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INTRODUCTION

In 1970 dynamic programming was first applied to the comparison of biological
sequences by Needleman and Wunsch.® Their method is now calied a similarity
method. Since their work, many extensions and modifications have been introduced.
This includes distance methods, general gap functions, multiple alignment proce-
dures, and near-optimsl methods. See Waterman'* for a review of these approaches
to sequence comparison.

When more sequences began to appear in the later 1970’s, it became appar-
ent that alignment of entire sequences was frequently not the major problem of
interest. Instead it was more valuable to look for the good matching segments
within longer sequences. Distance methods had become very popular, perhaps due
to their mathematical relationship to metric spaces, and converting distance meth-
ods to handle segmental matching was a difficult task. See Sellers? and Goad and
Kanehisa.® Similarity methods however could more easily be modified for segment
comparisons.}%!? Next we present the algorithm from the papers. Take the two
sequences lo be ¢ = a;a2...an and b = bibz...bm. They can be either DNA
or protein sequences. The similarity measure between sequence letters a and b is
s(a,b), where s(a,b) > 0ifa =b and s(a,b) < 0 for at least some cases ofa#b.
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Insertions or deletions of length k receive weight —w(k). The observation of Smith
and Waterman'? is that negative scoring alignments are of no interest. S(a,b) is
defined to be the best (largest) score from aligning a and b. Define

Gij = max {O;S(a,a,“ o83, bybyyy . b)) 1<z <1<y Sj} . 1)
Gi; is the best score of any alignment ending at a; and b; or 0, whichever is

larger. The similarity algorithm is started with Gio=Goj=01or1<i<nand
1 < j < m. Then

Gij =max{0,Gi_y ., +s(ai, b)), Eij,Fi }, 2
where
Eij= T {Gij-r — w(k)}, 3)
and
Fij = max {Gix; — w(k)}. (1)

The best scoring alignment has score max Gi;. Gotoh? showed the time for the
multiple gap algorithm of Waterman et al.!! could be reduced to O(n?) for linear
gap functions w(k) = u + vk. For the above algorithm this is accomplished by
altering the last two recursions, Egs. (3) and (4), to:

Eij =max(Gij-1 — (u+0), Eijoy - v},
Fij =max{Gi-j ~ (u+v), Fioy ~v}.

The average sequence in GenBank or EMBL is 1000 bases long. Figure 1 shows
best segment alignments for independent simulations of 10 independent pairs of
length 1000 DNA sequences with P(4) = P(C) = P(G) = P(T) = .25. The
algorithm parameters are s(a,a) = 1, s(a,b) = —pu for a # b, and w(k) = &k,
where g4 = 1.1 and § = 2.1. It is remarkable that these segmental matchings from
random sequences are so long and score so well. Simulations such as this suggest
that understanding the distribution of score (max Gij) under the null hypothesis
of independence is an important goal. Otherwise if the analysis of “interesting”
alignments proceeds on an ad hoc basis, it is easy to be misled by statistically
insignificant alignments. As the genome projects get underway and megabases of
sequence are produced, these statistical considerations will assume more impor-
tance. The examples of this paper are of DNA sequences, but the general theory
allows analysis of protein and other sequences.
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FIGURE 1 Simulation results from comparing 10 pairs of independent, identically
distributed DNA sequences of langth n = 1000 with equally likely letters. The algorithm
parameters are x4 = 1.5 and § = 2.1.
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PROBABILITY DISTRIBUTIONS

When two random sequences of length n (a and §) are written in a fixed alignment,
the resulting sequence of matches and mismatches can be identified as a sequence of
coin tosses. The probability that the kth toss is a head is P(z; = y;). Our object in
this paper is Lo study long runs of matches, which in this case are long head runs.
The celebrated Erdés-Rényi law® gave order magnitude behavior for the longest
run of heads in a sequence of n independent coin tosses. Their results actually
include behavior of the longest head run containing (1 — a) x 100% tails where
a > P(H) = p. For length R, of pure head runs (a = 1.0) their result is

se———s — 1 with probability one,
lOSI/p(”)

while for general a > p their result is

oot — 1 with probability one,

ap

where H(a, p) = alog(a/p) + (1 - ) log((1 - a)/(1 — p)) is relative entropy. For
a = 1, H(a,p) = log(1/p) and the two results are consistent. Other work? gives
precise results for this law and gives

B{Ra} = logyp(m) + 2T L (5)
and
x? ] -
Var{R,} = gz t 13+ r2(n), (6)

where .577 ... is the Euler-Mascheroni constant, # = In(1/p), and the remainders
r1(n) and ry(n) are of very small, but nonvanishing magnitude. For 512 fair coin
tosses, the mean is approximately 9.33 while the standard deviation is about 1.93.

The probability results quoted here are for independent and identically dis-
tributed coin tosses. To carry the results over to sequence matching, the two se-
quences of length n are assumed to have bases chosen independently and identically
with p = P{two bases match} = p + pZ + p% + p2. The formulae (5) and (8) hold
with n replaced by n2

To consider approximate matching, we allow a fixed number of mismatches k.
The mean length of the longest match with k mismatches becomes, from Ref. (2),
approximately

S77...

1
] 2 (M

log(gn?) + k log log(gn?) + k log (%) ~ log(kV) + k +

|
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FIGURE 2 Simulation results from 100 pairs of independent, identically distributed
DNA sequences of length n = 1000 with equally likely letters are compared for

(a) n = 100 10 900 (growth rate is linear; the algorithm parameters are u = 0.2 and

6 = 0.5) and for (b) n = 43,...,4° (growth rate is logarithmic; the algorithm parameters
are yu= .9 and 6§ = 2.0).
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where ¢ = 1 — p and all log’s are taken Lo base 1/p. The variance remains approxi-
mately x2/(660%) + 1/12.

The Erdds-Rényi law for the length R, of the longest 100% head run of n coin
tosses then extends to a law for the length M, of the longest match between two
sequences. We have recently shown that the length of the longest run of matches
containing (1 — a) x 100% mismatches satisfies

T%‘ ~— 1 with probability one,
)

which is the Erdds-Rényi law with n replaced by n? This last theorem has been
obtained by use of the theory of large deviations.*

Considering these results, it is not surprising that log(n) laws hold far beyond
the longest exact head run or match. The expected behavior of maxGi; is of im-
portance in evaluating sequence comparisons. If a located match is at or below that
expected from random sequences of similar composition, then the match should not
be further considered without additional biological information. These distributions
have been shown to fit biological sequences quite well' for algorithm parameters
not covered by the theorems above. We have also proven that max G;; undergoes a
phase transition.!3 For larger values of (1, 6), max G;; grows proportional to log(n)
and for smaller values max G;; grows linearly with sequence length. There are only
two modes of behavior at this precision. The logarithmic and linear regions of this
two-dimensional parameter space have been determined numerically in a Monte
Carlo study.!* See Figure 2 for illustrations of the growth of score (max G;;) with
sequence length. These results help those analyzing macromolecular sequences to
proceed in a much less ad hoc manner.

A HEURISTIC CALCULATION

Our results provide substantial intuition when confronting more complicated prob-
lems as well. As an example, we provide a tentative analysis of a multiple inference
procedure presented in Altschul and Erickson.! They propose as a measure of se-
quence similarity the minimal attained significance among all runs of matches,
minimizing over all possible run lengths. Attained significance is computed using a
binomial model, implicitly computing significance under the model of independently
generated letters in each of the compared sequences. Citing a lack of theoretical de-
velopment, they use a curve-fitling approach to parametrize their proposed test.
In the discussion below, we will show how the previously discussed results sug-
gest a (ramework in which an alternative, theoretically motivated parametrization
provides a better fit.

Specifically, in terms of the notation of the previous section, let M, (k) denote
the length of the longest match between two sequences of length n of independently
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generated letters taken from the same distribution. Inspired by Cramer’s treatment
of large deviations theory, approximate the log-probability of observing & or fewer
mismatches in match length ¢ as

—m(x - ;,p) - %In(?rk), 8)

an approximation good to order k/t. Note that for fixed k the attained signiﬁcan'ce is
increasing in ¢. Hence, to a crude order of approximation, the logarithm of attained
significance might be expected to be

Sa = —Ma(K)H(1,p) - -;—ln(21rK).

where the random variable K indexes the most significant of all k-interrupted
matches between the two n-sequences. Of importance is ounly the observation that
approximate significance will pick one of the longest k-interrupted matches, eac'h of
which is approximately distributed as integerized extreme value with centers given
by Arratia et al.? .

There is reason to believe that the most significant of the k-interru pted matches
should appear with relatively small k. The argument depends on the approxi-
mate independence—for small k—of the lengths of the longest k-interrupted runs
of matches. This is a consequence of the conditional uniform distribution of the
locations of mismatches given an extremely rich pattern of matches. A common
renewal-theoretic clumping argument suggests that for large k, one should expect
to observe clumps of unusually long k-interrupted runs of matches. Hence, the most
significant among the k-interrupted runs should typically occur for small k, and we
use Eq. (7) to conjecture the form

Sa = In(n?) + alnln(n?) + ﬂl—r;;:—(rl'(l:—;) +yv+V, 9)

where V is the integerized extreme value with approximate variance x2/6+1/12=
173, a = E{K}, and ¥ = E{ux} consolidates those terms of Eq. (7) which are not

TABLE 1 Three Modals by Ordinary Least Squares

model VR? 1000 x MSE
. s=In(n®*)=aln Insn’) +p .95 3.02
2. s—In(n?)=aln(n?)+ 8 , .96 2.34
3. s~In(n?)=alnin(n?)+ A0 4+, 98 1.44
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coefficients of In(t) or InIn(t). The correction term with coefficient B is of the sort
used in Arratia et al.? to correct for finite sample size. For a theoretical discussion
showing the form of such corrections, see de Bruijn,® section 2.4.

We present. the resuits of fitting Eq. (9) using the data of Altschul and Erickson,!
in which are reported means of 1000 simulation experiments realizing the minimal
attained significance for nine levels of n ranging from 70 to 518. Specifically, we take
the sample mean of the 1000 attained significance levels for each value of n using
the formula s = u + .5772/, where values of u and ) are taken from Altschul and
Erickson,! Table II. We fit the three models in Table 1 by ordinary least squates.
All three models regress against the independent variable s — In(n?), motivated by
the heuristic argument above. It is nearly impossible to select among the models
for data analytic reasons alone; correlations among pairs of the three explanatory
variables used all exceed .997 in absolute value.

The reassuring feature of the heuristic specification of model 3 is the mean
square error after fitting. The tabled values would estimate the variance of an
integerized extreme value, if the specification, Eq. (9), were correct. Note that 1.44
is closest of all three specifications to x2/6 + 1/12, although all three models yield
confidence intervals for the variance which include 1.73.
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