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ABSTRACT 

. A statistical analysis of physical map data for eight 
restriction enzymes covering nearly the entire genome 
of E. coli is presented. The methods of analysis are 
based on a top-down modeling approach which 
requires no knowledge of the statistical properties of 
the base sequence. For most enzymes, the distribution 
of mapped sites is found to be fairly homogeneous. 
Some heterogeneity in the distribution of sites is 
observed for the enzymes Psfl and Hindlll. In addition, 
BamHl sites are found to be more evenly dispersed 
than we would expect for random placement and we 
speculate on a possible mechanism. A consistent 
departure from a uniform distribution, observed for 
each of the eight enzymes, is found to be due to a lack 
of closely spaced sites. We conclude from our analysis 
that this departure can be accounted for by deficiencies 
in the physical map data rather than non-random 
placement of actual restriction sites. Estimates of the 
numbers of sites missing from the map are given, 
based both on the map data itself and on the site 
frequencies in a sample of sequenced E. coli DNA. We 
conclude that 5 to 15% of the mapped sites represent 
multiple sites in the DNA sequence. 

INTRODUCTION 

The genome of E. coli is a 4.72Mb circular dsDNA molecule. 
It has been extensively mapped by both genetic and physical 
methods and may soon be the first large genome to be completely 
sequenced. The existence of a detailed restriction map containing 
over 7000 sites for eight different restriction enzymes and 
covering nearly the entire genome (l), affords us with a unique 
opportunity to examine the distribution of these sites in detail. 
Such analysis is aimed at identifying interesting structural or 
organizational features of the genome or systematic bias in the 
data. A detailed understanding of the relationship between 
physical map data and the actual placement of sites in a genome 
will aid the process of integrating physical and genetic maps with 
sequence data (2). Models for restriction site distributions could 
also have practical applications in the early planning stages of 
a mapping or sequencing project where the choice of an 
appropriate set of restriction enzymes would help to minimize 
the amount of work required. Results presented here for the E. 
coli genome will very likely generalize to other bacterial species, 
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although, in higher organisms, the distribution of sites could be 
very different due the fundamentally different organization of 
genomic DNA. 

The hypothesis that the restriction sites are uniformly and 
independently distributed throughout the genome is to be tested. 
There are several a priori reasons to suspect that this will not 
be the case. First, if there are local fluctuations in base 
composition, regions will exist where the expected frequency of 
sites may be increased or decreased relative to the average. There 
is strong evidence for compositional fluctuations in vertebrate 
DNA (3). Density gradient analysis of fragmented bacterial 
genomes also shows variations in excess of random expectations 
(4). Second, the DNA of E. coli is not a random sequence, 
although we treat it as such for purposes of analysis. There is 
a high density of genetic information in the genome which is 
dominated by genes and regulatory regions. Coding constraints 
and codon usage could have a significant effect on the distribution 
of sites. Finally, certain specific sequence patterns play important 
roles in the function of the organism and their placement could 
be highly non-random. Among the enzyme included in this study, 
EcoRI and EcoRV are E. coli specific restriction enzymes and 
the BamHI recognition pattern contains within it the Dam 
methylation site GATC, which has been shown to play a role 
in excision repair processes (5). None of the eight enzymes 
studied here contains the rare CTAG tetramer (6). 

The distribution of restriction enzyme sites has been considered 
by several authors (7 - 10). It is usually assumed that the bases 
of the DNA form a homogeneous Markov chain and the process 
of restriction enzyme cutting is modeled as a Markov renewal 
process. Exact results obtainable by these methods are 
unneccessarily complex for our purposes and we expect that, for 
many genomes, sufficient data on oligonucleotide frequencies will 
not be available. Our approach is to model the placement of 
restriction sites directly and thus avoid many of the problems 
associated with modeling of the base sequence. We will assume 
that the sites are placed uniformly throughout the genome, 
independently of the placement of any other sites, i.e. that the 
sites constitute a Poisson process. Problems of site overlap and 
neighboring base interactions are ignored. Thus, the model is 
expected to be inaccurate over very short distances ( < 20bp) but 
should,be sufficient for most practical purposes. An important 
implication of the Poisson process model is that the distances 
between adjacent sites will follow an exponential distribution. 
Bounds on the quality of the Poisson approximation to the Markov 
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renewal process can be obtained using theorem 2 of Arratia et 
al. (11). 

In the methods section below, we provide a brief description 
of the map data and some relevant experimental aspects of the 
methods used to construct the map. This is followed by an outline 
of the statistical methods used in the analysis. Results are 
presented in four sections. First, we consider the placement of 
mapped sites and compute statistics which test for uniformity. 
Next, we examine the fragment length data, including largest 
and smallest fragments. Then, a refinement of the Poisson process 
model is proposed by which the map data is generated as an 
incomplete representation of the true restriction pattern. The 
modified Poisson process model allows for the fact that, due to 
the methods used to construct the map, closely spaced sites are 
frequently missed. Estimates of the actual numbers of sites are 
obtained. An alternative estimate, based on a sample of sequenced 
E. coli DNA, is computed for comparison. Finally, the alignment 
of three sequenced fragments to the map confirms the basic 
premises of the model. 

METHODS 
Data 
E. coli Restriction Map. For this analysis, we used the nearly 
complete eight enzyme restriction map of E. coli presented by 
Kohara et al. (1, figure 6). This map was constructed by merging 
individual maps of each of a large set of overlapping regions of 
the genome which had been cloned and mapped in phage lambda 
vectors. The individual maps were experimentally determined 
by a modified Smith-Birnstiel method (12). 

In this method, DNA to be mapped is labeled at a unique end, 
parhaUy digested with the enzyme to be mapped, electrophoresed, 
and the labelled fragments are visualized by autoradiography. 
Deducing the map is conceptually straightforward since 
measuring the length of every labelled fragment maps a restriction 
site relative to the unique end. 

Several types of map errors occur with this methodology and 
are relevant to our statistical analysis. Measurement errors are 
quite large. The unique end used to map inserts in lambda vectors 
was the lambda right end which is at some distance from the 
cloned insert being mapped. Thus the fragments being measured 
are in the ten to thirty kb range. This is a poorly resolved region 
of electrophoresis gels and the error of these measurements is 
five to fifteen percent. Intersite distances are obtained by 
differencing the lengths of the measured fragments. The error 
on these values is hard to estimate but is probably not as large 
as the sum of the errors of the measured fragments since these 
errors (from the same lane of the same gel) are not independent. 
Estimating length errors in the map is further complicated by 
the fact that maps of many clones were compiled to produce the 
final map and these were variably weighted based on such factors 
as the @ty of the gel (Kohara, pers. corn.). For these reasons, 
we believe that the measurement errors in the Kohara map are 
not simply proportional to the intersite distances. 

Besides these quantitative measurement errors, there are also 
three types of qualitative errors. The eight Werent enzymes were 
mapped in eight adjacent lanes on the gel. The relative order of 
closely spaced sites for different enzymes is sometimes not correct 
due to the limited resolution of the gel. Similarly, two closely 
spaced sites for the same enzyme may be mapped as a single 
site due to failure of the gel to resolve the two fragments into 
two bands. Finally, some sites may be entirely missed due to 
variability of sites in rates of cutting and the inability to distinguish 

Table 1: A Sample of Sequenced E. coli DNA 

Locus Length Accesssion Location 

ECOACE 7740 V01498 2.8 
ECOAMPCFR 5482 J01611 94.4 
ECOBGLO 5270 M16487 83.4 
ECOBIO 5793 J04423 18 
ECOCARAB 5227 J01597 0.8 
ECODMS 6492 J03412 20 
ECOGLTA 13063 J01619 16.5 
ECOGLTB 6292 M 18747 69.4 
ECOHISPUR 6172 J02800 50.2 
ECOHLY 8211 M10133 
ECOILVGE 9456 M10313 85 
ECOLAC 7477 J01636 7.9 
ECOLPXA 6627 M 19334 4 
ECOMALB 6545 J01648 91.5 
ECONRDA 8554 KO2672 48.5 
ECONUSA 5423 X00513 68.9 
ECOPHOS 5032 KO1992 83.6 
ECOPURLA 5865 M19501 55 
ECORES 5820 M13169 84 
ECORECC 6Ooo X03% 61 
ECORGNB 7508 J01695 89.8 
ECORPLN 5922 XO 1563 72.9 
ECORPLRPO 12337 J01678 89.9 
ECORPOS 10 5422 XO2613 73 
ECORPSRPO 5059 JO 1687 67.0 
ECOTGP 7335 101714 27.5 
ECOTHR 5922 JO 1706 0.0 
ECOTHRINF 7784 V0029 1 37.6 
ECOUHP 5400 M17102 82.2 
ECOUNCC 14526 X01631 83.9 

Sequences were obtained from GenBank release. 60. The locus name, length in 
base pairs, accession number and approximate location on the 100 minute K-12 
genetic map are shown. 

between a clone with no sites and a failed digest. This seems 
to be fairly rare, probably because of the redundancy of the 
mapping data. 

Electronic Version of the Kohara Map. An enlarged version of 
figure six (1) was obtained from Kohara. This was used as a 
template for drawing a restriction map using a Macintosh 
computer and a program supplied by DNAstar inc. After entry, 
the map was printed to the same scale as the Kohara figure. The 
two were physically superimposed, the differences located by 
eye and site positions were adjusted. Data were recorded to the 
nearest base, although the true accuracy may be less than 0.5kb. 
Some periodicities in the lengths of short fragments are apparent 
in the recorded values and are an artifact of the entry method. 

Sampled Sequences. For purposes of inferring the numbers of 
restriction sites, a sample of sequenced E. coli DNA was selected 
from the GenBank database. The sample includes all sequenced 
regions 2 5kb in length from GenBank release 60. Duplications 
were eliminated, leaving 30 sequences with a total length of 
2 13,756bp. Identifying information for these fragments is listed 
in table 1. 

Statistical Methods 
Notation. For a given enzyme, we will let tl < . . . < t,, denote 
the ordered locations of the n sites relative to a fixed origin. We 
will also consider the scaled sites ui = ti/G, where G, the total 
genome size, is taken to be 4720kb. The fragment lengths, 
defined as the distances between two adjacent sites, will be 
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denoted by xi = ti-ti-], where to = t,, is used to compute the 
length of the fragment containing the origin. The ordered 
fragment lengths will be denoted by q0, where x ( ] )  is the 
smallest and x(,,) is the largest fragment length. Capital letters, 
X, are used to denoted random variables and small letters, x ,  
denote their observed values. 

Tests for a uniform distribution. The chi-square goodness-of-fit 
test is computed by dividing the genome into k equally spaced 
intervals and comparing the observed and expected numbers of 
sites in each. The statistic is 

where ni is the number of sites in the irh interval and n is the 
total number of sites. This can be compared to a chi-square 
distribution with k-1 degrees of freedom to determine the 
significance level. A small p-value would imply that the variation 
in the counts from different intervals is less than expected for 
a random distribution of sites. A large p-value would imply that 
the variation is greater than expected, due to relative excesses 
or deficiencies of sites within particular intervals. 

A variety of distribution-free methods can be used to test the 
goodness-of-fit to a uniform distribution (1 3). One advantage of 
these tests is that they do not depend on an arbitrary assignment 
of intervals. We have chosen the Kolmogorov-Smirnov statistic 
which measures the largest difference between the empirical and 
theoretical distribution functions. The statistic is 

The distribution of JnD,, is tabled (14, table 1.1.2.12) and can 
be used to determine significance levels. The interpretation of 
p-values is similar to that for the chi-square test. 

One major disadvantage of the Kolmogorov-Smirnov test is 
that it has poor power properties against general alternatives. A 
transformation of the data, described by Durbin (15), is based 
on the ordered fragment lengths and can be used to improve the 
power of distribution-free tests. The transformed sequence of sites 
is computed as 

_L 

When the observed sites form a Poisson process, so will the 
transformed sites. The fact that the ti" form a Poisson process 
is a technical matter and derives from properties of the 
exponential order statistics xol. The scaled and transformed sites 
UT = t?/G are used to compute D,* as above. Interpretation of 
the p-values is difficult except to say that extreme values indicate 
that some interval lengths are more or less frequent than expected. 

Fragment Length Distributions. Under the Poisson hypothesis, 
the fragment lengths will be distributed according to an 
exponential distribution, 

Pr(X I x )  = 1 -exp(-x/p), (4) 

where p is the mean fragment length. The corresponding 
probability density function is the first derivative of the 
distribution function with respect to x .  The exponential density 
function is 

1 

P 
f(x) = - exp(-x/p); x 2 0.  ( 5 )  

The height of the density function at x is proportional to the 
expected number of fragments with lengths in a small 
neighborhood around x.  A maximum likelihood estimate of the 
parameter p is given by the sample mean. 

The extreme values from n exponential observations with 
common mean p will be of some interest. A standard probability 
argument shows the minimum fragment length Xcn will be 
distributed as exponential with mean pln. Thus, the expected size 
of the smallest fragment will be 

The maximum fragment length, X(,!, can be shown to grow at 
the rate ln(n). Furthermore, the statistic X(,,)/p-ln(n) will have 
the extreme value distribution 

The expected size of the largest fragment is 

where y=  0.5772 is Euler's constant. The probability of 
observing a fragment of size alpha or larger can be computed as 

Alternative distributions to be considered for the fragment lengths 
include the gamma and truncated exponential. Both of these 
distributions will behave as exponentials in the range of large 
fragments but will have a reduced proportion of small fragments. 

The gamma density function can be written as 

where r(u) is the complete gamma function. The gamma 
distribution has mean ap and variance up2. In the case a = 1, 
it reduces to the exponential. Maximum likelihood estimates of 
the parameters values can be approximated numerically (16). 

The truncated exponential density function can be written as 

1 

B 
ha,&) = - exp{-(x-a)/p); x > a. (1 1) 
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It has mean a + p and variance p2 and, for the case a=O, 
reduces to the usual exponential. Maximum likelihood parameter 
estimates are given by d = x0) and p = E f = , ( ~ ~ - x ( ~ ) ) / n .  
Further details of the distributions and methods presented in this 
section can be found in (17). 

A Counter Model. Ideally, we would observe all of the sites and 
draw our inferences based on complete data. However, as we 
have described above, real measurements are often imperfect and 
some sites will go undetected. To model the relationship between 
the real fragment lengths and the lengths derived from the mapped 
sites, let us hypothesize the existence of 'locking times', (l;) ,  
such that when a site is recorded at position ti, any sites 
occurring in the interval (ti, ti+li, will be undetected. The 
resulting sequence of mapped sites will be a subset of the sequence 
of true sites such that a true fragment of length less than Zi will 
be merged into its neighbor. 

In the case where the true sites form a Poisson process and 
the the locking times have a fixed constant value, li = a, it can 
be shown that the distribution of observed fragment lengths is 
truncated exponential. In a long sequence, the expected number 
of unobserved sites is 

where denotes the number of unobserved sites, nabs denotes 
the number of observed sites and the total number of true sites 
is nmt = hbs + nmiss. Models with random locking times or 
locking times proportional to fragment length might appear to 
be more appropriate here. However, such models are difficult 
to work with analytically and, as we will describe below, a minor 
modification of the data makes the fixed locking time model 
appropriate. A general discussion of counter models can be found 
in (16). 

Znferencesfrom a Sample The total numbers of sites in a genome 
can be inferred from the numbers observed in a sample of 
sequenced DNA. Assume the true sites follow a Poisson model. 
If m is the total length of the sample (adjusted for edge effects), 
we let r = (G-m)/m denote the ratio of unobserved to observed 
sequence. The expected number of sites in the unobserved portion 
of the genome will be 

An approximate standard error of the prediction is given by 

RESULTS 
Summary Statistics 
A summary of the map data is shown in table 2. The numbers 
of mapped sites, n,  range from 470 for BumHI to 1567 for BglI 
and the corresponding mean fragment lengths p = G/n range 
from 3kb to 10kb. The sample median, m, is of some interest 
as 50% of the fragments are largedsmaller than this value. For 
exponential fragment lengths, the median will be smaller than 
the mean. The coefficient of variation cv = p/a  is expected to 
be close to 1. Only EcoRV departs significantly from 1. 

Distribution of Sites 
The chi-square goodness-of-fit test is most useful for detecting 
local heterogeneity in the frequencies of sites. Values of the chi- 
square statistic for k=20 and 50 are shown in table 3 along with 
the cumulative chi-square probabilities. The interval sizes 
corresponding to k=20 and 50 are 236kb and 94.4kb 
respectively. The small p-values obtained for BamHI are very 
surprising and suggest that the sites are more evenly dispersed 
than we would expect at random. There are no regions in this 
size range in the E. coli genome which contain either too many 

< 

Table 2: Summary Statistics for the Physical Map Data 

Enzyme Site n m B cv 

BumHI 

EcoRI 
EcoRV 
HindIII 
r@nl 
Psrl 
PVUII 

Bgn 
GGATCC 

GCC(N5)GGC 
GAATTC 
GATATC 
AAGCTT 
GGTACC 
CTGCAG 
CAGCTG 

470 
1567 
610 
158 
517 
497 
846 

143 1 

6666 
2133 
5466 
2267 
5734 
6466 
3367 
2280 

10043 
3012 
7738 
4076 
9130 
9497 
5579 
3298 

1.047 
1.093 
1.066 
0.765 
0.930 
0.978 
0.938 
1.064 

For each enzyme in the physical map, we show the number of recorded sites 
(n), the median fragment length (m), the mean fragment length b) and the fragment 
length coefficient of variation (cv), defined to be the ratio of the mean to the 
standard deviation. 

Table 3: Statistics Testing for a Uniform Distribution of Sites 

2 
Enzyme x29 

2 
x49 

BamHI 

Bgn 

EcoRI 

EcoRV 
(0.755) 
HindIII 

KpnI 

PstI 

PVUII 

4.213 
(0.00016) 
14.51 
(0.247) 
19.97 
(0.630) 
22.83 
(0.908) 
32.36 
(0.972) 
27.39 
(0.904) 
29.93 
(0.947) 
24.42 
(0.819) 

29.26 
(0.012) 
44.58 
(0.347) 
53.77 
(0.703) 
62.55 
(0.272) 
78.45 
(0.995) 
65.88 
(0.946) 
77.05 
(0.994) 
47.65 
(0.472) 

0.594 1.291 
(0.130) (0.928) 
0.816 5.406 
(0.480) (>> 0.999) 
0.539 1.463 
(0.068) (0.972) 
0.688 3.551 
(>> 0.999) 
1 . 1 8 0  1.319 
(0.877) (0.938) 
0.841 0.708 
(0.520) (0.423) 
1.340 1.944 
(0.945) (0,999) 
1.153 1.182 
(0.860) (0.876) 

The values for the chi-square statistics obtained with the genome divided into 
20 segments (xt9) and 50 segments (x&) and the Kolmogorov-Smirnov statistics 
(equation 2) computed on the raw data (J@) and the data transformed as in 
equation 3 (J@) are shown here. In parentheses below each statistic we show 
the cumulative probability of observing this value under the null hypothesis. Since 
we are considering two-sided alternatives, very large and very small p-values 
indicate a departure from the model assumptions. 

A f o n d  description of this inference can be found in Cox and 
Hinkley (18, pp. 245). 
The Same forrlxlh for the standard error of Prediction can applied 
to the counter models by letting r = ands 1 (G-anod be the 
ratio of unobserved to observed sequences. 
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Figure 1: Estimated Densities of Fragment Lengths. A Gaussian k e d  smoothing algorithm was used to estimate the density of fragment lengths at 100 equally 
spaced points from zero to the maximum fragment length for each of the eight enzymes. The results are plotted as a connected series of points. The height of the 
curve is proportional to the numbers of fragments with lengths falling in a weighted neighborhood of the plotted point. Exponential density functions with mean 
parameter, p, estimated by maximum likelihood are shown superimposed as smooth curves. The horizontal scale for plotting is fragment length and the vertical 
scale is chosen to make the integrated area under the curves unity. 

exponential models. Both contain the exponential as a special 
case, require only one additional parameter and are analytically 
tractable. They are consistent with the observed data in that the 
upper tails of their density functions behave as an exponential 
while the lower tails are lighter. The suppression of small 
fragments under a gamma model is gradual while for the 
truncated exponential it is abrupt. Both alternatives are suggested 
by the paucity of small fragments. 

Likelihood ratio tests reject the exponential model in favor of 
both alternatives for all eight enzymes. The enzymes BgZI and 
PsrI have higher likelihood values for the gamma model and the 
remainder favor the truncated exponential model. We conclude 
that the best description of the fragment length distribution is not 
exponential. However, there are some problems with the 
alternative models as well. The truncated exponential relies 
heavily on the minimum fragment length which we know to be 
poorly determined. The loss of small fragments does not appear 
to be absolute as this model would imply. The detection of small 
fragments is likely to be highly variable due to variations in gel 

resolution and other factors involved in mapping experiments. 
Examination of histograms for fragments less than 2kb in size 
(not shown) reveals that the truncation is not abrupt. For the 
gamma model we have no good physical justification. In the next 
section, we will describe a modification of the data which makes 
the truncated exponential model more suitable and allows us to 
predict the numbers of sites missing from the map data. 

Finding the Missing Sites 
Because of variations in individual gels, there is no reason to 
believe that an absolute threshold exists for the resolution of 
closely spaced sites. Modeling of counter processes with non- 
constant locking times is analytically complex and would require 
additional assumptions about the structure of errors in the map 
data. To circumvent these problems, we will make the following 
modification of the data. Assume that fragments larger than some 
given size, a,  are always resolved as distinct bands on a gel. 
Observed fragments with sizes smaller than this limit will be 
merged into their neighboring fragments by adding lengths, as 



Nucleic Acids Research 595 

Table 5. Predictions of the Actual Numbers of Sites in E. coli. 

Enzyme Kohara lkb Counter 2kb Counter Sample 

BamHI 470 494 493 442 
(7.2) (10.2) (97.1) 

(26.3) (36.7) (203.0) 

(9.4) (13.3) (128.2) 

(18.5) (23.9) (209.6) 

(7.9) (10.9) (133.5) 

(7.4) (10.4) (108.5) 

(12.7) (17.2) (169.0) 

(24.2) (33.1) (223.6) 

B&?n 1567 1804 1781 1946 

EcoRI 610 644 646 773 

EcoRV 1158 1267 1163 2077 

HindIII 517 54 1 529 840 

KPnI 497 507 504 552 

PstI 846 872 836 1384 

PVUII 1431 1663 1610 2364 

The column labeled Kohara shows the numbers of sites observed in the physical map data. 
Predictions of the total numbers of sites based on counter models with minimum fragment sizes 
of Ikb and 2kb are shown in the second and third columns. The final column shows the predicted 
numbers of sites based on a sample of sequenced E. coli DNA. Values in parentheses standard 
errors for these predictions. 

if the site had actually not been detected. In this way, we coerce 
the data to fit a counter model with fKed and known locking 
times. The amount of information lost by this procedure is small 
but increases as a is increased. The result is an increase in the 
variance of the estimated nmiss. As a is decreased below the 
worst case resolution of a gel, our model assumptions begin to 
fail and a downward bias is introduced into the estimate. Based 
on plots of nmiS versus a ,  we have chosen a= lkb  and a=2kb 
as representative values which acheive low variance and low bias 
for most of the eight enzymes. 

Counter model estimates of the total numbers of sites are shown 
in table 5. The largest increases over the observed numbers of 
sites are seen for enzymes with the highest frequencies of cutting. 
The proportions of missing to total sites range from less than 
5 % for low frequency cutters to over 15 % for the high fresuency 
cutters. The two estimates are in generally good agreement. The 
notable exception is EcoRV, for which the lkb model predicts 
109 additional sites and the 2kb predicts only 5.  This is explained 
by the increased influence in the estimates of the very large 
fragments under the 2kb model. 

Independent estimates of the total numbers of sites were 
obtained by counting the sites in sample of sequenced E. coli 
DNA representing 4.5% of the total genome. Predictions and 
their standard errors are shown in table 5. Again, we see that 
the largest numbers of missed sites are predicted for the frequent 
cutters. The sample estimates, with the exception of BamHI, are 
higher than the the counter estimates but most are close to or 
within the range of 2 standard errors. The exceptions are EcoRV, 
PstI and PvuII. In the case of EcoRV, we suspect this is due 

to the failure of the counter model to adequately predict the 
missing sites. Heterogeneity in the sample, Le. excess variance 
in the numbers of sites per fragment, was observed for PstI (x& 
= 72.4, p >> .999) and to a lesser extent for KpnI and &II. 
The estimates of &a, for these three enzymes, are still unbiased 
but the reported standard errors may be too small. 

Sequence to Map Alignments 
Three segments of sequenced E.coli DNA (ECOGLTA, 
ECORPLRFQ and ECOUNCC) were converted to eight enzyme 

5 

restriction maps and aligned to the Kohara map using a 
modification of the algorithm of Waterman et al. (22) suitable 
for fitting map segments into a longer map. The alignments were 
then modifed by hand to allow for ambiguous orderings of closely 
spaced sites and multiple to one matchings. Multiple matching 
was introduced in another paper (23) and could easily be 
incorporated into these algorithms. Sequence to map alignments 
are likely to be very useful tools for the assembly of genomic 
sequence data and refinements of the algorithm which allow for 
these common mapping errors are being considered. The paper 
of Rudd et al. (2) presents a distinct approach to the problem 
of locating sequence segments on a map. The alignments shown 
in figure 2 confirm that multiple closely spaced sites are frequently 
represented as single sites on the Kohara map data. Of the % 
mapped sites found in these alignments, 8 appear to be double 
and 3 appear to be triple sites in the sequence data. This result 
confirms the conclusion drawn from the counter model analysis 
of the map data. Approximately 10% of mapped sites represent 
multiple closely spaced sites in the DNA sequence. 

CONCLUSIONS 

In this paper, we have examined the distribution of restriction 
sites in the E. coli genome using data recorded in an extensive 
physical map. Statistical methods of analysis are based a top- 
down modeling approach which requires no knowledge of 
statistical properties of the base sequence. Our main conclusion 
is that, after taking into account the missing sites, the Poisson 
model provides a good approximation to the actual distribution 
of these eight restriction sites in E. coli. This result is perhaps 
not surprising, as the Poisson model is o f tn  implicitly assumed 
for the distribution of restriction enzyme sites. We feel however 
that the Poisson model will fail in many cases, especially for 
higher organisms, and the methods described here could provide 
a starting point for more detailed analyses. 

The distribution of sites for most of the eight enzymes studied 
appears to be fairly homogeneous throughout the E. coli genome. 
However, the BamHI sites are too evenly dispersed. The presence 
of the the Dam methylation site within the BumHI recognition 
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Figure 2: Sequence to Map Alignments. Restriction maps predicted from DNA sequence taken from GenBank are aligned with the corresponding region of the 
W3110 restriction map. Dotted lines show one-to-one correspondence between sites and dashed lines show the correspondence between multiple sites of the same 
enzyme which had been mapped as a single site in the W3110 map. Coordinate numbers in kb for the W3110 map are indicated. Coordinate numbers for maps 
derived from sequence are in kb with the first base of the sequence dehed as .W1. Abbreviations used are: b = h I ,  g = BglI, e = EcoRI, f = EcoRV, h = Hindm, 
k = KpnI, s = PstI and v = PvuII. 

pattern suggests that a functional constraint may be involved, 
possibly related to the need for excision repair functions at fairly 
even intervals throughout the genome. Other known functions 
of Dam methylation include a role in the timing between DNA 
replication initiation events (24). Heterogeneity in the distribution 
of PsrI sites, seen in both the physical map and sample sequences, 
appears to be due to presence of several small clusters ( < 50kb) 
of sites. For HindIII, the relative excesses and deficiencies of 
sites cover larger regions (> 1OOkb) of the genome. A detailed 
study of local variations in restriction site frequencies may yield 
further insights, but for most purposes homogeneity would seem 
to be a reasonable assumption. 

The main departure from a uniform distribution of the sites 
observed in the map data is due a deficiency of small fragments. 
We conclude, based on knowledge of the mapping procedures 

and analysis of the map data that closely spaced sites are actually 
present in the sequence but are undetected in the map. The quality 
of the map is excellent in general but one should keep in mind 
that 5 to 15 % of the mapped sites represent multiple sites in the 
DNA sequence. 

Results obtained using the counter models appear to be 
generally reliable, with the exception of EcoRV. We conclude, 
based on the sampling estimates and the uncertainty indicated 
in much of the Kohara map for this enzyme, that EcoRV sites 
are distributed at a high frequency throughout the genome, with 
perhaps more than 2000 sites. The failure of the counter model 
to properly predict this number is due the presence of large 
apparent fragments in the map data. These in turn are due the 
failure of partial digest reaction for many clones and are not 
explicitly accounted for by the model. 
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