. In order to get independence, 
we replace the event E(n(k), s ( k ) )  by a modification E*(n, s) in which S,;,  is 
replaced by S& = max,(k-,,<i~,(k)-t(Zi+l + * - +Zi+,), with t = t (n(k) ) .  
Note that s $ k ) , t  involves coins Zi for i E (n(k  - l), n(k) ] ,  and is distributed 
like S , ( k ) - , ( k - , ) - t ; t ,  so, effectively, A is decreased by a factor of 
1 - [n(k - 1) + t + l]/n(k) + 1. The events E*(n(k) ,  s) for k 2 1 are mutu- 
ally independent. As k + 03, we have A - c loglog n - c log(kl+") - (1 + 
E)C log k. Since (1 + E)C < 1 - E for all k, we have C k  exp(-A) = CQ. Thus, 
C,P(E*(n(k ) ,  s)) = m, so the Borel-Cantelli lemma implies 1 = P(E*(n(k) ,  s) 
i.0. (k)). Now s ( k )  - b(n(k - l),t(n(k - 1))) is asymptotic to ( a / H X k l + "  - 
(k - 1)'+"), which grows like k", while loglog n grows like log k, so that 
0 = P ( ( s n ( h - l ) ; t ( n ( , ) )  > - s (k ) )  i.0. (k)). Thus 1 = P(E(n(k ) ,  s) i.0. (k)). Now for 
integers s, ( S n ; t  < SI = IS,,, I s - l}, and E arbitrarily small means that c is 
close to 1, so that log,,, c is close to 0. Thus, we have proved that liminff - * . ) 
I - 1 almost surely. 

To prove the right tail results is much easier in each direction. For positive 
integers s and the corresponding real constant f ,  define the event 

G ( n , s )  = { S n ; t  2 s = b ( n , t )  + f ) .  
Uniformly for f/(loglog n) bounded away from zero and infinity, as n + we 
have A = A(n, t ,  s) - r f, and by Theorem 1, IP(G(n, s)) - (1 - exp(-A))( = 
O((1og n)/n). As A + 0, the right tail probability is 1 - exp(-A) - A. Take 
n = n(k) = [exp(k)l, so that as k + m we have P(G(n,  s)) - A - r f .  The 
result for C ,r f(Wk)) < w follows from the Borel-Cantelli lemma; since S,; is 
nondecreasing in n and b(n(k + 11, t )  - b(n, k) is bounded. To get the result 
for Ckrf(ewk))  = 00, replace the event G(n,  s) by G* Imaxn,SsisnZi+l + 

* +Zi+: 2 b(n, t )  + f ] .  Observe that G*(n, s) c G(n,  s), and for large k, 
the events G*( n( k), s) are mutually independent. The effect of replacing G by 
G* is to reduce A by a factor close to i, so that P(G*)/P(G) + :. Thus 
C k r f ( a k ) )  = 00 implies C,P(G*(n(k) ,  f ) )  = w, and the Borel-Cantelli lemma 
implies P(G*(n(k),  f )  i.0.) = 1, so that 1 = P(S , ; ,  2 b(n, t )  + f ( n )  i.0. ) = 1. 

0 
The distribution of long head runs interrupted only by a fixed number k of 

tails is described by the case s = t - k of Theorem 1. Such runs are also 
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discussed in Guibas and Odlyzko (19801, Karlin and Ost (1987) and in Gordon, 
Schilling and Waterman (1986), which has the law of the iterated logarithm 
corresponding to Corollary 3. 

COROLLARY 3. For k = 0, 1,2,. . . , consider the length R J k )  of the longest 
“k-interrupted heud run” starting in the first n tosses ofp-coins Zi. Formally, 

{ R , ( k )  < t }  = < t - k } .  

Define centering constants en( k ) by 

Then for each flxed k ,  the family {R, (k)  - c,(k)ln 2 1) is tight and as n -+ 00, 

sup IP( R,( k )  - en( k )  < x }  - exp( - p ” )  I = O(n-’  log( n ) ) ,  

where the supremum is taken over x for which x + c,(k) is an integer 
X 

It is natural to view the above case of R J k )  as interpolating, via a = 1 - 
k / n ,  between the cases Rk and RP, for fixed p < a < 1. In particular, it seems 
surprising that the coefficient of the log log n term is positive in (16) for c,(k), 
while the coefficient is negative in (4) for e; .  However, there is no paradox; the 
normalizing factor for the log n term, H ( a ,  p ) ,  has infinite derivative at a = 1, 
so that small increases in a-as a = 1 - k/ log , / , (n)  -+ 1 with k held fixed 
and n -+ w-effect compensating changes in the log(n)/H(a, p )  term of (4). 
This unification of current results for constant quality a with the previous 
results of Arratia, Gordon and Waterman (1986) is one benefit of using 
Poisson approximations like (13) as a conceptual foundation, in place of an 
extreme-value approximation. A second practical benefit is that numerical 
approximation is frequently better if one uses the Poisson approximation. 
Such a realization, in the context of maxima of i.i.d. normal variates is the 
subject of Hall (1980). 

5. The Erdos-Mnyi law for coin tossing: The longest quality a run. 
Let 0 < p < a s 1 and . . . ,Z-,, Z,, Z,, Z,, . . . be p-coins. Let R ,  = RP, be the 
length of the longest consecutive run, contained within the first n tosses, in 
which the fraction of heads is at least a. In this definition of R, ,  if the phrase 
“contained in” were changed to “starting in,” then the event { R ,  < t }  would 
not be measurable with respect to a(Z,, . . . , Z n + l )  for any finite 1 .  

In terms of Sn; t ,  which is the maximum number of heads in a run of t 
tosses starting within the first n tosses, 

Since we do not understand the relation between Sn;z for 1 = t ,  t + 1, 
t + 2,. . . , we cannot completely approximate the distribution of R, ,  even 
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though we have 
each pair (n, I). 

From (17) we 

a satisfactory approximation for the distribution of Sn; l  for 

get the crude lower and upper bounds 

P ( S n - t ; t  2 at) I P (  RZ 2 t) I 

Now Theorem 1 says that P ( S n + t  2 at) is approximately 

P ( S n - l ; z  2 aZ). 
l 2 t  

( 18) 

From this and the large deviation expansion (14) of P(Z, + - +Zt = latl), it 
follows that as n, t + co, we have P(Sn- t ; t  2 at) tends to 1 (respectively, 0) if 
t - (log(n) - loglog(n)}/H(a, p )  tends to minus infinity (respectively, infin- 
ity). When P ( S n - t ; t  2 at) is small, the sum over I in (18) is comparable to a 
convergent geometric series with ratio exp(-H(a,p)), and the first term of 
this sum is P(Sn- t ; t  2 at), so the sum tends to zero when P ( S n + t  2 at) 
tends to zero. Write R,* = R, - (log(n) - $loglog(n)}/H(a, p ) .  We have just 
shown that the family (R,*} is tight. 

Roundoff is a significant consideration in the analysis of RZ. If 
Z,+, + * +Z,+, 2 al, and lull = Tal + al, then regardless of the values of 
2, and Z u + l + l ,  there are quality a windows of length I + 1 starting at a. 
Thus we define the set of “admissable” values for quality a, 

A, = { t  E 2: at I s < at + a for some s E 2). 

The only way that RE can have a value outside the admissable set A, is with 
RZ = n. 

We now work out a Poisson approximation for the number of clumps of 
runs underlying the event {RZ 2 t } .  Even though we can’t evaluate the 
expected number of clumps, this approximation lets us compare matches in 
sequence comparisons with runs in coin tossing. Furthermore, we believe that 
this clump analysis is the proper way to understand the relation between the 
dependent random lengths Sni l  for I 2 t. 

For t a positive integer and a E [0,1], use the indicators Y(a, s, t )  = l(s = 
C’,--’,Z,+,) from the previous section to define indicators 

Y,’ = Y ( a , t )  = max{Y(a,[at] , t) ,Y(a,[at  + a ] , t  + I),.. . , Y(a,[2at],2t)} 
2t 

j = l  
x; = X ( a , t )  = Y ( a , t )  n ( 1  - Y ( a  - j , t ) ) .  

Informally, Yk is almost the indicator that a quality a window of length t or 
greater begins at position a, and X; is the indicator that a clump of such 
windows begins at position a. 

In the definition of Y,’, we use the upper bound 2t, since when the fraction 
of heads in a window is at least a, the same must be true in the first or second 
half of the window. If there is a quality a window of length t or greater within 
the first n tosses, there must be a quality a window of length between t and 2t 
inclusive, contained within the first n tosses. Among all such windows con- 



554 R. ARRATIA, L. GORDON AND M. S. WATERMAN 

sider those of minimal length, in particular the leftmost of these, to see that 

( R ,  2 t )  c ( 1  = max Y i )  U (2, + . * -  +Zt  > [ a t ] } .  
l s a s n - t  

Let I = {1,2,. . . , n - t),  and in analogy to (8), the definition of W in the 
previous section, define 

W = W ( n  - t , a , t )  = X ’ ( a , t ) .  
a c I  

Apart from boundary effects, W is the number of clumps within the first n 
tosses of “quality a, length t or greater” head runs, so the event { R ,  < t )  can 
be approximated by the event { W  = 0). We have 

( R ,  < t }  c { W  = 0)  U {Y,’-2t+l + e * *  +Y,’-, > 0} 
and 

{ R ,  2 t , W  = 0} c (Y; + +Yit > 0}  u (2, + 

IP( W = 0) - P( R ,  < t )  I I 3tEY; + P(Z, + * 

I (3 t  + l)e-tH(QiP). 

+ Z t  > [ a t l ) ,  
so that 

+Z, > [ a t ] )  
( 19) 

(20) 1 -  

The upper bound 
~ y ’  < , - tH(a,p)  

can be proved by Cramer’s argument: compute expectations with respect to 
the probability Q under which . , . ,Z-l, Z,, Z,, Z,, . . . are a-coins, and ob- 
serve that on the event {Ya’ = l) ,  the Radon-Nikodym derivative satisfies 
dP/dQ I e-tH(a,P). 

We now establish a Poisson approximation for W using the Chen-Stein 
method. Let A’ = E W .  Let Ba { p  E I :  Icy - PI < 4t) for a = 1 to n, so that 
b,  = 0. If Icy - /?I I 2t then E(XAXi)  = 0, but if 2t < la - PI < 4t, then we 
can only conclude that E(XAXi)  I (EXA)EY,’, so that b, < 4tA’EYa‘ and 
b, < 8tA’EXA. 
Using the Chen-Stein method as presented in Lemma 2, we have 

I P ( W  = 0) - I ( b ,  + b,)(l  A l / A ’ )  

I tA’(8EX; + 4EY;)(1 A l / A ’ )  

I 12tEY;. 
Combine the upper bound (19) on boundary effects, the upper bound (20) on 

BY;, and the result (21) of the Chen-Stein method, to obtain the following 
theorem. 

THEOREM 2. 

(22)  IP( R,  < t )  - e-A’l I 16te-tH(Q*P), 

where R, = RZ, defined formally by (17), is the length of the longest quality a 
head run contained within n tosses of a p-coin, with 0 < p < a I 1. 
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The relation (22) expresses a Poisson approximation in terms of the ex- 
pected number of clumps, A’ = EW = (n - t)EX;. To calculate EX; = 
EX‘(1,t)  is not easy when a < 1.  It is easy to calculate EY; = EY’(l , t) ,  so 
essentially our problem is that we can’t compute the average clump size 
EY;/EX;. In Section 2 we successfully computed the average clump size 
EYJEX,, so to see why the method of Section 2 breaks down, we outline one 
way to calculate EY;. 

Define a stopping time T with values in [t, 031, 

r = inf{Z 2 t: Z, + +Z, = [all}, 

so that we have Y; = 1 ( ~  I 2 t )  and Y, = 1 ( ~  = t ) ,  and we can effectively 
calculate each term of EY; = C , &‘(T = I ) .  With this approach, one rea- 
son that the method of Section 2 breaks down is that conditional on IT = Z), 
the coins Z,, . . . , 2, are exchangeable only in the case 2 = t. 

The simplest upper bound on RZ is just that the probability of seeing a 
quality a window of length t or greater contained in the first n tosses is no 
larger than the expected number of quality a windows of length t or greater 
starting in the first n tosses, 

(23) P(RZ 2 t )  I nP(7 < t.). 
This bound has the same order of decay as the upper bound in (18) and is 
simpler in that it avoids the issues of boundary effects, clumping, and Poisson 
approximation. 

6. The Erdos-Rhyi law for sequence matching. Let . . . , A - l ,  A,,  
A,, A,, . . . and . . . , B - , ,  Bo, B,, B,, . . . be independent integer valued ran- 
dom “letters,” say with distribution p for the Ai’s and distribution v for the 
Bi’s. Let 

P = P(P9.1 = c PLV,, 
1 EZ 

so that V i, j ,  p = P(Ai  = B j ) ,  and assume that 0 < p < 1. Let a E (p, 11. We 
are interested in the distribution, for large m and n, of the length ME,, of 
the longest quality a matching between two words, one from the sequence 
A , .  . . A,, and the other, of equal length, from the sequence B ,  . :. B,. We are 
also interested in Nm,,; t  = N(m,  n; t ) ,  which is the maximum number of 
matches between two words of length t, one from A , .  . . A ,  and the other 
from B ,  . . . B,.  

Let Z i j  be the indicators that there is a match between positions i in the 
first sequence and j in the second sequence. 

2.. = 1(A,  = B j ) ,  
EJ 

so that p = P ( Z i j  = 1)  = 1 - P ( Z i j  = 0) for each i, j .  The Zij’s  collectively 
are not a collection of p-coins, however, since distinct indicators Z i j  and Z,, 
are strictly positively correlated if i = K or else j = 1,  unless both sequences 
of letters A and B are uniform in distribution over a common finite alphabet. 
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However, for each fixed i, j ,  the sequence Z,,, Zi+ 1, ,+ 1, Zi+2, j + 2 ,  . . . is a 
sequence of p-coins, i.e., these random variables are independent. Thanks to 
this independence, for each s, t, the indicators Y, and X, defined below, with 
a two-dimensional spatial index a, have the same expectations as the indica- 
tors Y, and X, of the previous sections, with a one-dimensional spatial index. 

Here is the setup for a Poisson approximation to analyze the distribution of 
N ( m ,  n;  t )  along the same lines as the analysis of S,,;t in Section 4. For 
positive integers s I t ,  define indicators 

xi, = yjn (1 - y-,,,-J. 
z =  1 

Let I = {1,2 ,..., m - t + 1) x {1,2 ,..., n - t + 1) and 

W = W( m , n , s , t ) = X, , A = EW = ( m - t ) ( n - t ) EX,. 
U € I  

The random variable W represents the number of clumps of locations at 
which closely matching pairs of words occur. Since we are using the Chen-Stein 
method, we can establish a Poisson approximation for W if the second moment 
of W is well behaved. Whether the second moment of W blows up or is well 
behaved depends on a large deviation rate depending on a and the distribu- 
tions p and v, as summarized by formula (33). 

In the next two sections we analyze the strong dependence between two 
matching events which share letters. Define the indicator that the words of 
length t at position i in the first sequence and j in the second sequence match 
in at least s places, 

x j  E yi,j) E v ( i , j , S , t )  E 1 S I l(Ai+k =Bj+k)).  ( O s k < t  

We have, for each a = ( i , j ) ,  that X, I Y, I V,, so that E(X,X,$ I E(V,%). 
It is easier to deal with the indicators V rather than X or Y,  since V is 
increasing in the match indicators 2.. 1(A, = B,). The goal is to show that ‘J .  there is not too much positive correlation between X, and Xs when a = (i, j )  
and p = ( i ’ , j ’ )  are “adjacent,” i.e., when li - i’l < t or lj -j‘l < t .  

6.1. Doubly adjacent, nonparallel bundles of comparisons, a .  k .a .  accor- 
dions, bent spaghetti. In this section we handle the case where a (i, j )  and 
p = ( i ’ , j ’ )  are “doubly adjacent, but not parallel,” i.e., li - i’l < t and 
lj -j’l < t but j - i + j ’  - i’. The parallel case, i - i’ = j  - j ’  and a # p, 
requires no effort since in that case XaXp = 0. Essentially, we have already 
dealt with the strong dependence between adjacent, parallel bundles of com- 
parisons, by going from the indicators Y to the indicators X, and computing a 
clump size l/(a - p )  in Section 2. Our result for the nonparallel case is that 
the exponential rate of decay, relative to t, of E(X,Xp) ,  is faster than the 
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exponential rate of decay for EX,. This is stated below formally as 2 I ( a )  > 
H ( a , p ) .  In the situation of interest for a distributional approximation, we 
have two sequences of lengths rn and n, and there are about rnnt’ doubly 
adjacent pairs a, p. Since t grows like log(rnn)/H(a, p ) ,  our result says that 
the total correlation arising from doubly adjacent pairs of events is negligible. 

Consider the exemplary doubly adjacent, nonparallel case a = (O,O), p = 
(1,0), so that V, is the indicator of at least s matches between letters A, and 
B,, and Vs is the indicator of at least s matches between letters and B,, 
for k = 1, .  . . , t .  There are a total of 2t comparisons involved here, which go 
back and forth between the two sequences A and B: A, is compared to B,, 
which is compared to A,, which is compared to B,, which is compared to A, 
and so on. The pattern of these comparisons may be visualized as an accordion 
or a piece of bent spaghetti. With s = [at] ,  we are interested in the large 
deviation rate I (a )  = I(a,  p, v) defined by 

( 2 5 )  I (  a )  = lim - log E( VooVol) = lim - log E (  XooXo,)  . 

The comparisons in the general doubly adjacent, nonparallel case can be 
expressed in terms of independent accordions, of individual length 1 or more, 
and total length 2t.  For example, with t = 5 and a = ( 0 , 2 ) ,  p = (1,0), there 
are three independent accordions: AOB,A,B, with length 3, BoAlB3A4B6 
with length 4 and B1AzB4A5 with length 3. 

We use the language of statistical mechanics for the following large devia- 
tion analysis. For the special case p = v, this analysis was carried out in 
Arratia and Waterman (1989) in the context of self-overlapping repeats within 
a single sequence, so here we stress the new features arising from p # Y. See 
Ellis (1985) or Varadhan (1984) for expositions of large deviation theory. 
Consider the number U(1) of matches, i.e., the energy, in an accordion of 
length 1, starting in the sequence A (and noting that accordions starting in the 
sequence B will satisfy the same inequalities): 

- 1  - 1  
t + -  2t t + m  2t 

u(1) 1(Ak=Bk) -k 1(Bk=Ak+l).  
O s k < 1 / 2  O <  k <1/2 

Note, for 1 odd, that the first sum has one more term than the second sum. To 
understand the Laplace transform, E exp(yU(1)) for y E R, define the nonneg- 
ative real “transfer matrix” M = M y ) ,  indexed by the alphabet 

( 2 6 )  M i j  = f i e x p ( y l ( i  = j ) ) .  

Since M is symmetric only if the two distributions p and v are equal, we are 
interested in the growth rate A = M y ) ,  with “free energy” f ( y )  lo&), 
defined by 

( 2 7 )  exp@f(y)) = A 2 ( Y )  = IIIMM’III - 
That is, A’ is the spectral radius of the symmetric matrix MM‘, where M‘ is 
the transpose of M. 
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With column unit vectors u (&)iez and v = (GI, we have, with the 
matrix product having 1 fadors, alternately M and M’, that 

E exp( yU( 1 ) )  = u’MM’M M’u I A’( y )  for even I ,  
E exp( yU( I ) )  = u’MM’M - - Mv s A’( y )  for odd I .  

The first of the above two inequalities, for the case with 1 even, is true 
virtually by definition. For the case with 1 odd, observe that, with I the 
identity matrix, the matrix I - vv‘ is positive semidefinite, so that 

(Eeyu(l))2 U’MM’ ~ v ( u ’ ~ ~ f  ~ v ) ’  

= u’MM’ * . * Mvv‘M’M - * M’u’ < u’( MM’)2’~ s A2‘. 

By decomposing the 2t comparisons involved in V, and V, in the nonparallel 
case into independent accordions of total length 2t, and applying the inequali- 
ties above, we have that = exp(2tf(y)) dominates the expected value of 
the exponential of y times the number of matches achieved. For a and p not 
parallel, the event indicated by V V  requires at least 2s = 2at matches, so for 
each y E R we have the exponential bound, a .@ 

The optimal exponential rate, i.e., coefficient of 2t in the upper bound above, is 
obtained by maximizing a y  - f (y>,  using the value y = ya which satisfies 
f ’ ( ya )  = a. Large deviation theory shows that this rate is I (a)  and that the 
functions I and f are each other’s Legendre transform. For the computation 
of upper bounds, the key relation is that I is the Legendre transform of f :  

(28) Y ER 

where f ’ ( y a )  = a ;  

and Z(1) = log(l/p). 
The argument that 2I (a )  > H ( a ,  p )  for all a E ( p ,  11 uses Fenchel’s duality 

relation for Legendre transforms, and is given in detail in Arratia and 
Waterman (1989). To display the relation between I(a> and gH<a,  p ) ,  compute 
the square of the Hilbert-Schmidt norm of M, trace(MM’) = Z i , j M i j M i j  = 
Zi, j p i v j  + Zipivi(e2Y - 1) = 1 - p + peZy, which is greater than or equal to 
A2, so that f ( y )  2 f l od l  - p + peZy). We observe that, as a function of a,  
H = H(a,  p )  is the Legendre transform of log(1 - p + pey) as a function of y, 
and i H  is the Legendre transform of 4 l od l  - p + pe2Y). 

v a  E (P, 11, I ( a )  = sup(ay  - f ( r > )  = aya - f ( Y a ) ,  

Lemma 3 summarizes these findings. 

LEMMA 3. With s 2 at, a E ( p ,  11 and a = (i, j ) ,  p = (i’, j ’ )  with (i - i’l < t 
and 1-1’ -j’l < t, and a! # p, 

where the large deviation rate I, characterized by relations (25), (261, (271, and 
(281, satisfies 2I(a) > H(a, p ) .  
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6.2. Singly d a c e n t  bundles of comparisons, a.k.a. crubgrass. In this 
section we handle the case where a = ( i , j )  and j3 = ( i ’ , j ’ )  are “singly adja- 
cent,” i.e., li - i’l < t or lj -j’l < t, but not both. We analyze the exponential 
decay rate for E(X,X,.$. The overall result is somewhat surprising: Even in 
the simplest m e ,  p = v (so that both sequences have the same distribution) 
and rn = n (so that both sequences have the same length), there are cases with 
a E (p, 1)  with so much positive correlation between indicators X, and X, 
that the second moment of W blows up. 

In the exemplary case a = (O,O), j3 = (0, t ) ,  the event indicated by VnVp 
involves 2t comparisons between pairs of letters. The dependence graph for 
these comparisons can be viewed as t independent accordions of length 2 ,  
namely, BkAkBt+k  for 0 5 k < t. Drawn with the sequence A on the bottom, 
each accordion resembles the letter v and the entire picture of overlapping v’s 
resembles crabgrass. In the general case, say, with a = ( i , . j ) ,  j3 = (i + d , j ?  
with 0 I d < t and 1.j - j r l  2 t, exactly d of the v’s split into pairs of indepen- 
dent single edges. 

Consider the conditional probability c that three independent letters match, 
given that the first two match, say, with the first letter chosen with distribu- 
tion p and the other two with distribution v: 

Note that cp = P ( A ,  = B ,  = B,) and 

P - CP 
= P (  B ,  = A,IA, # B , ) .  

1 - P  

Since p = E(v(A,))  and cp = E ( Y ( A , ) ~ )  2 p 2 ,  we have c 2 p, with equality if 
and only if v restricted to the support of p is constant. In the special case 
p = v,  we have from Jensen’s inequality that cp < p3/’, i.e., c < fi. 

Let G(a;  p,  v )  be the large deviation rate defined by 

1 
t + m , s / t + a  t 

G ( a ; p , v )  = lim - -logE(Vo,(Voo= 1).  

Note that G(a; p,  v )  = - H ( a ,  p )  + lim(- l/t)log E(VooVo,). For a = 1, we 
have simply G(1; p, v )  = logil/c). In the case c = 1, which is allowed since we 
have only assumed that 0 < p < 1, we will have simply that G(a; p,  v )  = 0 for 
all a. 

We now deal with the remaining cases. Assume for this paragraph that 
c < 1 and p < a < 1. Consider the indices i E [ l ,  t )  for which Ai = Bi and let 
b E (c, 1 )  denote the fraction of these for which Ai = Bt+ i .  Roughly speaking, 
this accounts for abt matches out of at comparisons, so that we still need 
(a - ab)t matches Ai = Bi+t from the (1 - a)t positions i for which Ai  # Bi. 
Thus, b is such that (a - a b ) / ( l  - a) E ( ( p  - cp)/(l - p ) ,  1). We see that 



560 R. ARRATIA, L. GORDON AND M. S. WATERMAN 

G(a; II., v) depends on p and v only through the values of p and c, and that 

(29) G ( a ; p , v )  = inf ~ H ( b , c )  + (1 - u ) H  
b 1 - a  

The derivative with respect to b of the expression in brackets is 

(30) a[log( bp( 1 - c ) ~ (  1 - 2a + ab)) - log(ca( 1 - b)’( 1 - 2 p  + c p ) ) ]  . 
Therefore, the critical value of b is a root of a quadratic equation in b. 
Recall that c r p .  The equation can be written as Ab2 + Bb + C, with A = 

Hence, we may solve explicitly for the critical value bo. Specifically, bo = a 
when c = p ,  and 

U ( C  - p )  2 0, B = - ~ u ( c  - p )  -p(1 - c ) ~  < Oand C = ~ ( l  - 2 p  + C P )  2 0.  

)l’’ - l ) ,  
4 a ( l  - U ) ( C  - p )  

(31) b o =  1 - 
2 4 c  - P )  

when c > p .  In the latter case, (31) is the only critical value less than 1 and the 
minimum is attained there. The concavity of the square root implies that 
a < bo when c > p .  

It is also convenient to express the large deviation rate G(a; p, v) relative to 
the rate H(a, p ) ,  so we define 

The limit is taken as s, t -, with s / t  -, a,  and we recall that the indicators 
y j  involve matching two segments of length t and requiring s or more 
matches. Observe that by interchanging the roles of the two sequences, we 
have 

Informally, the parameter 6 measures how hard it is to obtain a second 
quality a matching choosing fresh letters for only one of the sequences, 
relative to how hard it is to obtain the first quality a matching. The two 
extreme cases should be pointed out. If v restricted to the support of p is 
constant, 80 that c = p ,  then B(a; p, v) = 1 for all a, which can be seen either 
directly or by checking that b = a is the critical value of b. If v is unit mass on 
a letter in the support of p,  then 6(a; p ,  v >  = 0 for all a. 

LEMMA 4. I f  a = (i, j )  and #I = (i’, j ’ )  with (i - i’l < t and ( j  - j ’ (  2 t ,  
and s 2 at with p < a I; 1, then 

E(V,V,) 5 exp( - t ( l  + W ( a ,  P I ) ,  

where 6 = 6(a; p,  v) is given by (29), (31) and (32). 
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PROOF. Consider first the case a = (0, O), fi  = (0, t ) .  Let 

U E  C l ( A k  =Bk), U ' E  l ( A k  = B t + k )  

denote the numbers of matches involved in the events indicated by V, and V,, 
so that Val$ = l ( U  2 s)l(U' 2 s) I 1(U + U' 2 2s). We compute, for real y, 
exp(tF(y)) = EeY(u+u') = (cpe2Y + 2(p - cp)eY + 1 - 2 p  + cpY. For each y, 
there is the exponential upper bound P(U + U' 2 2s) 5 exp( - t (2ay  - F(y))). 
Large deviation theory for the two-dimensional vectors (l(A, = Bk), l(Ak = 
B t + J )  E R2 implies, for fixed a > p ,  with s = [at] ,  that E(X,X,) ,  E(V,V,) 
and P(U + U' 2 2s) all have the same exponential rate of decay relative to t, 
which we have labeled as G(a; p, v) + H ( a ,  p )  = (1 + B)H(a, p ) ,  and that this 
rate is also realized by optimizing the exponential upper bound. Thus, 

Now changing a, f i  to the general case, so that U and U' become U = 
COsk<tl(Ai+k = Bj+k), U' = COsk<tl(Aip+k = B j , + J ,  changes Eey(u+u') by 
replacing some of the factors of (cpe2Y + 2(p  - cp)eY + 1 - 2p + cp), corre- 
sponding to accordions of length 2, with factors of (pey + 1 - p)', correspond- 
ing to pairs of independent edges. To check that 

O r k < t  0 s k < t  

(1 + 8 ) H ( a , p )  = supY(2ay - F(y)) = 2 ~ y ,  - F(y,), with 7, > 0. 

(cpe'y + 2 ( p  - cp)ey + 1 - 2 p  + cp)  2 (pey + 1 - p 1 2  for y 2 0, 

simply check for equality at y = 0 and verify the appropriate inequality for the 
derivative with respect to y, using c 2 p for this. Thus, the exponential upper 
bound, with y = yo, proves this lemma. 0 

To interpret the above lemma, consider the case where m, n + 00 with 

log( n)/log( mn) + p > 0, log( m)/log( mn) + 1 - p > 0. 
We calculate exponential growth rates, writing = to show that the logarithms 
of two quantities are asymptotic. In order to have A = E W  bounded away 
from zero and infinity, we must have mn = etH(,,p). There are asymptotically 
2tmn2 = mn2 = (mn)'+P terms E(X,X , )  with a = (i, j )  and fi  = (i', j? ,  with 
li - i'l < t and lj - j'l 2 t, so the total contribution to E ( W 2 )  from these 
terms is = (mn)l+Pexp(-t(l + 0 ) H )  (mn)l+p-(l+e) = ( m r ~ ) P - ~ ,  with 8 = 

The preceding calculation shows that the second moment of W blows up, 
due to pairs of events which share letters in the sequence A but not B, if 
p > 8(a; p, v), and not if p < 8(a; p, v). Similarly, the second moment blows up 
due to pairs of terms which share letters in the sequence B if 1 - p > Nu; v, p),  
and not if 1 - p < Nu; v, p). Notice the interchange in the order of p and v in 
the arguments to 8. Thus, the key condition for there to be a successful 
Poisson approximation using W ,  for some choice of the relative growth rates of 
m and n, is that 

e(a; p,  VI. 

(33) f l ( a ; p , v )  + @ ( a ; v , I L )  > 1, 
so that we can find a value p E (1 - 8(u; v, p), 8(a; p, v)). 
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For the case p = u and a = 1, we have G(l;p, p )  = log(l/c), so that 
8(l; p,p)  = log c/log p, with 8 0 ;  p, p )  > i by Jensen’s inequality. By continu- 
ity, for each nontrivial p (so that 0 < p  < l), (33) is satisfied for all a 
sufficiently close to 1. 

EXAMPLE 1. Condition (33) is not always satisfied. With p = u = 
(0.75,0.09,0.09,0.07) we compute p = 0.5836 and c = 0.72597. Using (31) 
yields 8 = 0.498 when a = 0.7. Thus, the variance of W explodes for all 
choices m, n -, m. 

EXAMPLE 2. With p = (0.5,0.5), Y = (x, 1 - x), a E (0.5, 11 we have 
8 ( a ; u , p )  = 1 and, if x = 0, then 8(a ;p ,  u )  = 0. Thus, by picking x positive 
but close to zero, we have an example with i 4 (1 - Nu; u, p), 8(a; p,  u) )  # 0. 
Thus, a Poisson approximation is proved by our method for some m, n + 03 

but not with m = n. 
In particular, with a = 1 and m = n, the condition for a Poisson approxi- 

mation to be proved by our method is that x E (xo, 1 - xo), where xo = 
0.178.. . is the smaller solution of i = 8(l; p ,  u )  = -log,(l - 2 x 0  - x)). This 
same example is treated in Arratia and Waterman [(1985), page 12371, where it 
is seen that lim(MA,JR;J = 1 8.5. if and only if x E [x,, 1 - xJ, where 
x1 = 0.11002.. . is the smaller solution of x log(x) + (1 - x)log(l - x) = 
- log(2)/2. 

EXAMPLE 3. The vector of probabilities 

42896 17309 17556 43263 
p = v =  - - - - ( 121024 ’ 121024 ’ 121024 ’ 121024 

figures prominently in the experiments reported in Section 7. For these al- 
phabet probabilities, p = 0.2949 and c = 0.3262. Corresponding to a = 
0.6,0.7,0.8,0.9, we obtain from (31) and (32) that 0 = 0.9062,0.9056,0.9062, 
0.9088. Note that 8 is not monotone in a. 

6.3. Putting it all together. To use the Chen-Stein method, for cy = 
(i, j )  E I, we take B ,  = { p  = ( i ’ , j ’ )  E I: li - i’l < 2t or lj -j’l < 2t). With 
this choice, b, = 0 and b,  < 4t(m + n)hEX,. 

There is a small contribution to b, from pairs a, p which are not a ~ a c e n t ,  
but for which p E B,, i.e., with t I li - i’l < 2t and t I lj - j ’ l ,  or with 
t I li - i’( and t I ( j  -j’l < 2t. For these pairs, we have that X ,  and Xa are 
dependent, but either X ,  and Ya are independent, so that E ( X , X a )  I 
E(X,Yp) = (EX,XEYa), or Y, and X p  are independent, yielding the same 
upper bound. Thus, the total contribution here is at most 4t2h EY,. 

There are fewer than 4t2mn doubly adjacent pairs (cy, p). The total contri- 
bution to b, from these, by Lemma 3, is at most 4t2mn exp(-2tI(a)). In all 
situations of interest this contribution decays exponentially fast in t, because 
mn = exp(tH(a, p ) )  and 2I(a) > H a ,  p ) .  
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The main contribution to b, is from singly adjacent pairs (a,@), Le., 
crabgrass. Consider those pairs which share letters in the A sequence, Le., 
with li - i'l < t and ( j  - j ' (  2 t. There are fewer than 2tmn2 such pairs, so 
by Lemma 4, the total contribution is at most 2tmn2 exp(-t(l  + 
8(a; p, v ) )H(a ,  p)).  The contribution from pairs which share letters in the B 
sequence has a similar bound, interchanging m with n and p with v. In 
situations of interest, our upper bound has the same exponential growth rate 
as the contribution itself, and may decay or grow exponentially with t. 

The net result for using the Chen-Stein method is that 
b, = 0 ,  b, < 4t( m + n)AEXa 

and 
b, < 4t2AEYa + 4t2mne-2"(a)+ 2 tmn2exp[ - t ( l  + O ( a ; p , v ) ) H ( a , p ) ]  

+ 2tnm2exp[- t ( l  + ~ ( a ; v , p ) ) H ( a , p ) ] .  

THEOREM 3. Let N ( m ,  n; t )  be the maximum number of matches between a 
word of length t taken from A,. . . A,,, and a word of length t from B, . . . B,, 
with independent letters. Let S ( n , t )  be the maximum number of heads in a 
run of length t starting within the first n tosses of p-coins Zi, as described in 
Theorem 1, withp = P ( A i  = B j ) .  If p = log n/ log(mn)  satisfies 8(a; p,  v) > p 
> 1 - 8(a; v, p), where 8 is defined by (32), and s = at, then P ( N ( m ,  n; t )  < s) 
can be approximated by P(S,,; < s). More precisely, 

< (4t2 + 5t( m + n )  + 7t + I ) P ( Z ,  + 
I P ( N ( m , n ; t )  < s )  - P ( S ( ( m  - t ) ( n  - t ) , t )  < s) l  

* +z, 2 s) + 4t2mne-2"(u) 

+ 2tmn2exp[- t (1  + ~ ( a ; b , v ) ) H ( a , p ) ]  
+ 2tnm2exp[- t (1  + ~ ( a ; v , p ) ) H ( a , p ) ] .  

This upper bound converges to zero faster than some negative power of (mn). 

PROOF. To control boundary effects in using W = W ( m ,  n, s, t )  to approxi- 
mate the distribution of N = N ( m ,  n; t), we observe that {W # 0) c {N 2 s) 
and 

{ N 1 s , W = O }  c U { V a = 1 } ,  
a 

where the union is over a = ( i ,  j )  E I ,  with i 5; t or j I t, so that 

I t ( m  + n)exp( - t H ( a , p ) ) .  
J P ( W  = 0) - P ( N  < s)l I t ( m  + n - 2t + 2)Eva 

( 34) 

A similar bound is given as (9) in approximating a probability for head rich 
regions in coin tossing, P(S , , ,  < s) by P(W(n ,  s, t )  = 0). We recopy (9) below, 
changing the dummy variable "n" to "1": 

I P( Sl;  < s) - P ( W (  1 ,  s , t ) = 0 )  I 5 tP( 2, + * + 2, = s ) 
+ P(2, + * * .  +zt > s).  
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There is a potentially confusing reuse of notation, since in both Section 4 and 
here, we have a random variable W which is a sum of random variables called 
X,. However, if the values of p ,  s, t agree, then EX, is the same for the two 
different versions of X,. With 1 = ( m  - tXn - t),  the random variable 
W(Z,s , t )  of Section 4 and the random variable W = W ( m , n , s , t )  of this 
section have the same expectation, namely, EW = lEX,. As in the proof of 
Theorem 1, the Chen-Stein method gives a bound of the form 1P(W = 0) - 
e-EW) < (1 A (EW)- 'Xb,  + b, + b3). Thus our theorem follows by combining 
four upper bounds, namely for b,, b,, boundary effects and (11) of Theorem 1. 

0 

THEOREM 4. Let Mg,  be the length of the longest quality a matching pair 
of words, one taken from A,. .. A ,  and the other from B ,  ... B,, with 
independent letters. Let R: be the length of the longest quality a head run 
starting within the first n tosses ofp-coins Z i ,  as described in Theorem 2, with 
p = P ( A i  = Bj) .  If log n/log(mn) + p as m, n + m, and p satisfies 
8(a; p, v) > p > 1 - 8(a; v, p), where 8 is defined by (32), then the total varia- 
tion distance between M& and RF,,) converges to zero, faster than some 
negative power of (mn). 

PROOF. The proof of this theorem bears exactly the same relation to the 
proof of Theorem 3 that the proof of Theorem 2 bears to the proof of Theorem 
1. It is actually Rtm-,Xn-t , )  that is involved, but this in turn is close to RT,,,. 
Thus, for a E ( p ,  11, a positive integer t ,  and positional indices a = ( i ,  J )  E 
[l ,  m - t + 11 x [l ,  n - t + 11, we define indicators XL 5 Ya' s V,' to parallel 
the construction of Section 5. In particular, XL will have the same expectation 
as it had in Section 5. We have v() = max, k s2,{V(i, j ,  [akl ,  k}, so the upper 
bound of Lemma 3 applies to V after throwing in a factor of 1/(1 - 
corresponding to summing a geometric series. The bound of Lemma 4 applies 
unchanged to V ,  by using Cram6r's argument, as in the proof of the upper 
bound (20). The combination of upper bounds to control boundary effects and 
two Poisson approximations with the same E W  = IEX;, with 1 = 
( m  - tXn - t),  is an upper bound on IP(M& < t )  - P(RQ < t ) ( .  This upper 
bound is less than some constant, independent of m,n,t ,  times the upper 
bound from Theorem 3. 0 

7. Two experiments. In this section, we test the applicability of our 
results. We first present a simulation experiment in which the four letter 
alphabet { a ,  c, g ,  t}  is generated according to probabilities p = v = 
(0.3544,0.1430,0.1451,0.3575). These probabilities are the subject of Example 
3 in Section 6.2. The probability of a single match of two independently chosen 
letters is p = 0.2949. The probabilities are determined by the proportions of 
base pairs in the subject of our second experiment, the complete chloroplast 
genome of the liverwort Marchantia polymorphs, taken from the GenBank 
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database. See Fickett and Burks (1989) for a description of the GenBank 
database. 

The results of our first simulation experiment are presented in Figure 1. 
For each choice of n E (256,512,1024,2048) and three choices of t, we 
present histograms summarizing 200 realizations of N(n, n; f), the maximum 
number of matches belonging to length t windows in two independently 
generated sequences, each of length n, consisting of i.i.d. letters from a four 
letter alphabet. 

Corresponding to n, we select window lengths t = lln((a - p)n2) /H(a ,  p)l, 
for a E {0.7,0.8,0.9}. Histograms are independent for M e r i n g  values of n, 
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but the same random sequences are used to find the richest matching windows 
for fixed n and varying t. The random number generator used was that 
provided by the MATLAB package, in which all programming was done on a Sun 
3/260 computer. See Moler, Ullman, Little and Bangert (1987). 

We use Theorem 3 to center the histograms of simulation results. Specifi- 
cally, for given values of n and t, we call L s , ~  the center of the histogram 
where s, is the solution to the equation 

The centering constant s, used here is asymptotically equivalent to the center 
b(n,  t )  defined in (15). For example, for n = 2048 and t = 41, the integer part 
of the solution to (35) is L S , ~  = 27. These values appear underneath corre- 
sponding histograms labeled as "center," in the form Ls,]/t. 

Tolerance intervals based on Theorem 3 are given by the triple horizontal 
dotted lines. These cover horizontally at least 99% of the predicted distribu- 
tion, from the lower 0.005 fractile to the upper 0.995 fractile. We report on 
3 x 4 x 200 = 2400 realizations. Were the approximate distribution exact, one 
would expect fewer than two simulated values to exceed the tolerance limits in 
each combination of a and n. 

Values of the approximating distribution using Theorem 3 appear above the 
corresponding histogram bars. For example, we approximate the probability 
that for n = 2048 the maximally rich 41-regions of two independent sequences 
has approximate probability 

P{ N(2048,2048; 41) = 27} 

= exp[ -20072(28/41 - p)P{binomial(41,0.2949) = 28}] 

- exp[ -2007'(27/41 - p)P{binomial(41,0.2949) = 27}] 
= 0.5046. 

The predicted value at the centered value is indicated by appending a percent 
sign. The heights of the histogram bars are determined for the arcsine 
transformation of the predicted approximating probability. Specifically, if The- 
orem (3) yields h, for the predicted probability of observing exactly s matches 
in the richest matching t-interval, we plot the top of the bar at 2 a rcs in(K) .  

The results of the simulation experiment are reported numerically above 
the heavy black lines in Figure 1. Consider, for example, the upper left glyph. 
For the 200 simulations with n = 2048 and t = 41,39% were observed to have 
had exactly 27 matches in common for maximally comparable 41-segments, 
while 6% were observed to have had exactly 28 matches in common. The range 
of maximally rich comparisons is 28 - 25 = 3. 

The thick lower bar is plotted at the difference of predicted minus observed 
on the arcsine transformation scale. Specifically, let h,  denote the observed 
frequency of observing {Nn,n;t = s) in m = 200 simulations. The bottom of bar 
s appears at height 2 a r c s i n ( 6 )  - 2 a r c s i n ( a ) .  
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Were our predicted frequencies to fit the observed simulation histograms 
perfectly, we would see the usual histogram shape, sitting on a horizontal fat 
black line. Deviations of the bottoms of the bars from a common base gives a 
graphical depiction of deviations of observed from expected. 

The vertical distance between the highest and lowest of the three horizontal 
dotted lines correspond to f2.57 standard errors of h,, meaningful across a 
broad range of values because arcsine transformation stabilizes binomial 
variances. Bottoms of histogram bars lying outside the dotted range suggest a 
lack of fit in the Poisson approximation to the distribution of N ( n ,  n ;  t ) .  

A number of features of the simulation experiment are anticipated by 
mathematical results in the preceding sections. First, observe that the condi- 
tions of Theorem 3 are satisfied. From Example 3, 8 > 0.9, so that use of (13) 
is warranted by Theorem 3. 

On a gross basis, the distribution of N(n, n;  t )  is well approximated by the 
Poisson. The predicted center [s,] is a satisfactory location parameter. The 
predicted 95% tolerance region contains most of the empirical distribution. 
The distributions for similar values of a appear tight. The predicted shape is 
similar to extreme value, with a very rapidly decaying left tail and a much 
thicker right tail. 

The fine structure of the empirical distribution is not so well predicted. The 
simulated empirical distributions appear to be greater than predicted by (13) 
for s < so, and smaller than predicted for s > s,. Perhaps this is not so 
surprising, given that the tails of the binomial distribution are heavier than 
extreme value on the right, and lighter than extreme value on the left. 

We present in Figure 2 the results of our second experiment in a format 
identical to that of Figure 1. The complete genome of Marchantia polymorph 
is given as a sequence of 121,024 letters from the alphabet (a ,  c ,  g ,  t ) .  For each 
of four choices of n ,  the sequence was cut into blocks of exactly 256,512,1024 
or 2048 letters, with the remaining letters ignored. A sample of 200 pairs from 
the population of all pairs having identical lengths was taken, and the richest 
common matching t-segment was found for the same choices of t as in the 
simulation experiment. 

It is remarkable, given the known dependence of adjacent nucleotides, that 
predictions based on assumptions of i.i.d. generation of sequences should fit as 
well as they do. For an analysis of dependence among adjacent nucleotides, see 
Tavare and Giddings (1989). 

The predicted center continues to be a good center for the empirical 
distribution. In all cases the empirical mode is at [s,] or at ls,] -F 1. The 
empirical distribution is less concentrated than the simulated distribution, no 
doubt attributable to departures from distributional assumptions. There are 
happily few outliers, suggesting that the approximate distribution of richest 
matching segments could be a suitable tool for screening for interesting 
regions of similarity. 

Ohyama et al. (1986) study the chloroplast gene organization using the 
complete DNA sequence. We cannot relate the outlier found in the n = 1024 
comparisons to their work, but the outlying comparison for n = 512 has 
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intriguing biological implications. Higher organisms have gene (protein encod- 
ing) DNA sequences interrupted by so-called intervening sequences which are 
removed from transcribed RNA by a mechanism known as splicing. There is as 
yet no consensus regarding the biological role of intervening sequences. 

The n = 512 outlier corresponds to a match of length t = 21 beginning at 
nucleotide 26,665 and at nucleotide 67,475. The first segment is located in an 
intervening sequence within the gene coding a tRNA for lysine, while the 
second segment is located in an intervening sequence within open reading 
frame ORF203. (Open reading frames indicate regions of DNA that could 
encode proteins, although it has not yet been determined whether the region's 
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DNA is actually translated into proteins.) We are continuing to study both the 
n = 512 and n = 1024 outliers. 

Although our results apply to segment comparison with mismatches, inser- 
tions and deletions are common in the evolutionary process. We hope ulti- 
mately to include the case of insertions and deletions in a distributional 
Erdos-Rknyi law. We expect, because the dependence introduced by compar- 
isons with insertions and deletions remains local, that the methods developed 
here-in particular, use of the Chen-Stein Poisson approximation-will be 
useful in the more complicated and scientifically more interesting problem. 
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