
The A d  01 Probabil&y 
1989, Vol. 17. No. 3, 1152-1169 
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WITH A GIVEN PROPORTION OF MISMATCHES 

BY R. ARRATIA’ AND M. S. WATER MAN^ 
University of Southern Califontia 

Consider two random sequences XI 3 . . X, and . . . Y, of i.i.d. letters 
in which the probability that two distinct letters match is p > 0. For each 
value a between p and 1, the length of the longest contiguous matching 
between the two sequences, requiring only a proportion a of corresponding 
letters to  match, satisfies a strong law analogous to the Erd&-&yi law for 
coin tossing. The same law applies to matching between two nonoverlapping 
regions within a single sequence XI . . . X,, and a strong law with a smaller 
constant applies to matching between two overlapping regions within that 
single sequence. The method here also works to obtain the strong law for 
matching between multidimensional arrays, between two Markov chains and 
for the situation in which a given proportion of mismatches is required. 

1. Informal introduction. The Erdos-Bnyi law [Erdijs and R6nyi (1970)l 
for coin tossing is a strong law for the behavior of the length of long success rich 
runs. For the length R, of the longest run of pure heads in n tosses, the result is 
that with probability l , l i n ~ ~ + ~  RJlog,,,(n) = 1, where p = flheads) > 0. A 
more general result is quoted as formula (1) in Section 2 for RZ, the longest head 
rich run in which the fraction of heads is at  least a > p. Note that R, = Ri. In 
many practical situations, such as manufacturing or roulette, observations are 
taken sequentially and each can be classified as success or failure. For these 
cases, it is possible to use the Erdijs-Wnyi law to test the hypothesis that the 
success probability is p. From another point of view, the Erdijs-Bnyi law can 
be used to recognize patterns of unusually long runs of succe88e8 (or failures). 

Our interest is in the recognition of unusually long patterns or words common 
to two random sequences. The patterns are unknown prior to an examination of 
the sequences. The motivation for this work is the comparison of DNA se- 
quences, which can be modeled as sequences of i.i.d. or Markov distributed 
letters. Evolution operates to conserve, although imperfectly, patterns important 
to biological function. It is a task of biology to discover these patterns and their 
function. In earlier work, we generalized the Erdiie-Bnyi law for pure head runs 
(a = 1) to exact matching patterns between two sequences. In this paper we 
extend those results to include matchings of quality a between p and 1. 

The examples below illustrate the natural analogs of RZ studied in this paper. 
Two words form a “quality a matching” if they have the same length and the 

Received September 1987. 
‘Supported by NIH Grant GM 36230 and NSF Grant DM9-88-15106. Work done in part at the 

*Supported by NIH Grant GM 36230 and a grant from the System Development Foundation. 
AMS 1980 subject classirfcationS. 62320,62P10. 
Key words andphrcreee. Matching, large deviations, Ising model, Potta model, Hamming distance, 

IMA in Minneapolis. 

DNA sequences, protein sequences. 
1152 



PA?TERN MATCHING WITH A PROPORTION OF MISMATCHES 1153 

fraction of matches among the pairs of letters in corresponding positions is a t  
least a. A word in a sequence of letters is any finite contiguous subsequence. 
Starting with two sequences of length n, we define MZ, in Section 2, as the 
length of the longest quality a matching pair of words, one chosen from each 
sequence. Starting with a single sequence of length n, we define 0,” (respectively, 
S,“), in Section 5, as the length of the longest quality a matching pair of words, 
chosen from distinct nonoverlapping (respectively, overlapping) blocks of p i -  
tions in the single sequence. 

If X,X, * - X,, is “we love matmatics” (blank is one letter) and Y,Y, - - - Y17 
is “statistics is fun”, then 

M,’? = 4: using X,, X,, = Y7 Y 10 =“ticsY’, 

M$75 = 8: 

and 

Mfia = 9: X, - - X,, = “matmatics” matches 6/9 of Y,  - - - Y,, = “tatistics”. 

This first example, using “matmatics” instead of “mathematics”, is meant to 
emphasize a serious limitation of the theory of approximate sequence matching 
in this paper-letters can be changed but not deleted. The book by Kruskal and 
Sankoff (1983) presents the case for considering insertions and deletions along 
with single letter substitutions. Some results which allow a proportion of inser- 
tions and deletions are announced in Waterman, Gordon and Arratia (1987). 

X,, . X,, = “atmatics” matches 6/8 of Y3 - - - Y,, = “atistics” 

If X,X, * - - X, is “banana probabilists statistics banana”, then 

0i7 = 6: X, . . . X6 =“banana” =: x 3 2  - x37, 
, 

x6 Y S& = 3: 

Sjqi‘ = 6: 

X, . . . X, =“ana”= X, . . . 
X,, - * * X,, = “sts St” matches 3/6 of X,, * - X,, = “S stat”, 

= 12: X,, - - X, matches 5/12 of X,, * - X24 
and 

= 21: X, X,, matches8/21 of X, X,. 
This particular sequence was almost composed by a monkey a t  a typewriter 
[Feller (1968), page 2021-the genomic DNA of humans and chimpanzees differ 
by about 2% [Sibley and Alqubt (1984)l. 

Here is an overview of this paper. The main results are Theorem 1, about 
matching two independent sequences, and Theorem 4, about self-overlapping 
repeats in a single sequence of i.i.d. letters. In Section 3 we prove the easy half of 
Theorem 1, the upper bound, using the natural “analysis by position.” In Section 
4, we explain why analysis by position fails to prove the lower bound in some 
casea, and then present a proof of the lower bound which works in all cases, using 
an “analysis by pattern.” Theorems 3 and 4 are given in Section 5-analyais by 
position works easily, in Theorem 3, to prove both the lower and upper bounds 
for a strong law involving a nonexplicit constant. The hard work then remains, in 
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Theorem 4, in establishing something interesting about the constant; to give an 
exact analysis of a large deviation rate for a Markov chain (the one-dimensional 
Ising or Potts model) and to compare that rate with the large deviation rate 
function for coin tossing. In Sections 6, 7 and 8 we present easy extensions of 
Theorem 1 to multidimensional arrays of letters, to Markov chains and to 
matching requiring a given proportion of mismatches. 

For more than two sequences, the notion of approximate matching can be 
generalized in several different ways from the case of only two sequences. Given 
r 2 2 words of the same length t, to say that the r words form a quality a 
matching might reasonably be defined by any of the following four requirements: 
1. For some choice of at least at of the positions 1,. . . , t, all r words agree at  

2. Each of the (i) pairs of words forms a quality a matching. 
3. For some tree connecting the labels 1,. . . , r ,  each of the r - 1 pairs of words 

4. There exists a “consensus word” of length t which forms a quality a / 2  

The fourth definition, involving a consensus pattern, is discussed further in 
Waterman, Galas and Arratia (1984). All four of the above definitions coincide in 
the case r = 2, except for a discrepancy with the fourth definition in cases where 
[at] # 21at/21. Consider M,”, the length of the longest quality a matching 
common to r sequences of length n, with all rn letters i.i.d., using each of the 
four definitions above. In every case, it  should be possible to obtain a strong law 
of the form as n --* a, M:/log( n) + K. With the first definition, the constant is 
K = r/H(a, p(r)), where p ( r )  = C(pl)‘, and this strong law is provable by the 
method used in this paper for the special case r = 2. With the other three 
definitions, i t  is not easy to give an explicit formula for the K. The constant K 
must be determined by considering, as part of an analysis by pattern, the 
proportions of the various matching and nonmatching r-tuples from the alpha- 
bet, in the spirit of definition (7) below. 

those positions. 

corresponding to an edge forms a quality a matching. 

matching with each of the r given words. 

2. Formal introduction. Let a E [0,1] be given. The length M,” of the 
“longest matching of quality a, allowing shifts” between two sequences 
X1X2 - . X, and YlyZ - Y, is defined by 

M: = max t :  3 i, j E LO, n - t ] ,  a 5 t-1 1(xi+, = Y,+*)). ( lskst 
For the sake of comparison, we also consider the length R, = RZ of the “longest 
head run of quality a,” in a sequence Z,, Z2, ..., Zn of (0,l)-valued random 
variables: 

R: = max t: 3 i E LO, n - t ] ,  a s t - 1  z,+,). ( lskst 
By taking Zi l(Xi = x), we have that RZ is the length of the “longest 
matching of quality a, not allowing shifts” between X1X2 X, and 
Y1Y2 * Y,. 
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Let S =  {1,2, ..., d}beafinitealphabetwithd22andletpbeaprobabil- 
ity distribution on S with p 1  > 0 for all I E S. Assume that all letters 
X,, X 2 , . . .  , Yly yZ,... are mutually independent, with distribution p. Let p = 
ex,  = Y,) = Cles(p1)2. We will usually take a E (p, 11. 

The Erdb-Knyi law [Erdiis and Mnyi (1970)l for a sequence of independent 
tosses Z,,  Z2, . . . of a p-coin, applicable here with Zi = 1( Xi  = x), is a descrip- 
tion of an almost-sure growth rate for R:: 
(1) 

(2) 

tf a E (P, 11, 1 = wc./log(n) + 1/H(a, P)), 
where 

HbY P) = (.)log(a/p) + (1 - a)log((l - a)/(l -24) 
is the relative entropy between a p-coin and an a-coin [so that H(1, p) = 
log(l/p)]. In this paper, we derive the analogous description for M,": 

THEOREM 1. V a E (p, 13,l = P(M,"/log(n) + 2 / H ( a ,  p)). 

The proof of this theorem is given in Sections 3 and 4. This result, combined 
with the Erdb-Wnyi law, implies that M,"/R: + 2 almost surely. Loosely 
speaking, for each fixed quality a > p, allowing shifts doubles the length of the 
longest match. 

3. Upper bound: Analysis by position. Consider the event that a match- 
ing of quality a and length t is found after positions i and j in the two 
sequences, 

G[$ (h 5 l (Xi+,  = ?+,)). 
l S k S t  

(3) 

For all positive integers t, the elementary large deviation bound for tossing a 
p-coin yields, for fixed i, j ,  that P(G?/) 5 exp(- tH(a, p)). Since the event 
{M," 2 t} is a union of no more than n2 events of this form, we have the upper 
bound 

v t 2 1, V U  E ( p , ~ ] ,  P(M: 2 t )  5 n2exp(-tH(a,p)). 

In particular this implies that P(M," 2 (1 + e)log(n2)/H(a, p ) )  s n-2e -, o 
for all e > 0. Using the Borel-Cantelli lemma along an exponentially increasing 
skeleton of times, such as nL = 2,, we obtain the almost sure result 

v e > 0, 1 = P ( M ~  5 (1 + e)log(n2)/H(a,p) eventually). V U  E ( p , ~ ] ,  

4. Lower bound: Analysis by pattern. Let e > 0 be given and let 

(4) 

Our goal is to show that P(M," 2 t) + 1. 
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The “natural” way to attempt this, which is carried out in Arratia and 
Waterman (1985a) for the extreme case, a = 1 is to continue the “analysis by 
position” which gave us the lower bound of the previous section. We use the 
“ first and second moments method” together with nonoverlapping blocks. In 
detail, consider the random variable N = N(n, t, a )  defined by 

N =  c l(G;;;t), 
01 i ,  j s ( n - t ) / t  

where the event Gf$ is defined at (3) above. We have EN + 00 and { N > 0} c 
{M,” 2 t}, and we would like to show that v ~ ~ ( N ) / ( E N ) ~  -, 0 in order to 
conclude that P ( N  > 0) -, 1. Thanks to the use of nonoverlapping blocks, most 
of the asymptotically ( ~ z / t ) ~  terms in the expansion of var(N) are zero, but 
there are still asymptotically 2 ( r ~ / t ) ~  positive off-diagonal terms, from indices 
(i, j) and (i‘, j’) with i = i‘ or else j =J‘ .  In the extreme case a = 1, it is true 
that var(N)/( EN)’ + 0, because p3 = C ( P ~ ) ~  < p3l2, which is a consequence of 
Jensen’s inequality. (See Section 8 below for a discussion of the case correspond- 
ing to the opposite extreme, a = 0.) However, there exist cases of the three 
parameters, a, p and p3 with 0 < p < a -= 1, in which for all sufficiently small 
E > 0, var(N)/(EN)’ 00. In these cases, the “natural” strategy fails. For 
0 < p < a < 1, the necessary and sufficient condition for this failure to occur is 
that 

lim { log P( G;$ n Gz,t)/log P( Gz,’)} < 3/2, 

which is equivalent to 

where the infimum is taken over b E [ pdp, 13 such that a(l  - b)/(l - a) E 
[(p - p3)/(l - p), 11. In all cases where the natural strategy succeeds, the 
analysis by position can be refined to approximate the distribution of M,”; this is 
carried out in Arratia, Gordon and Waterman (1988). The framework for getting 
distributional results when first and second moments can be controlled is 
presented in Arratia, Goldstein and Gordon (1989). 

Instead of the natural analysis by position described in the paragraph above, 
in this section we establish the lower bound using an analysis by pattern. For the 
case a = 1, such an analysis is used in Arratia and Waterman (1985b) in order to 
derive strong laws for M,’ under the added complexity of different lengths or 
distributions for the two sequences; Markov chains and more than two sequences 
are also handled there at  no additional cost. Because the modifications required 
to make the analysis by pattern work for the case a < 1 are subtle and 
orthogonal to the techniques of Arratia and Waterman (1985b), we confine this 
paper to the simplest setup: two sequences having the same length and distribu- 
tion. 

For words w, z E St,  let A, = A( w, n, t) (respectively, B,) be the event that 
word w (respectively, z )  occurs within the first n letters of the sequence X 
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(respectively, Y )  following a position which is a multiple of t, Le., 

A =  W u {w = &,+I  * . .  Xtr+tL 

B =  u { z =  X , + l  * . *  X , + t > .  

o s  15(n- t ) / t  

o s  ts (n- t ) / t  

Thanks to the use of nonoverlapping blocks in the definition of A,, distinct 
events A ,  and A,, are negatively correlated: For w # w’ E St, P(A,  n A,,) I 
P(A,)P(A,,). Define 

( 5 )  E W S Z  = A ,  n B,, 

so that is the event that for X, X,, and Yl Y,,, each blocked off 
into words of length t, the words w and z are found in X and Y, respectively. 
The sequences X and Y are independent, so that P(E, , . )  = P(A,)P(B,). 
For w, w‘, z, z’ E St,  if w # w‘ and z # z’, the events E,, and E,,, zI are nega- 
tively correlated. However, there is very strong positive correlation between 
distinct events and with w = w’ or else z = z’. Specifically, 
in the case w = w‘ and z # z’ we have P ( E , , z J E , , z ~ ) / P ( E , , z )  = 

Let I 5 I( t, a)  be the set of pairs of words of length t which match each other 
with quality a, i.e., I = {( w, z )  E (St)2: tu I El , &( w, = z, )} .  The motivation 
here is that U ( w , z ) E I E , , z  c {M,” 2 t}, so it suffices to show that 
P(U,,, z )  E lEw, z )  -, 1. Our choice of t, specified at  (4), yields E(,, z )  E rP( E,, z )  + 

00, so we would be finished if we could show that the events E,, are not too 
much positively correlated with each other, but we cannot do even this. 

Here is an outline of our strategy to get past the difficulty of positive 
correlation between events and with w = w’ or else z = z‘. We 
consider a subset J c I of the induces, which makes the dominant contribution 
to C ( w , Z ) E I P ( E , , z ) ,  so that E ( W , Z ) E J P ( E w , z )  + 00. The set J is symmetric, i.e., 
(w, z )  E J iff ( z ,  w) E J. All words w such that (w, z )  E J for some z have the 
same composition, so that for all (w, z )  E J,  P(E,,.) = P(A,)P(B,) = 
(P( A,))2 has the same value. Thus for (w, z )  # (w’, z’)  E J with w = w’ or else 
z = z‘, P( E,, n E,,, ..) = (P(  A,))3 = (P(  E,, z ) ) 3 / 2 .  The set J is homogeneous, 
in the sense that l{z: (w, z )  E J}I has the same value for every w such that 
(w, z )  E J for some z. The symmetry and homogeneity of J imply that 
I{(( w, z ) ,  (w’, 2’)) E J2:  w = w’ or else z = z’} I I 2( I JO3l2. 

To see that the above strategy results in an acceptable amount of positive 
correlation, define the random variable 

P( BzlBz.)/( P( A , P (  4)) - 1/P( A,). 

T =  T ( n , t , a )  = l ( E w , z ) ,  
( w ,  Z ) E J  

so that {T > 0} c {Mi >- t}. Consider the expansion 

var(T) = c cov(l(Ew, z ) ,  W w ! ,  24). 
( w ,  Z ) , ( W ’ ,  Z ’ ) E J  
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The contribution from the diagonal terms is less than ET. Each term in which 
w # w' and z # z' is negative. There are fewer than 2(1J1)3/2 terms in which 
w = w' or else z = z', and each of these terms is less than (P( E,, z ) 3 / 2 ,  so the net 
contribution from these terms is less than 2(ET)3/2. Thus var(T) I ET + 
2( ET)3/2 and by Chebyshev's inequality, 

(6) P ( M i  < t )  5 P(T = 0) 5 V=(T) / (ET)~ = O((ET)-'") + 0. 

We proceed to define J = J(t, a). The distribution p of letters in our two 
sequences determines a probability distribution a on S, and a probability 
distribution y on S2, corresponding to simple matches and simple mismatches, ax 
follows: For b, c E S, 

Define 

2 
(w, Z) E (S ' )  : C l ( b =  wi = z i )  = [atab],for b E S, b # d,and 

1( b = wi, c = z i )  = [ ( I  - a ) t y b c l ,  for b # c E s 

lsist  

(7) 

lsist 

Thus, each pair of words (w, z )  E J is required to match in the same number 

letters in those s places are required to have a fixed empirical distribution, close 
to a. At positions which do not match, the pairs of letters which appear are 
required to have a fixed empirical distribution, close to y. 

First we find the growth rate for I JI. Let H ( v )  = - b b  log vb denote the 
entropy of a probability distribution v and let H(a) = -a log a - 
(1 - a)log(l - a) denote the symmetric entropy for a E [0,1]. We have, by 
Stirling's formula, that 

S E i! - x b , &  cEg[(l - a)tybcl  Of places, With 8 2 Ut and S / t  + a 88 t + 00. The 

(8 )  t-'log((J() + H(a) + &(a) + (1 - a ) H ( y ) .  

In this limit, the first term is H(a) = lim t-' log(:), which corresponds to 
choosing which positions will match. The second term involves a multinomial 
coefficient which cormponds to choosing which letters to assign to these match- 
ing positions, and the last term corresponds to choosing which pairs of letters 
appear in each of the nonmatching positions. 

Next we find the decay rate for P(E,, .). Let (w, z )  E J, so that P( E,, =) = 
(P(A,))'. Let K = [ n / t ] ,  so that P(A,)  = 1 - ( 1  - ( # ( w ) ) ~ ) .  Since 
[ l  - (1 - z)']/[l A kz] E [1/2,1] for K = 1,2 ,... and for all z E [0,1], we 
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have lirn t-’ log P(A,) = 0 A lim t-’[log(n/t) + log(pt( w))]. Thus 

lim t -  log P( B,, z )  

= o A lim t-’ [log(n2) + log( p t ( w ) p t ( z ) ) ]  

= 0 A [ H b ,  P)/(l - 4 + a ( logb)  - H(a)) 
+ (1 - a ) ( W  - P) - H(Y))l 

= 0 A [H(a,p)/(l - 4 + aCa,1og((Cld2) + (1 - a)CYbc1Og(llbPc)] 

= o A [ H ( u ,  p)/( l  - E )  - H ( u ,  p )  - H ( u )  - &(a) - (I - u ) H ( y ) ] .  

For sufficiently small positive E, the expression in brackets is negative, so the 
truncation with 0 may be ignored: 

lirn t -  log P( E,, z )  

= EH(u, p)/( l  - E )  - H ( u )  - uH(a) - (1 - u ) H ( y ) .  
(9) 

Now ET = I JIP( E,, .), so combining (8) with (9) yields, for sufficiently small 

lim t-’ log(ET) = EH(u, p)/( l  - E )  > 0. 

Using (6) and the Borel-Cantelli lemma along an exponentially increasing 
skeleton of times, such as nk = 2k, we obtain the almost sure result 

V E > O ,  V U E ( ~ , I ] ,  1 =~(~~r:(1-~)log(n~)/~(u,p)eventually). 

This completes the proof of Theorem 1.0 

positive E, 

n+ 00 

6. Repeats, self-overlapping and otherwise, within a single sequence of 
i.i.d. letters. The length 0,” of the “longest matching of quality u” (not 
allowing self-overlap) within a single sequence XlX2 - - Xn is defined by 

t :  3 i, j E [0, n - t], li - j l  2 t ,  

This section was inspired by the innocent and natural question: With i.i.d. 
letters, in giving a strong law for D,“/log(n), would it make a difference if 0,” 
had been defined with the restriction li -j l  > 0 instead of li - j l  2 t? The 
answer, which turns out to be “no,” is a consequence of Theorem 4. Since there 
are = n2 places to locate a long matching, versus = n places to locate a long 
self-overlapping matching, the question boils down to whether the large devia- 
tion rate for matching independent sequences is twice as large as the large 
deviation rate for self-overlapping matching. 
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THEOREM 2. V a E (p, 1],1 = P(D,"/log(n) -, 2 / H ( a ,  p)). 
PROOF. The proof is almost identical to that of Theorem 1, with the 

sequence X playing the roles of both sequences X and Y. This gives us, instead 
of (5), that Ew, , = A, n A,, with P(E,, ,) < P(A,)P(A,) (instead of the equal- 
ity in the proof of Theorem l), but we still have, for (w,  z )  # (w ' ,  2') E J, 
that P(E,, ,) - &A,)' and P( E,, , n E,,, *,) < P( E,, ,)3/2. If also w # w' and 
z # z', then the events Ew,, and Ewr,,, are negatively correlated. 0 

The length S," of the "longest self-overlapping matching of quality a," within 
a single sequence X1X2 - - - X, is defined by 

t 3 i, j E [0, n - t ] , ~  < li - j l  < t ,  

a I t-' l(Xi+, = x,,,,). 
l s k s t  

THEOREM 3. V a E ( p ,  13, 1 = P(S,"/log(n) -, l / r (u ,  p)) ,  where r(a,  p )  is 
the large deviation rate characterized by 

V u  E [p,11, r ( a , p )  = lim(-l/t)log = 

V u e  [ o , p l ,  r (a ,p)=l im(- l / t ) log 
(12) 

PROOF. The lower bound is easily established using nonoverlapping blocks, 
as follows. Let E > 0 be given, let t = L(1 - e)log(n)/r(a, p ) ]  and let 

1 I c l(X(t+l)i+k = x(l+l)i+l+k)). i l s k s t  
N =  c 

Os is (n- t -  1 ) / (  t+  1 )  

so that {S:/log(n) < (1 - e) /r(a,  p ) }  c { N  = 0). We have EN + 00 as n -P 00, 

where N counts the number of independent events that occur, so P(N = 0) < 
e - E N  and the Borel-Cantelli lemma implies 

P(S,"/log(n) < (1 - e ) / r ( a ,  p )  i.0.) = 0. 
The upper bound is not as straightforward as Section 2 because the rate 

r(a, p )  corresponds directly only to those cases with shift li - jl = 1 in the 
definition (11). Define the number of matches between a block of length t and 
the same length block shifted by rn, 

so that the specification (12) of the rate r states, for a E (p, 11, that r(a,  p )  = 
lim{ - t - logC P( tu 5 U( t, l))]}. We will show that 

(14) v t ,  rn 2 1, P(ta s U(T,  rn)) 5 
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and hence 

V t 2 1, a E (p,l], P(S,n 2 ta) I 2tne-"'"*"'. 

1 = P(S; I (1 + e)log(n)/r(a,p) eventually). 

From this i t  follows, as in Section 2, that 

a E ( p , ~ ] ,  v E > 0, 

To prove (14), we use the Laplace transform. For j? E R, define the "transfer 
matrix" M( j?), 
(15) v i, j E (1 ,..., d } ,  ~ ( j ? ) i ,  &exp(j?l(i = j ) )  

and let A( j?) denote its spectral radius, 

(16) A(j?) = ll l~(j?)lI l. 

(17) Vj? E R, V t 2 1, EeSu(til) = C u i [ ~ ' ( j ? ) ] i j ~ j  I ~ ~ ( ( 8 ) .  

Let u be the d-dimensional unit vector with components ui = &. We have 

i, j 

Now for t, rn 2 1, the random variable U(t ,  rn) can be expressed as a sum of 
rn h t independent random variables, each of which has the same distribution as 
U(s,  1) for some s 2 1, and the values of s that occur sum to t. For example, 

U(7,3) = {I( X, = X,) + I( X, = X,) + I( X, = X,,)} 

+ { 1( x2 = x5) + 1( x5 = x,)} + { 1( x, = x6) + 1( x6 = xg)} 

so 

~ ~ ~ u ( 7 . 3 )  = ~ ~ ~ r - 4 3 ~ 1 )  { Ee8V(2.1)}2* 

Thus, using (17) repeatedly, 

(18) Vj? E R, V t, rn 2 1, Ee~'(t~m) I A'((8). 

The above inequality means that the usual exponential upper bound applies 
uniformly in the amount rn of shift: V a E ( p, 11, V t, rn 2 1, 

P( ta I U( t, rn)) s infe-@Eefl"(t*m) s infe-W( j?) = 
B B 

which proves (14). The final equality above is discussed further at  (22)-(24) 
below. 0 

As a prelude to Theorem 4, we observe that for the case of perfect matching, 
i.e., a = 1, non-self-overlapping repeats grow faster than self-overlapping 
repeats, because p = Ep; > (max P,)~, and hence r(1, p )  = -log(max p l )  > 
- 1% fi = ;w, PI.  
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Hence as n + 00, 

(20) 

(21) 

1 = P(lim(D:/Sl) = 2r(a, p ) / H ( a ,  p )  > l), 

1 = P( 0,“ > S: eventually). 

PROOF. Using Theorems 2 and 3, (20) is a consequence of (19) and obviously 
(20) impliea (21). Here is an overview of our proof of (19). Inequality (19) for 
a single value of a is too difficult to prove directly, except in the special case 
d = 2-which is possible but messy; try it for yourself. However, it is relatively 
easy to prove that inf, E ( p ,  ll{r( Q, a )  - +H( a, p ) }  2 0, because each large devia- 
tion rate function, r and +H, is the Legendre transform of a corresponding free 
energy function, and then Fenchel’s duality relation equates the infimum of the 
difference with the infimum of the opposite difference of the transforms. That 
this o p m t e  difference is nonnegative can be verified and a little more argument 
gets the strict inequality for (19). 

Write U( t) [ = U(t ,  1) in formula (13)] for the number of matches (i.e., the 
“energy”) in an interval of t + 1 letters and t bonds, and for /3 E R, write 
Z( t, 8) for the corresponding “partition function”, 

t 

~ ( t )  = C I(X, = x+&), Z(p, t) = Eeflu(t). 
k-1 

(22) 

Define the “free energy function” f ,  

(23) Vfl  E R ,  f ( B )  = lim t-’logZ(p, t). 
The setup above is called the one-dimensional Ising model, in case d = 2, and the 
one-dimensional Potts model, in case d 2 2. Standard statistical mechanics, or 
large deviation theory if you prefer, asserts that f and r are convex and each 
other’s Legendre transform: f = r* and r = f ’ ,  i.e., V a E (0, l), 

where 
dence a c) 

is the solution of f ’( B )  = a. We observe that the one-to-one correspon- 
has 0 t) -00 ,  p c) 0 and 1 c) 00. From (15)-(17) we see that 

Considerations like the above, with the indicators 1( X, = XI + &) replaced by 
zndependentp-coins, show that the large deviation rate function for tossing a 
p-coin, H( -) = H(., p), defined at  (2), belongs to a Legendre transform pair: 
G = H* and H = G*, i.e., 

f ( B )  = log(WP)). 

We are interested in +H(Q, p) = $ supa{a/3 - G(/3)} = supa{a(8/2) - 
:G(2(/3/2))} = supa{a/3 - :G(2/3)}, so we define functions h on (0,l) and g on 
R which form a Legendre transform pair: h = g*, g = h*, where 
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Fenchel’s duality relation statea that 

The matrix M(B) is real and symmetric, so all its eigenvalues are real and hence 
X2(/3) s Tr(M2(/3)). We compute 

~ ~ ( / 3 ) ~ ~  = C M ~ ~ M ~ ~  = C p i p j  + (e2B - 1)p: = pi + (e2B - 1)p:, 
i j 

so that ~ r ( ~ ~ ( / 3 ) )  = &(pi + (e2B - I)&) = 1 + (e2B - 1)p = e2g(B). Thus 
e’/@) = A’( /3) R( ~ 2 (  8)) = e2g(B), 

hence V /3, f ( B )  s g(/3). Since f(0) = 0 = g(O), the common value of the infi- 
mum in (25) is zero. 

To prove the strict inquality (19), assume that a, E (0,1] satisfies 
r(u,, p )  - !jH(a,, p) = 0. We observed, just before stating Theorem 4, that 
a, # 1, so a, is an interior extremum of r - h, and hence r’(u,) = h’(a,); 
call the common value 8,. Since f = r* and g = h*, we have f ( / 3 , )  
supa{/30a - r ( a 7  p ) }  = - r ( a 0 7  and g(/30) = /3oao - h ( a O ) .  

Subtracting Yields f (P0)  - g(B,) = Ma,) - r ( a 0 7  CO = 0, hence f (Po)  = g(/30)7 

hence A2(/3,) = Tr(M2(/3,)). This implies that M(/3,) has rank 1, hence /3, = 0, 
hence a, = p. This proves (19). 0 

6. Matching multidimensional arrays of i.i.d. letters. All of the results 
of the previous sections generalize easily to the case of multidimensional arrays 
of i.i.d. letters, which shows that the geometry of the index set does not play a 
significant role. Even the multidimensional version of Theorem 3, which appears 
to involve overlapping cubes, really only involves matches along onedimensional 
chains of sites, regardless of the dimension of the cubes. 

Fix an integer Y 2 1 to serve as the number of dimensions; the case v = 2 
corresponds to matching discretized pictures. Assume that all letters Xi, yi for 
i E 2’ are mutually independent, with distribution p as before. Use boldface to 
denote vectors in Z’, so that 1 = (1,1,. . . , l), and take the usual coordinatewise 
partial order on Z’, so that the interval [l, tl] is a cube in 2’ containing t’ sites. 
We generalize the definitions of M,”, Rz, 0,” and S,”, by taking all of the indices 
and endpoints for intervals to be elements of Z’, taking n to be the length of the 
side of the large cubes over which we look for the largest quality a matching 
subcubes and measuring these small subcubes in terms of their uolume. Thus we 
define Rz (respectively, M,”), the volume of the largest quality a matching cube, 
not allowing shifta (respectively, allowing shifts) between the two cubes of side n, 
{Xi: i E [l, nl]} and {yi:  i E [l, nl]}, 

Rz t’: 3 i E [o, (n - t)1] 7 a 5 t-’ 1( x i + k  = Yi+k)) 9 ( l s k s t l  

t’: 3 i, j E [o, (n - t)11 , a s t-’ I( x i + k  = q + k ) ) .  
l s k s t l  
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Similarly we define 0," (respectively, S,"), the volume of the largest quality a 
matching pair of nonoverlapping (respectively, overlapping) cubes, inside the 
cube of side n, {Xi: i E 11, nl]}, 

0," = max t': 3i , j  E [o,(n - t ) ~ ] ,  { 

{ 

I I ~  - jll2 t ,  a s t-' c l (x i+k = xi+k)},  
l s k i t l  

S," = max t': 3 i, j E [0, (n  - t ) ~ ] ,  

o < Ili - jlle t ,  a s t-' I ( x ~ + ~  = xi+,,) 
l i k s f l  

In the above definitions, 11 - 1) is the sup norm; Ili - j(l = maxi ~ 

The heuristic which easily suggests that (M,"/log(n) + 2 v / H ( a ,  p ) )  is still 
an analysis by position is stated as follows: The event {M," 2 t'} is a union 
of = n2' (which counts the number of choices for the locations i,j of the 
subcubes) not too dependent simple events, each of probability = 
exp( - t'H( a, p ) ) .  Thus the expected number of simple events has order 1, rather 
than zero or infinity, iff 1 = n2' exp( - t'H( a, p ) ) .  Taking logarithms, this condi- 
tion becomes 2v log(n) - t"H(a, p ) .  The discussion in the second paragraph of 
Section 4 shows that the notion "not too dependent" can be made the key to a 
rigorous proof that (M,"/log(n) + 2 v / H ( a ,  p ) )  in probability in some but not 
all cases of the parameters a and p .  

Jik - jkl. 

The multidimensional analog of the Erdijs-Rhyi law, 

v a E ( P , l I ,  1 = P(RYlog(n) + v / N ( a ,  PI), 
is proved in Darling and Waterman (1985). By combining this with Theorem 5 
below, we get a statement in which the dimension Y does not appear: 
V a E (p ,  11, 1 = P(M:/RZ -, 2). Loosely speaking, allowing shifts doubles the 
volume of the largest quality a matching for each a > p .  

THEOREM 5. Theorems 1-4 for i.i.d. letters generalize to Y 2 1 dimensions: 
v a E (23,119 

1 = P(M,"/log(n) + 2 v / H ( a ,  P ) ) ,  

1 = P(D,"/log(n) + 2 v / H ( a ,  P I ) ,  

1 = P(S,"/log(n) + v/r(a, PI) 
and hence 

1 = P(D,"/S," + 2 r ( a ,  p ) / H ( a ,  p )  > 1). 

PROOF. There are no essential changes from the proof given in the one- 
dimensional case. There are notational changes: t now becomes t' and a "word" 
w E St, as in the definition (50), becomes a "pattern" of letters arranged on the 
cube of side t: w E S['* fl]. In Section 4, the quantity U(t ,  rn) defined at  (13) is 
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now generalized to the number of matches between a cube of side t and the same 
cube shifted by m E 2': 

U ( t , m )  E l ( x k = x m + k ) .  
k c [ l ,  t l ]  

Now U( t, m) can be expressed as a sum of independent random variables, each of 
which has the same distribution as the one-dimensional U(s, 1) for some s. The 
values of s that occur sum to t' (each one is at most t), so that (17) can be used 
repeatedly to get the bound analogous to (18). For example, with v = 2, t = 3 
and m = (1, l), we have 

,qeSW,(l,l)) = ,qeSU(3,1){,qeSU(2,1)}2{~eSU(l.l)}2 ~ 9 (  p ) .  0 

7. Matching between two Markov chains. It is possible to generalize 
Theorems 1 and 2, but not Theorems 3 and 4, to the case of Markov chains. 
Assume, as in Sections 2-5, that the alphabet is S = { 1,2,. . . , d }  and that the 
sequences X,, X,, . . . and Yl, Y,,. . . are independent, but generalize and take 
each sequence to be governed by an irreducible and aperiodic d by d stochastic 
matrix P 

As before, p = C(C([)~ gives the value of P(Xi = yj), provided that both 
chains are stated in equilibrium. For a E ( p, 13, the large deviation rate for the 
two chains to match with quality a is 

[PI,], with equilibrium distribution p. 

(26) H ( a ;  [ P I )  = lim - t- ' logP a I t-' 1(X, = Yk)) 
l s k s t  t+ m 

Theorems 1 and 2 hold for Markov chains, provided that H(a ,  p) is replaced by 
H(a;  [PI). 

The quantity H(a;  [PI) is really a large deviation rate for the Markov 
chain with state space S2, whose d 2  by d 2  transition matrix Q is given by 
[ Q ( i , , ) , ( k , l ) ]  = [Pi&,]. The equilibrium for Q puts mass p on the diagonal 
D = {(I, m): I = m} c S2, and we are considering large deviations in which the 
occupation measure for the chain governed by Q puts mass a > p on the 
diagonal D of the state space. 

In the special case that each Markov chain is an i.i.d. sequence, this reduces to 
the relative entropy H(a, p) for coin tossing, defined at formula (2). In general, 
large deviation theory tells us that the limit defining H(a;  [PI) exists, that its 
value for a E ( p, 11 is strictly positive and finite and that the function H( e ;  [PI) 
is convex. There is a variational formula for H ,  from which the value of H may 
be numerically computed, but it seems to us that for a < 1, except in the cases 
of i.i.d. sequences or the symmetric 2 by 2 transition matrix P, it is not possible 
to give an explicit formula for H( a; [PI). For a = 1, H(1; [PI) = -log( A), where 
X is the spectral radius of the Schur product of P with itself, Le., the substochas- 
tic d by d matrix [e:]. Properties of the Schur powers of a stochastic matrix 
are discussed in Karlin (1985). 



1166 R. ARRATIA AND M. S. WATERMAN 

THEOREM 6. For the irreducible aperiodic Markov chain described abooe, 

V u  E ( p , l ] ,  

v a E ( p , ~ ] ,  

PROOF. The proof of the upper bound is just like Section 3. Care must be 
taken in proving the statement about D," since nonoverlapping segments within 
a single Markov chain are not independent. However, this only affects the upper 
bound by a constant factor, since the event H T i  = {at s C l r A s t l ( X i + k  = 
Xi-,)}, which is the same as the event G?/ defined at (3)  but with X in place of 
Y, satisfies P(HCt)/P(G?/) 5 l/min{pl}, whenever li - j l  2 t. 

The proof of the lower bound is the argument from Section 4, with some 
modifications, as follows. We still use a set J c (St)2 consisting of some of the 
quality u matching pairs (w, z )  of words of length t. Instead of specifying the 
empirical distribution of the t letter pairs (wi, zi) in the definition (7), we must 
now specify the empirical distribution of the t doublet pairs (( wi, wi+ ,), (z i t  zi+J), 
taking the indices modulo t. Instead of the definition (5) of Ew,z which uses 
blocks of t consecutive letters to provide negative correlations, we must now use 
Doeblin's method, taking blocks of t consecutive excursions from some fixed 
letter back to itself, and requiring that the specified words w and z appear at the 
start of such a block. See Arratia and Waterman (1985a, b) for the use of 
Doeblin's method in a similar setup. 0 

1 = P(M,"/log(n) + 2 / H ( a ;  [ P I ) ) ,  

1 = P(D,O/log(n) + 2 / H ( a ;  [ P I ) ) .  

It is easy to see why Theorems 3 and 4, describing self-overlapping repeats, do 
not generalize directly to Markov chains: The relation between two letters a 
fixed offset m apart, say X i  and Xi+,,,, depends strongly on the value of rn. Even 
the value p in the quantification V a E ( p ,  13, which should be the average 
quality of matching, depends on the offset m: 

p(m) pl[PmIll  = (8.8.) lim U ( t ,  m ) / t ,  
t-r 00 ICs 

where U(t ,  m), defined at (13), is the number of matches between two blocks of 
length t at offset m from each other. Notice that p ( m )  + p as m + 00. For 
example, the Markov chain with d = 2 and transition matrix P,, = Pn = 0.1 
and Plz = P,, = 0.9 has equilibrium p = (!j, !j), p = 4, p(1) = 0.1, p(2) = 0.82 
and p(3) = 0.244. 

The generalization to Markov chains of Theorem 3 for self-overlapping re- 
peats should take the form V a E ( p * ,  13, 1 = P(S,"/log(n) + l / r ( a ;  [PI)), 
where p* = supm2,p(m). A version of Theorem 4 would make sense only if 
p = p * ;  otherwise it would be like comparing grapes and watermelons. To see 
this in more detail, observe that S," = max ;c $,"( n), where 

S,"(m) = o v max t > m: 3 i, j E [0, n - t ] ,  

i - j  = m, tu s 1(xi+, = 
lskit 
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Now for each m 2 1, there is a version of Theorem 3, of the form V a E 
( p ( m ) ,  13, 1 = P(S3m)/log(n) -+ 1/r(a; [PI, m)), where r(a; [PI, m )  = 
lim - t-’ log e a t  s U(t,  m)). The proper generalization of Theorem 3 should 
combine all of the thw versions. 

1. Does p = p* imply that the Markov chain is actually an i.i.d. sequence? 
2. Does there exist a finite value m* with p* = p(m*)? 
3. As a function of d, what upper bound can be given for the minimum solution 

4. If m* exists, does it follow that r(a; [PI) = lim - t-’ log P(at I U(t ,  m*))? 

There are many interesting questions that naturally arise: 

m* of p* = p(m*)? 

8. Requiring a given proportion of mismatches. Let a E [0,1] be given. 
The length MnS” of the “longest nonmatching of quality a, allowing shifts” 
between two sequences X,X, * .  X, and YlyZ - - Y, is defined by 

M:“ = max t :  3 i, j E 10, n - t ] ,  a 2 t-1 I(x,+, = y+&)). ( l s k s t  

The only difference between this and the definition of M,“ is in the direction of 
the inequality. For the sake of comparison, we also consider the length R:” of 
the “longest head-free run of quality a,” in a sequence Z,, Z,, . . . , 2, of {0,1}- 
valued random variables, 

R:” = max t: 3 i E LO, n - t ] ,  a 2 t-1 zi+&). 

By taking Zi = l(Xi = yi), we have that R:” is the length of the “longest 
nonmatching of quality a, not allowing shifts” between X,X, X, and 
Y1Y2 * * * Y,. 
As in Sections 2-5, assume that all letters X,, X,, . . . , Yl, y Z , .  . . are mutually 

independent elements of S = {1,2,.. . , d} ,  with distribution p. Let p = 
P(Xl = Y,) = &es(pl)2;  we will usually take a E [0, p ) .  

Can limit laws for M,’ ” be derived from laws for M,”, perhaps by complemen- 
tation? The answer is a surprising, but definite “no.” First, observe that since 
H ( a ,  p )  = H(l - a, 1 - p )  V a, p E [0,1], the Erdos-Wnyi law (l), applied to 
(1 - Z,}, directly implies that if Z,, Z,,... are p-coins, then R:”/log(n) -, 
l/H(a, p )  almost surely. However, even in the case d = 2 where the sequences 
being compared represent coin tossing, there is no way to derive strong laws for 
M,’ ” from Theorem 1, the strong law for M,”. 

The absence of duality between matching and nonmatching, allowing shifts, 
can be seen most clearly by considering the extreme cases, a = 0, with M;O 
being the length of the longest perfect nonmatching, and a = 1, with MA 
being the length of the longest perfect matching. If for example, X1X2 . . -  = 

Y,Y, 
We consider further the two extreme cases, a = 0 and a = 1. The analysis by 

position using first and second moments, described in the second paragraph of 
Section 4, works for Mi for all p. This is because the condition needed, namely 

( l s k s t  

= 0101 ..., then M,So = n - 1 and Mi= n. 
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P( X, = Y, = Yz) < { P( X, = Y1)}3/2, is always valid, thanks to Jensen's inequal- 
ity-see Arratia and Waterman (1985a) for details. With a = 0, the analysis 
by position for M,'O works if and only if P ( X ,  # Y, and X, # 5) > 
{ P( X, # Y,)}3/2. This last condition is valid for some but not all p. For example, 
if d = 2 and p = (0 , i  - e ) ,  then P ( X ,  # Y, and X, # 5) = e(i - e) and 
P ( X ,  # Y,) = 2e(l - e), so the first and second moments method works if and 
only if 1 < 80(l - e). However, the analysis by pattern works in all cases, just as 
easily for a E [O,p) as it did for a E (p, 13. 

The length 0,'" (respectively, S,'") of the "longest nonmatching of quality 
a," not allowing (respectively, allowing) self-overlap, within a single sequence 
X,X2  - - X,, is defined by 

0:" = max t: 3 i ,  j E LO, n - t ] ,  li - j l >  t ,  a 2 t-1 1(xi+ ,  = x,+,)}, ( l s k s t  

t :  3 i, j E [0, n - t ] ,  

o < li - j l <  t ,  a 2 t-1 I(x,+, = x,+,)). 
l s k s t  

and hence 

PROOF. There are only a few minor changes from the proofs given for 
Theorems 1-4. The biggest change is that the definition (7) of J is modified as 

(LU, z )  E (St)': 1( b = wi = z i )  = lata,], for b E S, b # d ,  and 

1( b = wi, c = z i )  = [(l - a)ty,,l ,  for b # c E S 

lsist  

l i i s t  

The only change was to replace one occurrence of floor 1.1, with ceiling [ e l ,  so 
that each pair of words (w, z )  E J is now required to match in a number 
s = t -  &,ZCES[(l - a)ty,,J of places, with s 5 at instead of s 2 at. 0 

The multidimensional and Markov generalizations also can be easily extended 
to corresponding theorems about nonmatching. 
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