184 Mathematical Methods for DNA Sequences
 23. Hib. New York, 19en.

24. mid comperioon with DNA helices, Biopolymorn. 22. 2001, 1993.

26. Mim, D. R., Kramer, F. R., and Sidexetmon, S., Complete mecieotide sequence of a repticxing RNA motecule, Sciewre, 150, 916. 1973.

30. Zaker, M., RNA foltiog pmedicition: the conkimed need for inceraction between biologists and matherne. Hicims, Lerr. Mes. L4e Ser., 17. 2906.

 meigitborthood of tuc optimen. Mect. Biaket. 77, 179, 1993.
 secondry structives, Nuct. Acids Res.. 141). 299. 1966.

 6. Tywher, Meb. 45, 810,1925 .

Chapter 8
CONSENSUS METHODS FOR FOLDING SINGLE-STRANDED NUCLEIC ACIDS

Michael S. Waterman

TABLE OF CONTENTS

1. Introduction ... 186
II. Alignment by Matches .. 190
A. Finding Matches... 191
B. Statistical Significance .. 191

2. The Binomia! Distribution and Large Deviations ...
III. Alignment by Base Pairing .. 193
A. Finding Helixes ... 193
3. Statistical Significance ... I94
IV. Folding IRNAs 194
A. tRNA Alignment by Matches.. 195
B. IRNA Alignment by Base Pairing .. 196

4. Presentation of Helixes 199
V. Tertiary Interactions ... 199
vı Conclusions... 217
Acknowledgment .. 223
223
References.

I. INTRODUCTION

As the preceding chapler' has explained, the structure of single-stranded RNA macromolecules is crucial to the functioning of an organism. While it has recently become routine to direcily read the primary arructure of these molecules by sequencing techniques, the deduction of secondary and tertiary structure is much less straightforward. The secondary structure of DNA is well known: DNA is double-stranded according to the familiar WatsonCrick rules. Double-stranded DNA has altermate double helical structures. The classic Band A-forms are both right-handed helixes while the Z-form is left-handed. ${ }^{2.3}$ RNA has basepairing rules corresponding to those for DNA; T in DNA is replaced by U so that base A pairs $U\left(A^{*} U\right)$ and base G pairs $C\left(\mathbf{G}^{\circ} \mathbf{C}\right)$. The pair $G^{*} U$ is usually added to this list. The pairs $U\left(A^{*} U\right)$ and base \mathbf{G} pairs $\left.C^{\left(G^{*}\right.} \mathbf{C}\right)$. The pair $\mathbf{G}^{*} U$ is usually added to this list. The
fact thar RNA occurs frequemly as single-stranded often makes the secondary structure of fact thas RNA occurs frequently as single-stranded often makes the secondary structure of
RNA difficutt to determine. Segments of the sequence will form base pairs belween them, RNA difficuth to determine. Segments of the sequence will form base pairs belween them,
and the prediction of the resurimg structure is a dificull task. Obviously the resulting structure - the folded molecule - is highly dependent on the specific linear sequence of the RNA. It is quite surprising, to a mathematician at least, that biologists have been so successful of prodicting some imporimn secondary structures. In fact, the first primary (linear) sequence or a UNNA (trunsfer RNA) appeared in 1965 along with the cloverieaf form of secondary structure. This turned out to be the correct structure and has been verified by X-ray crysallography.' Other than by guessing or inspection, there seem to be two major techniques for prediction of secondary structure: the minimum energy method and the comparative method. The previous chapter gives an extensive trearment of the important minimum energy method, which utilizes dynamic programming. After briefly discussing the minimum energy approach we turn to the main topic of this chapter, comparative or consensus analysis of
folding.
In an important paper Tinoco et al. ${ }^{\text {© }}$ proposed assigning free energies to the components of secondery structure - the various base pairs, end loops, bulges, interior loops, and maltibranch loops - and then finding the minimum free energy secondary structure. To accomplish this task they presemted the base pairing matrix for an RNA, which is the analog of the dot maxrix for sequence manching. One difficulty with fully implementing their proposal is the huge mumber of possible secondary structures. The number of configurations has been studied,' and it was found that for sequences of length 150, allowing end loops of iwo bases or more, there are 1.22×10^{00} possible secondary structures. Now this number counts all conceivable structures, and the buse pairing of a given sequence reduces the number somewha, buh the point remains. There are 100 many candidate structures to simply consider them all and take the one with minimum free energy.
In 1978, (wo dynamic programming methods were proposed to solve this problem. Waerman' and Waterman and Smith' used general energy functions and, in an iterative fasthion, builh up the complexity of the optimal structures. Nussinov et al. ${ }^{10}$ maximized the mumber of base pairs in a single pass algorithm. The advantages of both of these methods have been combined into a useful, efficient algorithm deacribed in the preceding chapter.'
Some of the shortcomings of the minimum energy methods are (1) the lack of precise knowledge about the energy functions themselves, (2) the large amount of computer time required, and (3) the inability of the current algorithms to handle many sequences simultuneously. Item 3 is really a subcategory of 2 , since computer time and storage is the main dificulty in 3. Sankofr' has an algorithm to simultaneously fold and align several sequences; three sequences seem to be an upper limit, but the sbility to both fold and align several sequences is an important problem. To overcome these difficutiies, it is instructive to take - careful look at some of the successful work of biologists who study these problems.

In a remarkable 1969 paper, Levilt'2 oblained a clovericaf model that fit all the I4 IRNA sequences known at that lime. He almost certainly obdained his consensus structure by

FIGURE 1. The cloveriear structure of URNA. The mucleotide positions are numbered, or whenever a postion is comserved, the idemiky is indica
then may or may mod te present in any given molocule.
arranging the sequences by hand into an alignment in which helixes and homologies (identical bases) were represented. Later, the structure was largely conlirmed by crystallography." Escentially the same pattern of helix and homology is shown in Figure I where a so-called Essentially the same pattern of helix and harmot 300 known tRNA sequences ${ }^{14}$ fit this general universal choverical is shown. it in some detail.
The meaning of Figure 1 is that all known tRNA sequences can be arranged into an lignment with positions labeled as in the figure. The appearance of a base pair, between I and 72, for example, means that whatever the identity of the bases labeled 1 and 72 , they form a base pair. The sequences end in CCA; this triplet has been conserved, independen of any base pairing. Actually the "universals" are in some positions violated by 5 to $10 x$ of IRNA sequences. The variation in sequence length makes sructure predicion ando alignment a fascinating and difficult probiem. The D asm varies in length by up to 4 bases while the so-called extra arm varies in length by up to 18 bases. Therefore, the alignmen
is not simply given by shifts of the primary sequence, but must be found by inserting gaps inlo the sequences. Notice the large number of conserved bases in the interior of the sequence. Positions 53, 54, 55, and 56 are GUUC, the longest conserved sequence in the structure. In total. 14 of the bases of $\mathbb{R N A}$ are conserved in the alphabet $\{$ A,U,G,C) white 8 more are conserved in the Purine = Pu and Prymadine in Py alphabec. (Pu, Py). Let us take a brief look al the magnitude of the problem of sequence aliza we must solve to put the sequences into correspondence. The IRNA sequences an iiffer in length by as much as 20 bases. If there are R sequences and we wan to look at them in all possible arrangements, not allowing gaps within the sequences, there are a min. $(20+1)^{R}$ possible arrangements. If $R=14$, as was Levitt's situation, $(21)^{14}=3.24 \times$ 10^{10}. If $R=32$, as in the example of this chapter, $(21)^{12}=2.05 \times 10^{21}$. If $R=150$, a reasorable number of tRNA sequences, (21) ${ }^{10}=2.15 \times 10^{100}$. In none of these cases is it possible to exhaustively consider all alignments on any modern computer. Allowing gaps it pousible to exhaustively consider all alignments on any modern computer. Allowing gaps
from I 20 ietters only increases these numbers by many orders of magnitude. Even with mo gaps and only $R=14$ sequences, a direct approsch to alignment is computationally hopeless. Clearly, the approech of considering all aligaments individually is not feasible, even for the smallest cases of interest.
The approach of inferring structure by common (conserved) features, helixes, or homologous bases, has come to be known as the comparative or phylogenetic method. Features in rRNA (ribosomal RNA) essential to organisms must be conserved in evolution, and it is hoped that these features will be recognized as common in the sequences studied. For example, the CCA at the 5^{\prime} end of IRNA is involved in the interaction between IRNA and the amino acids. By locating CCA in a tRNA sequence, we oblain valuable information about the location of the acceptor stem. Levill's approach was based on these ideas.
Afer IRNA, the next RNA molecule for which this method was used was SS rRNA which is about 120 bases in length. Fox and Woese's and Nishikawa and Takemura's solved the structure after many attempls by investigators using other approwches. There is no crysullographic data for this molecule, but biochemical and physiochemical evidence suppor the structure. (See Waterman" for a consensus approach to folding $345 S$ rRNA sequences the structure. (See Waterman" for a consensus approach to folding 34 SS rRNA sequences A stody of Trifomov and Bolshoi" zatudies SS folding by a related method which has some A study of Trifonov and Bolshoi" atudies $5 S$ folding by a related method which has some
drawbacks. First, the sequences must be aligned, a difficuit problem in itself. Then the base pair matrix for each sequence is obtained. The matrixes are summed and possibie helixes pair matrix ${ }^{6}$ for each sequence is oblained. The matrixes are summed and possible helixes appear as dark, antidiagonal regions. The methods presented in this chapter directly consider the helixes.
The mexi larger rRNA. 165, and 16S-like molecules posed new difficulties for investigators, due in part to the greater sequence length of approximately 1540 bases. As in $5 S$ sequences, bulge loops, interior loops, and noncanonical base pairs (those other than $A^{*} \mathrm{U}$ or $\mathbf{G}^{*} \mathrm{C}$) appear in 165 structures. As with $5 S$ structure, 165 structure has been solved by the comparative method. The work was mainly done by three groups. and it is this work. notably than of Woese and Noller ${ }^{190.20}$ that provided the motivation and inspiration for this chapler (see also References 21, 22, and 23). The model of Woese and Notler and colisboraors ${ }^{3}$ for 165 rRNA of Escherichia coli is shown in Figure 2: These authors describe their approach ${ }^{19}$ as progressing with alignoment of 16 S -like IRNA sequences in parallel with the development and testing of the secondary structure model. Preliminary alignments are then used to identify obvious primary and secondary structure features; these patterns are used as the basis for refinement of the sequence alignmem. The procedure is then iterated, and new sequence information incorporated as it is obtained.
It is the goal of this chapter (I) to make some of the Noller-Woese procedures explicilly defined so that other growps can see exactly what the corresponding computer searches are, (2) to find efficient computer methods to perform the searches, and (3) io give some estimates

FIGURE 2. Secondary structure of E. coli iGS RNA. TTaken lrom Moared. D., Stern, S., and Nollet, H., J. Mol. Aiof., 187. 399. 1986. With permission.)
of statistical significance. The philosophy benesth the comparative method is that important features, such as specific bases or helixes, have been conserved over the course of RNA evolution and that these conserved features are still utilized by the organism. Our task is to evolution and that these conselgorithm
For illustrative purposes we will study the set of 32 E . coli IRNA sequences whose names For illusiraive perm. the variation in length
 is from 74 to 93 bases. Several "her " stem is shifted one pase from the "universal" struclure in the sequence of histidine iRNA.
While IRNAs are the shortest RNA sequences we have discussed. they will serve well for

Table 1
THE 32 E. COLI RRNA SEQUENCE NAMES WITH THE GenBank ABBREVIATIONS

dan IRNA:	ECOTRAIA
da IRNA:	ECOTRAIB
cys IRNA:	ECOTRC
asp IRNA:	ECOTRDI
gim ckna:	ECOTREI
del IRNA:	ECOTRE2
phe trNa:	ECOTRF
aly IRNA: $^{\text {a }}$	ECOTRGI
aty anda:	ECOTRG2
sly then:	ECOTRG3
his dRNA;	ECOTRHI
It iRNA:	ECOTRII
In ERNA:	ECOTR12
Ifs trNA:	ECOTRK
ken ciNA:	ECOTRLI
kew tend:	ECOTRL. 2
ken trNA:	ECTORLS
mentimor	ECOTRMF
mex RRNA;	
met RNA:	ECOTRM
men trNa:	ECOTRN
esta RNA:	ECOTRQI
ghas ${ }_{\text {cha: }}$	ECOTRQ2
arg Rna:	ECOTRRI
ag LRNA:	ECOTRR2
sa tRNA:	ECOTRSI
ser dRNA;	ECOTRS3
Horna:	ecotrtacy
val dRNA:	ECOTRVI
val CRNA:	ECOTRV2A
val leNA:	ECOTRV2B
tp itNa:	Ecotrw

although even with their gremer length they are still computationally feasible. $16 S$ has about although even with their gremer length they are still computationally feasible. 16 S has about
1540 bases while $23 S^{33}$ has aboun 2500 bases. As will be seen, tRNAs are quite suitable 1500 bases while $23 S^{35}$ has aboun 2500 bases. As will be seen, tRNAs are quite suitable
for our purposes, being of manageable size and of sufficien difficulty of folding. Dynamic programming methods are repued to fold approximately half of the IRNA sequences into a cloverieaf structure. Consensus methods, as will be seen, fold all E. coli IRNAs into the correet clovertemf shape. In addition, tertiary structure can be studied by the same methods.

II. alignment by matches

In earlier chapters on alignment by Karlin ${ }^{20}$ and Waterman, ${ }^{17}$ the authors discussed finding stmistically significant matches between sequences. The motivation for that work is the hope that staistically significant malches between sequences will be biologically significant. In the secting of this chapter, there are several conserved (or "invariant" or "universal") the setting of this chapler, there are several conserved (or "invariant" or "universal")
sequences in tRNA. In Figure i, we notice them the longest universal pattern is GTTC. In sequences in IRNA. In Figure 1, we notice then the longest universal pattern is GTTC. In
our data we will see that with a few exceptions this pattern is contained in a longer five our data we will see that with a few exceptions this pattern is contained in a longer five
lelter pattern GOTTC, beginning at base 52 in the figure. The sceeptor arm pattern of CCA is also present in all sequences. Several other one and iwo letter patterns can be seen on examining Figure 1 .

There are several reasons for being interested in these invariant patterns. Their presence has been conserved over evolutionary time, and this gives us some reason to believe they are essential to the functioning of IRNA. Our basic reason for study of these dala sets is to deduce structure, function, and evolution of the macromolecules. As an aid in deducing the structure, then, finding significant invariant patterns could be essential in deducing the correct lignment of the data set. While no shifting is necessary to find GGTTC if the sequences lignment aligned on their right ends, such shifting into the correct alignment could allow are already aligned on heir giche sell sh base peiring which might otherwise be un us to locate other smalier patterns, as well as base pairing
It is now time to ask some hard questions. What is the basis for concluding that such patterns are universal? The flaw in looking at a data set until a pattern is seen and then patterns are universal? The flaw iftored scientists to incorrect conclusions. Exactly what concluding it is significant has often ied ase is performed to find these patterns? Are other significant patterns missed in Figure 1? How is statistical significance to be estimated? These important questions are addressed in the remainder of this section.

A. Finding Matches

In the search for malches, our program simply finds all patterns of a specified length that occur at or above a present frequency in a specified section (column " a " to column " b ") with the sequences arranged in some alignment. Even if a sequence. GTTC for instance. occurs several times within a single sequence, it is only counted once. For small data sets our as the iRNAs, to find k-letter (k-mer) repeats it is sufficient to make a table of all k wers occurring in the sequence (≤ 9) with their frequencies and then check to see which mers occurring in the sequence (m) widh for k -mer repeats can evidently be performed occur at the required to in time proportional to the number of letters (N say) in all sequences with storage bounded by $\mathrm{O}\left(4^{4}\right.$). If the common sequences are longer, then the techniques of hashing allow the search to be done in NiogN time (see Martinez ${ }^{\text {th }}$ for a useful algorithm to find repeats in molecular sequences by hashing). Thus it is seen that the search for common patterns is not
computationally difficult in these problems. In these cases, we are interested in exact matches molec
compt
only. only.
B. Statistical Significance
I. The Log(n) Distribution

Estimates of statistical significance of matches are more difficult than finding the matches and were not well understood until recently. The model we study here is \mathbf{R} sequences of and N that have iid (independent identically distributed) letters. The event for which we
 calculate significance levels is that of fing $\mathrm{N} \rightarrow \infty$. In Chapter 3 , the case of $\mathbf{R}=\mathbf{L}$ sequences. First we presens larger R and L are given. We give the simplest of these extensions here. Let $p=P\left(X_{1}=\right.$ $\mathbf{X}_{3} \ldots=\mathbf{X}_{6}$) where X_{4}, the ketters in the sequences, are iid. If the alphabet has four
 common to at keast L of the R sequences. Then.
$\left.E(M(R, L))=\log \left({ }_{(}^{(}\right) N^{\prime} \cdot\right)+\log (1-p)+\gamma \log (c)-1 / 2$
and
$\operatorname{Var}(M(R, L))=\sigma^{2} \approx(\pi \log (\mathrm{e}))^{2 / 6}+1 / 12$

$$
\log =\log _{10} \text { and } y=.0577
$$

For the $R=32$ sequences of length $-75=N$, take $L=32$ as well. If the lellers are equally likely, $p=(1 / 4)^{\prime \prime}$ and

$$
\begin{aligned}
E(M(32.32)) & =3.1144 \ldots+0.0134 \ldots-0.5 \\
& =2.6278 \ldots
\end{aligned}
$$

and

$$
\sigma^{2}=0.0842 \ldots
$$

with

$$
\sigma=0.2902
$$

Therefore, $4=k$ is almost 5 standard deviations above $E(M)$, and this k is achieved in our sequences by the word GTTC.
2. The Binomial Distribution and Large Deviations

A glance an the locations of the pattern GTTC in the data see aligned as shown in Figure -5 brings up an interesting second question. The pattern occurs perfectly aligned in the figure as well is in some other locations. Whan is the significance of such a pattern of occurrence widb litule shifting? That is, in the case $N \ll \infty$. In Figure 5 . we could take $k=W=4$ and discover the partern. where W is the width of the window in which the search is being performed.
For ease of exposition, take the case of equally likely letters of RNA. Then, if w is a k letier sequence.

$$
\left.\begin{array}{rl}
\alpha & =P(w \text { occurs in } N \text { letters }) \\
& =P\left(\begin{array}{c}
w-k+1 \\
\bigcup_{i=1}^{U}
\end{array}\{w \text { starts at } i\}\right.
\end{array}\right) \leq(w-k+1)(1 / 4)^{4} .
$$

The probability that w occurs in exactly Lof R sequences is given by the binomial probability

$$
(\mathbb{C}) a^{2}(1-\alpha)^{R-L}-(\mathbb{C})(W-k+1)^{4}(1 / 4)^{m}\left(1-\left(W-k+\left(x(14)^{4}\right)^{m-L}\right.\right.
$$

and, summing over all 4 possible w, the desired probability is

$$
(\mathbb{E} \times W-k+1)^{M}(1 / 4)^{n k t-1}\left(1-(W-k+1)(1 / 4)^{2}\right)^{n-2}
$$

For small R and L. this formula can be directly used to estimate significance. Otherwise we use the large deviations theory described next.
Now define $\beta=L \mathbb{R}$. If $\beta \leq a$ and R is large, the strong law of large numbers assures us than we will have approximately $\sigma R \geq \beta R=L$ occurrences. Ohherwise, when $\beta>a$. a bound for the probebility of a k-letter word common to at least L. of R sequences is given by the large deviations extimmete. ${ }^{\text {n-3I }}$

The estimate is given by

Tabie 2

ESTIMATES OF STATISTICAL SIGNIFICANCE FOR APPEARANCE OF SOME K-LETTER WORD IN SOME WINDOW
POSITION AND IN AT LEAST LI OF R $=32$ SEQUENCES OF LENGTH $N=75$

*	1	w	-	p	($(\mathbb{e}, \boldsymbol{\beta})$	P
4	20	50	0.184	0.625	0.474	1.73×10^{-1}
4	24	75	0.281	0.75	0.472	7.14×10^{-9}
6	10	75	0.171	0.313	0.662	$2.55 \times 10^{\circ}$
7	7	73	0.004	0.188	0.547	$4.17 \times 10^{\circ}$

$4^{2} \exp \{-\operatorname{RH}(\alpha, \beta)\}$
where $H(\alpha, \beta)=\beta \log \beta / \alpha+(1-\beta) \log (1-\beta)(1-\alpha)$. The factor of 4^{4} is to count the number of possible w. This quantity approximates the probability that some k-letter word is common to at least L of R sequences of length N. If a window of width W is placed in all $N-W+1$ possible positions, then the estimate becomes

$$
(N-W+1) 4^{4} \exp (-R H(\alpha, \beta)) .
$$

where $\alpha=P(w$ occurs in W letters).
Some sample estimates wipear in Table 2. Finding some four teller word common to 24 Some sample estimates appear in will only happen with the probability of 7.15×10^{-3}. In our sequences, we find the word $w(=G T T C)$ in all 32 sequences perfectly aligned, a highly unlikely event!

III. ALIGNMENT BY BASE PAIRING

While alignment by matches common to many sequences is a very useful procedure, the striking feature of rRNA data sets is commonality of base pairing. The most conserved features in Figure I are not conserved letters, but conserved base pairs (bp) or helixes. The aminoacyl stem is a helix of 7 bp , while the $\mathrm{T} \downarrow \mathrm{C}$ stem and the anticodon stem have $\mathbf{S} \mathrm{bp}$. and the D stem has 4 bp.
All of the invariant helixes are, in our data set, composed of differing sequences. The common feature is that a helix of the required length can be formed with a relatively small amount of shifting of individual sequences.

A. Findiag Helixes

We have chosen the following implementation for our search for variant or consensus belixes. Position two nonoverlapping windows of width W on the data set, at a distance or separation of ℓ apart. Let k be the desired helix length where $k \leqq W$. Then find the location of the best (if any) helix (or helixes if more than one exists) in exch sequence within the specified windows. "Mismatches" correspond to interior loops, while the insertiondeletions specifed windows. "Mismatches" correspond to interior loops, while he inseriondeteions of ketters correspond to buiges. Usuaily we will simply search for helixes or some leng is the sum of the scores for each sequence. We score a helix by the number of base pairs divided by helix length.
To do a fuil search of the data for length k helixes in windows of width W, we let C . ine separation between windows, vary from $C=0$, where there are $N-2 W+l$ window

*	L.	w	-	*	3(4, \%)	-
4	16	!	0.010	0.500	0.521	1.29×10^{-2}
5	10	6	0.035	0.313	0.450	1.21×10^{-3}
6	16	25	0.010	0.500	0.321	7.23×10^{-3}
7	8	25	0.002	0.250	0.408	2.71×10^{-1}

positions, to $\boldsymbol{\ell}=\mathbf{N}-\mathbf{2 W}$ where exactly one window position is possible. This causes any sach search to take $\mathbf{O}\left(\mathbf{N}^{2}\right)$ time, where W and k are fixed.

B. Statistical Significance

Once again, it is nanural to ask aboun the significance level of found base pairing patterns. Fortunately the work of the last section can easily be carried over.
The large deviation formulas for statislical significance go as follows. We have R sequences of length N, with a window width W and word size k. The probability a of finding a k letter helix in a given sequence with fixed window positions is

$$
\alpha \equiv\left(W-k+(1)^{2}(1 / 4)^{*}\right.
$$

since there are $(W-k+1)$ distinct ways to find the helix focation in each window. As above, we want to find a helix at least L or the R sequences. If $\beta=U R$ and $\beta>\alpha$, the estimate of statistical significance is

$$
p=\frac{(N-W K N-(W+1))}{2} \exp \{-R H(\alpha, \beta)\}
$$

The coefficient of \exp [$\}$. (${ }^{(}{ }_{2}{ }^{-*}$), in the above equation counts window positions in sequences of length N. For our data sel, Table 3 gives some rekevanf estimates.
Consensus alignment of many RNA sequences is, in principle, a simple straightforward procedure at this point. However, writing usable computer programs is a major problem and, in addition, there are many difficulties encountered in the analysis of actual sequences. Therefore, we illustrate this analysis by folding our set of IRNA sequences.

IV. FOLDING IRNAs

As emphasized in eartier sections. alignmem and folding are inferrelated problems. To fold a set of tRNAs, we need a stracegy for approaching the problem. Not only are there dependencies berween alignment and folding. but also dependencies within both operstions of alignmem and folding. In folding. for example, there are conflicts between different length helixes as well as quatity (number or bulges and interior loops) of helixes. We approach these problems by first locming long (statisxically significant) matches betwoen the sequences. Then we focalc common patterns of base pairing.
A. IRNA Alignment by Matches

We firse exptore alignmen by matches. Recall from Section II that while a 4 -mer is common to all 32 of our sequences ($\mathbf{W}=75$). the expected length if pattern connmon to

076543210907654 GCCGCGTTAFCA СICCCCTTCGICTACAGCCCAGCACOLCCCATV ECCCEGATACCTCRGTCG TRGA GG TGCCCGOCAFEC TEAFLL 								

 six keller word.
all 32 was $=26$. Therefore, without decreasing the window size, we shouid not consider any pattern less than four letiers long. What pattern length k should we begin with? Our approach is to start with larger k and wher in Figure 3 where gttcga appears in 26 of the 32 sequences. The sequenes generesy appear as upper case while the palterns we locsie appear in the following results support such justified in order to highight these found matches, and we follo is found in 29 sequences an alignment. With $k=5$, the most common word is ggic, which is founs (see Figure 4) and overlaps gltega in every location where the later sequor "canol" Iocation In Figure Additionally egtuc occurs once upstream (5 or kert) or is 22 iine perfectly aligned when 5. the results for $k=4$ are displayed and ggle is found 32 rimes, perfechy aligne whe the sequences are right justified. Even for $k=3$, shown in Figure 6, (he 3 . Each of these common to all 32 sequences include only subpatierns of ggitez and cra. Each or Th patterns are included in the invariant "positions" of Figure 1, ggttcg(a) being in the TWC loop and cca being the acceptor arm patien.
Or course, the positions in Figure 1 are the result of an alignment and provide a template for future investigators to fit IRNA sequences to. Here we have set ourselves the task of producing alignment and folding without a template with which 10 align or fold. Using matches we have now aligned the sequences on what is actually the known T\$C kopp. Now we turn io finding common folding patterns.
B. IRNA Alignment by Rase Palring

In Section III, we gave a general description of the prexedures to be employed in this section. Here we must present output from out program (fold). and we are required whe

specific about some details of our computer method. In pariculat we will first describe how we organize the (approximately) $\mathrm{N}-2 \mathrm{~W}$ graphs of score vs. location of right-hand windows for the (epproximately) $N-2 W$ separations of the windows. There are about $(N-2 W)^{2} / 2$ window posinions. Initial aligmment of the sequences is also considered. Then we illustrate the associmed score graphs. Then we turn to our analysis of tRNA folding

1. The Scove Graphs

To make maxcers specific, tuke the window size, $W=10$, and the helix length, $k=5$, with the maxiantum number of allowed mispeirs, mm $=0$. There are approximstely ($N-2 W)^{2}$, the position of the righmosen bas. To organize ourselves, we take the horizontal axis to be The vericical axis is score. For the in the right window for a fixed separation of windows. The Verical axis is score. For the analysis in Figure 7, the sequences are lefl justified. Ench
 Figure-7C andod graph. Figure 18 gives a three-dimensional representation of the dala. In the axticodon stem and is fraph is given for window separation 3. This peak corresponds to eppraion to all separations, the exple in Figrgure 9 . To reinte the single graph for a single reparmion to all sepastations, the data in Figure 7A is "redrawn" in Figure 7D keeping the cepmancion $=3$ graph solid and ploting all other separacions in dotied lines. This procedure
2. Sequence Alignments

Several sensible alignments of the sequence set are possible. We have already mentioned

GGURE 5. The pallern zuc is lound in all 32 E. colitirnd sequences. Ih occurs perfectly alizned as well as some outer focruions.
right justification, which locates the TWC loop. The left justification of Figure 7 locates the anicodon stem. A prion, willout the probability calculations justifying aigninent on 1 t uney are equally reasonabie aignmenis. To see that the dala analysis differs for leff- and ight-justified alignments, the superimposed graphs are given for right-justified sequences in Figure 8 A and left-justified sequences in Figure 8B
In all of Figure 8, $\mathbf{w}=10$, word size $=5$, and the amount of mispairing is $\mathrm{mm}=0$ There is another reasonable possibility for iniinal alignment; the sequences can be aligned on both ends. This simply means that varisble loop sizes will result. The superimposed graphs for such a search is preserted in Figure 8C.
3. Presentation of Helixes

It is clearly possible, by moving the dofled vertical line, to move about in a graph of a single separaion. To move from separation oo separaion, we move the relaike positions of windows on the screen where the sequence set is displayed. To illustrate, Figure 9A is he graph for separation 3, where the sequences are aligned left and $W=10, k=5$, and $\mathrm{mm}=0$. Corresponding to the horizontal location of the dorted line are the window hocations and displayed found patlern of Figure 9B. in summary: (1) moving the night window shoul in Figure 9B moves the dotied line in Figure 9A and. when separation between windows is changed. moves to another separaion graph; and (2) moving the dotied line in Figure 9A moves the window positions in Figure 98, while maintaining window separation
because the TWC loop matiches we found above align perfectly when the sequences are ight justified. we righe justify and acan with $W=10, k=7$, and $\mathrm{mm}=\mathbf{0}$. A highly significamt 13 helixes are found in the 32 sequences. In examining this pattern, it is discovered

and cea.
that both right and leff justification produces seven ketter base pairing in all but three of the sequences! See figwre 10 A for a display of this puttern. Notice that in several (seven) places handied? If the fetters adjucent to the helix. How is Uhis alvendance of base pairings to be Our This removes the apo these difficulties is that of consensus: focme the common feature.解
Retgecta
In this case ir
setget
as ctoven, there is consensus of the kef-hand patiern with the other keft-hand paticros, but not consensus of the rigk-hand petern with the other right-hand patterns. Similarly, with agecace is chosen, this will be the odity eoputionce wimporion is required. If geteget dhe lea-hand patiers and, ss we will sece, the TYC wem wils be apocied. Thus, we resoly the difficulty as in Figure 1OB. Allowing one mispsiring (men = 1), we add the theree other The helix focaned in Figure 10 C is, of base pairing in Figure 10 C .
sequence of the 5^{\prime} and 3^{\prime} ends. The method of represeming helixes by paremiheses will
allow us to unambiguovesty present secondary structure. The cloverleaf of Figure I has the symbolic form

5(1) () () ${ }^{3}$

In our sequences " (. . . ${ }^{\prime}$ " and 1 . . .)" are used to show helixk size and location. This In our sequences ". ... and in do not have secondary structure There is no significant pairing with $k=6$ when we scan the area between the base-paired cegions with $W=10$ and $\mathrm{mm}=0$. Moving to $k=5$, we show in Figure IIA the scan with separation 1 . The rightmost slender peak corresponds to the TWC stem and is shown $(\mathrm{mm}=1$) in Figure 118 . The teftrmost peak is refined by left justifying the remaining requences. The consensus pairing patem is shown in Figure IIC. We. of course, have located the amicodon stem.
Finally, we restrict attemion to the segments of sequence between the lefi-hand $\mathrm{k}=$ = patern and the anticodon stem. Obbserve the position of the carels, " $>$ " and " $<$ ". Figure (2B). This scan has $W=S, K=4$, and $\mathrm{mm}=0$. Figure (2A shows one separation (of 7) in dark while the remaining separations are ploteded lighter. The pattem corresponding oo the peak of the dark line is shown in Figure 12B, and the concencus patiem ($\mathrm{mm}=1$ is shown in Figure 12C.
This is ine complete stody of secondery structure for this set of tRNAS. agreeing in detail with that published. " Figure 12C is our consensus folding of these IRNA sequences. Thi the first time such a task has been accomplished in a mathemstically rigorous fashion.

V. TERTIARY INTERACTIONS

The hydrogen bonding involved in the iRNA cloverikal is known as secondary scructure The hydrer 7 for a mathematical definition of secondary structure.' Viewing the cloverleal bends is fixed, additional hydrogen bonds are fommed beiween bases unpaired in the clow ericsf. These additionsl bonds form what is known as lertiany structure. Figure 13 is 3 diagram of secondary and teniary interactions in yeast phe IRNA.' The tertiary bonds further fold IRNA into the familiar L-structure found by Kim er al.'s
Recall thut the veriary interwctions are frequently simply additional base painings and that no changes in pairing rules need to be made for the search. Real difficulky, however. tormes with these patern searches. The sequences are locked into a fairly ingid alignment (seet Figure 12C), but no longer is a helix of $x \geq 4$ the object of inerest. Instes. Figure is shows pairing between single ketcen. Due to ine amowis is that such searches are possible; good deal of potcmial heniary incrale structure, meny conflicting possibilities exist. the bad news is tot, matere a complete ssalysis of teriary interactions in IRNA. but to Our goal is now io prode a complan and methodology we have presented in this chaptet. Figure 12C shows the cloverieal produced by our methods. We will now search this rigure isC sotential certiary inieractions. The D loop and the extra arm are of varizble length, and the windows are set (for these runs) to have teft and right justification. This kength, and the windows are ser fror inest rused when the windows are in specified positions. The frrst quise naive search is for windows of width 4 and helix size 4 and $\mathrm{mm}=1$. Thus, no shifting is allowed, even in the variable length regions. Figure t4A shows the full ccan, with all separations superimposed. The four collections of peaks which reach maximum value comespond, obviously, to the four helixts of the cloveriear. Tigure fib shows heith of the peaks for a separation of 9 bases. To show some addilional resuls, the mele "pairig." sec of reaks of Figure 14A. adjacent to the T廿C stem peaks, result from possible " 73 of the

A

(ili).

FGURE 11. Analysis of the configwaion of Figure $10 C$ with $W=10 . k=3$. and $m m=0$. The graph with seperation I is stown in A and the patern of the rigitmon peat shown in : The leflumst peck can
anticodon loop (see Figure 14C for illustration). Now this is not a real interaction, but one which the program easily locates.
We continue our study by showing graphs in Figure 15 of all separations superimposed for two letter (Figure 15A) and one letter (Figure 15B) interactions with no shifting. The strong two letter potential interactions are located as follows:

Peak	Locations
\mathbf{A}_{1} :	D stem
$\mathbf{A}_{\mathbf{2}}$:	95-96 and 70-71
$\mathrm{A}_{\mathbf{3}}$:	Anticodon
A_{4} :	72.73 and 29.30
A_{3} :	29.30 and 26-27
	95-96 and 26-27
A_{4} :	26-27 and 23-24
$\mathrm{A}_{\mathbf{7}}$:	T4C stem
A:	Acceptor stem

Figure 15B contains most of the actual tertiary interactions. Obviously there is a good deal of data, and both computation and biology are needed to sort out such a situation if the answer is not already understood. It is our hope that computation can prove truly useful in a similar situation where the structure is not known.

FIGURE 43. Secondary and ceriary suructure of yenst met iRNA."

VI. CONCLUSIONS

It would seem from the experiences reported in this chapter that the prospects for consensus folding are good, although tertiary interactions might be much more difficult to determine than secondary interactions. Since Levilt's 1969 paper'2 laid the basis that allows this chapter's methods to succeed, it might be asked why the computer development lagged 15 years behind. The reasons relate, it seems to us, to the type of computing previously available: centralized, batch-oriented computer centers. With that resource, it is almost ine vitable that the dynamic programming methods be developed first. Dynamic programming is compulationally intensive and does not require any human intervention with its recursive calculations. On the other hand, the consensus methods only make sense when some meaningful lations. Gisplay is provided. Few of us would examine tables of outpor to recognize where visual display is provided. Few of us would examine lables of outpor to recognize whilies in each sequence a signal was located. Since both reasonabie and unreasonabie possisuch as are produced by consensus, the human is an important pasi of analysis. Mellog.
these are needed to make computational methods into a userul toon for bioceg. a thelix is
In the work of Noller and Woese there is the concept of proven hecixes said to be proven if there is some base pair of the helix that is distinct from the others in the other sequences. Since these authors are studying distinct organisms, they use the double mutation required to maintain the base pair as evidence for the helix as a real structure.
White we have not used this device in the program described here. it is quite easy to include White we have not used this device in the program descritid
this or other modifications in helix definition or scoring

218 Mathematical Methods for DNA Sequences

In closing, we mention thal many data sets remain to be examined. The rRNA sequences. 5S. 16S, and 23S, are well analyzed, but it will be instructive and. we hope. revealing to analyze them by these methods. Deeper mathematical and biological questions of inferring IRNA phylogeny via these consensus alignments remain for furher study. See Pace el al." for a recent overview of these and related questions.

ACKNOWLEDGMENT

This work was supported by grants from the System Development Foundation and the National Institutes of Health.

REFERENCES

1. Zuker, M. S., The we of dynamie programening algoinhms in MNA secondery structure perdiction. in

2. Winte, J., An imrodection wo the gromerry and lopology of DNA strecture. in Mashemaicel Mrelhods for

ONA Sequences, Wuermmn, M. S. Ed., CRC Press, Doci Rmon. Fla. 1988
3. Benham, C., Mechmiks nad equilitris of supercoiked DNA, in Mowhmaticel/ Methpat for DNA Sequenres.

Wercmam, M. S., Ed., CRC Press, Boca Ruon, Fa... 198s.

 185. 435. 1974.

Namure (IOndmon). 230, 362. 1971.

7. Sumbers, Discrete Mamh., 26. 261, i973.

Mooth. Surph. Simp. 1, 167. 1978.
9. Wmeriana, M. S. and Smith, T. F., RNA secondery structive: ; complete mathemaical maslysis, Math

Biaxi., 42, 257, 1978.

11. Senteff, D., Simellemens solution to ith RNA folding, alignnem and protosequence probiem. S/AM 1 12 Appl. Mash.

13. Lewlo, B., Gemes. 2md ed., John wikey a Sons. Toromio. 1985 .

Res., 132. r1. 1985.
 mis, J. Biochem.. 76, 935, 1974.

is. Tritcomer, E. N. and hotshot, G., Opert and ctosed SS ribosomal RNA. the mily iwo universil structures

 subyni ribosomal RNA INom Esorcerichia colit

 Acids Res. 9. 6167, I9mi
 significance. in M/
Rmon. Pra., 19ts.
${ }^{1}$ Rwon. Fa., Mes. 27. M. S. Ed, CTC. Pese Rat At M,

4629. 1933
29. Goles. D., E.Esert, M., and W
7. Mod. Zier., 166. II7, IV15.

 descent, Ceff, 45, 325, 1986.

