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1. INTRODUCTION

One of the most difficult pattermn recogaition problems in sequence analysis is that of
locating consensus pattems; its solution is of much importance to molccular biologists. These
[ P can occur g a sct of sequences or within a single sequence. Some-
tlimes the patierns all have exactly the same letters which occur in identical locations in all
sequences of interest; there is little need for sophisticated programs designed to find such
obvious features. For example, ACC occurs at the 3° end of all tRNA molecules, in the
same position relative to the acceptor stem. Features such as this one have been conserved
over vast amounts of evolutionary time and are, without doubt, ial to the functi '3
of the organisms. It is more frequently the case, however, that a feature is conserved, but
not conserved precisely in location or in pattemn. There are different reasons for these various
degrees of conservation; one classic example is discussed next.

The famous TATAAT box in bacterial promoters is located approximately 10 bases
upstream (5’ or left) from the transcription start site. This 6-letter pattern occurs, however
imperfectly, in the — 10 region of all bacterial p The variations in location and
pattern might lead 10 skepticism regarding its existence or relevance to function. However,
2 number of experiments have essentially settled those issues. In Hawley and McClure,' the
known — 10 and - 35 p were hed for in seq d bacterial promoters, aligned
on, and the consensus patterns refined. These two consensus sequences are known from
experimental evidence to contain functional information that alfects promoter activity.'?
Even afier these detailed studies, it is not evident whether other features of DNA promoter
sequences affect promoter activity. Other effects might not be as large as those atiributed
to the ~ 10 and — 35 consensus patterns, but still might be very important.

In Section 1I, we give a method for locating unknown patierns occurring imperfectly in
both composition and location in a set of many sequences. The techniques work well on
sequence sets such as bacterial promoters, and a subset of the known bacterial promoters is
analyzed for illustration. Required for this analysis is a precise definition of consensus
sequence speciflying the amount of mismatch and/or gap allowed, as well as the amount of
shifting permitied. These parameters and the quantity to be optimized are used to define
consensus. The number of possible alignments in these sequence sets is enormous. None-
theless, the techniques work rapidly on most problems of interest.

Next, in Section I1l, a related problem is idered. While homology in sequence pattern
is an important biological feature, the scquence patterns can have other additional properties.
Many (but not all) known protein binding sitcs have an approximate palindromic sy Yy
and are composed of inverted, complementary repeats. (A palindrome in nucleic acids is a
sequence such as ACTGCAGT or TTAGCGGCTAA.) The knowledge that the pattern sought
is a palindrome allows us to look more deeply into the sequences and to detect even weaker
consensus p A well-k of this type is that found by Petham’ in promoters
of heat-shock genes in Drosophila. The modification of the above method 10 the search foc
palindromes is necessary to detect signals or patierns of the strength found in the heat-shock

q , and these are used to illustrate the analysis.

Rep in a single have also been of much interest. Exact repeats are the basis
of the algorithms of Karlin et al.* and Martinez and Sobel,** and the computer methods (o
rapidly find exact repeats are usually based on hashing. Hashing techniques do not apply
to inexact repeats, Our interest here is in incxact repeats, and a modification of Section Il
will let us study inexact repeats in Section IV. Of necessity, the search is restricted to smaller
patierns, up 10 9 to 12 bases in length. While hashing methods are routinely used in data
base searches,’ our methods do not apply to those problems.

Just as palind arc of i ¢ in the study of regulatory patterms common (o a set of

CTIE )

quences, [ along 2 single scquence reveal possible binding sites for

al
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a regulatory protein. The patterns are usually weak and quite hard to l'mdA by il.\s[tdil‘\il An
algarithm adapling those of Sections Il and 111 to a single sequence is given in Section 1V
along with application to the GAL| promotcr sequence.

Many wesk consensus pattems in molecular biology involve long patterns. Fof cn{nplc.
the Alu family of repeats involves 300 base pattems, which occur thousands of times in the
h hods used above involve ge of sll possible [ of interest.
This np;noach is impossible for longer patiems. For example. there are 4™ = 4.1 x 10"
patterns of kength 300. Other methods, perhaps less optimal, must be developed. A recent
approach o these problems is described in Section V. )

Whencver 3 conscnsus pattemn is located, whether by inspection or by computer, the
question of statistical significance often arises. Biological significance cannot be equated
with statistical significance. However, patiems that are extremely likely to occur in random

quences of similar composition scem unlikely to be biologically significant. We prefer
simple models of randomness for doing these cale | These. i " pl : dels do not
model the real sequences themselves particularly well,” but the distribution of matching
between d real sequences is modeled very well by that between independent se-
quences of the same composition.® For our purposes here, studying weak malchingf between
many sequences, the theory of large deviations is very useful. In Section VI, this theory.
as well as the log(n) distribution and simulation, is discussed.

1. CONSENSUS WORDS IN MULTIPLE SEQUENCES

As described in the introduction, in this section we study the problem of determining
consensus words that occur in a set of sequences, where the occurrences of the words are
inexact and differ in location from sequence to sequence. We first give 3 combinatorial

of the ber of alig: ible with some ¢ ints on 1 of shifting.
Then we describe the algorithm we employ to identify consensus pattems. Lastly, to illustrate
the analysis, we study a sct of bacterial promolers with these methods.

A. Combinatorics

In a direct apy h to the problem, the R sequences under consideration can be analyzed
for consensus words by placing them into various alignments. For cach alignment, the
various columns are examined for *consensus’ letters. Groups of consensus letters can then
be identified as conscnsus pattens. The goal here is to decide the difficulty in such a
straightforward approach to identifying consensus pattems. :

Let the initial alig t of R es of the same length N be given as:

A3y - e
N 3,3, - Am
A3y oo B

The simplest scheme for aliemate alignment is to allow shifts of the sequences relali.ve. ()
one another, without any gaps insericd info the sequences. Usually the amount of shifting
is limited to a fixed number of bases:

original position: 8, TN L. B4
shified by k bases: a,, N e Am

If each sequence can be shifted up 1o k bases, then there are k + 1 choices for the positioning
of each sequence. Consequently, there are (k + 1)" of these alignments, since each sequence
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can be put into k new positions. In our example problem below, there are R = 59 sequences.
Withonlyk = 1, there are (k + 1) = 2% = 5.77 x 10", and no computer could possibly
analyze all these alignments directly. The first analysis we perform in subsection C will
have k = 3 50 that (3 + 1)” ~ 3.32 x 10%,

Additionally, we might want to insert gaps into the quences. The ber of align
when gaps are allowed greatly increases the numbers obtained above (see Chapter 3'°).
These simple observations about the number of alignments show that a direct approach to
consensus pattem identification is impossible. The ideas here apply equally well to the search
for consensus palindromes (Section I1I) or to any situation where the comect sequence
alignment is not precisely known. :

B. Algorithm

The brute force approach of the last section has another problem in addition to that of
combinatorics. There, an analysis could be based on percentages of bases in columns of an
alignment. Here, we give an analysis based on the occurrence of k-letter words, and our
consensus patiem is some k-letter word. In this way, it is possible to directly study the
objects of interest. The algorithm was first presented by Waterman et al."

Fundamental to our analysis is the pt of neighborhood of a word. Suppose k = 6
and w = TATAAT. In the set of 4* k-letter words, there is one word equal to w, ()3 =

18 words within ] mismatch of w, and ()3 = 159 = 135 words within 2 mismatches of
w,

No. of Mismatches

length 6 from
words w = TATAAT

TATAAT 0
AATAAT !
CATAAT 1
GATAAT 1
TCTAAT 1
TGTAAT 1
TTTAAT 1
TAAAAT 1
TACAAT 1
TAGAAT |
TATCAT !
TATGAT 1
TATTAT |
TATACT i
TATAGT 1
TATATT |
TATAAA 1
TATAAC 1
TATAAT !

The neighborhood of a word is limited by the algorithm to words within a certain number
of mismatches, deleti and i ions of the ¢ word. For example, the first
analysis of subsection C allows a consensus word to be **found’” in a ncighborhood of up
1o 2 mismatches away from the consensus and does not allow any inscrtions or deletions.

Another parameter that must be specified is W, the window width. W is the number of
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sequence letters that can be searched for a consensus word of k-letters. This allows shifts
of up to k-letters. Below, for example, we search the promoter sequences for words of six
letters in a window of 9 bases. If the window is set too wide, statistically insignificant
paticrns will be found. On the other hand, if a window is too narrow, the true consensus
pattem can be missed. There is a balance of pattern length and neighborhood size with
window width. As the likelihood of finding an acceptable patterm in random data increases,
the window width should be decreased.

We now begin an explicit definition of the algorithm. The window specifies a search of
the sequences 8, 8,, ... 8, from column j + 1 to column j + W._ It is assumed that
the sequences have been placed in an initial alignment, simply aligning on right (3°) ends,
on left (5°) ends, or on some known biological feature in the data. The window reveals the
sequences

Column j+1 j+2 L j+w
Sequence | B0y Bijez e 3w
Sequence 2 Bp401 B350 . Byiew
Sequence R L YYYR YT . Ajew

We index the neighborhood of a word w by d = 0,1,2, .. ., where d = 0 indicates
the word w, and d = 1 might, for cxample, indicate the 1 mismatch neighborhood of w.
For cach sequence a,; ., . .. &, w. ket gli.w,d) = 1 ifmebesloccmme?lwinun
ith sequence is as & ™ neighbor, and q(i,w.d) = 0, otherwise. We order the n'elghbots by
the penaltics given below; let is suffice here that exact (d = 0) is best, d = | is next best,
elc.

There are several apy hes to computing

Qi) = (qi.w.0), qli.w.1), ...)

In this representation of Q(i), there are 4* lines, each comesponding to some w. In our
program, each k-letter word in the sequence itsell is used to produce all ncnghbot.s. and
these neighbors are used to construct q(i,w,°) for all 4* words w. This involves storing all
4* words and finding their best occurrence in a, ., . . . &, w- We do not fiim:lly search
the sequence for all the 4* words but instead use the k-letter sequences in a,, ., . . .
8, , w to find the neighbors.

Next set

L
V=3 QW
- t=
V = (v_,) is uscful since v_, is an integer equal to the number of times or lines Ih.al w
has its best occurrence as a d* neighbor. We arc now ready to define the score associated
with word w:

s, = z Ae Voo

where A, is the weight given to having a best accurrence of w as a d* neighbor. The wfighl
A, gives the preferences among the neighbors of w. In our program, we use the ratio of
matching letters to w and the length of word k. That is

Kooy = WK = |

esant
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and
Ay oot ™ (= 1Mk = | ~ 1K

For words of length 6, six occurrences of | mismatch neighbors of w is equal in weight to
five exact occurrences of w. There is no virtuc in this scheme except that of simplicity, and
A, can be easily changed.

Finally, we define a winning word w (o satisfy

S(w) = max.fs,}

Generally, with fixed W and n(d) = number of words in the neighborhood of w, the
computation time (for R sequences of length N) is proportional to

RN - W + IXW - k + I)n(d)

It is pleasant, for W and n(d) fixed and N much larger than W, that the running time is
approximately proportional to RN, 5o that twice as many scquences take twice the running
time, and the same holds true for sequences of twice the original length. The maximum of
n(d) is 4%, but usually we have n(d) much less. For k = 6, 4* = 4096 while allowing up
tod = 2 mismatches gives (2) = 1 + 6 + 135 = 154 and d = 3 mismatches gives
M) =1+ 6+ 135 + 540 = 682.

Many useful extensions can be made to these ideas. Certainly it is casy to relax the
requirement that the consensus letters be contiguous. The positions of the coasensus letiers
relative 1o one another must be fixed before the search is made. Otherwise, we would be
faced with the task of scarching over all (}*) ways of taking k consensus letters within the
window. An algorithm could be devised, but we are not confident that it would be very
useful.

When a signal or consensus word is | d, the sequences could be aligned on the
conscnsus word and then the sequences studied with this new alignment. We have imple-
mented this feature and have found it quite useful. If two distinct pattems are located
(approximately) a fixed distance apart, then aligning on the stronger pattem could allow the

ker p tob evident.

Another natural modification that we allow is scarch in all alphabets. The alternate alphabet
most often invoked is the purine/pyrimidine alphabet, {R,Y}, where R = A or G, and Y
= Cor T. There is some hope of detecting DNA structural p by these sub-alphabets.*?
In addition, various k-letter structural motifs might be identified with their k-letter patterns
and, with a proper concept of neighborhood, consensus structural pattems could be studicd.

Finally, each scquence occurrence could be weighted by another K,. The def-
inition of V would change to

L}
V= 3 KQ)
=)

Our motivation here is that a of g strength, for example, might give
s weighting of how much imj we should with pattems from cach sequence.
Unfortunately, we have not yet found an appropriate example to which we can apply this
algorithm.

It has occurred (o analysts that the signal might really be missing pattems rather than
abundant pattems.'? For these searches, the word of interest has score min,{s,}, and there
is no difficulty in including these searches.

”
»
| .
—
:
X
°
Ponition
—

FIGURE I.  Graph of scores of the 39 bacterial promoter scquences that sppear, along with their names, is Figure
2. The window width W = 9, the word size k = 6, and the ncighborhood is wp 10 mm = 2 mismatches.

C. Bacterial Promoters

The example analyzed in this section consists of 59 Escherichia coli promoter sequences
originally analyzed by Hawley and McClure.' One or two bases were added to the sequences
where the sequences are known, with the data taken from the references given by Hawley
and McClure." The analysis of this section follows Galas ct al."® The graph of scores appears
in Figure |, and sequences arc presented with their names and the three major consensus
patterns in Figure 2; this is discussed in detail later. The sequences are aligned on the
trascription start site, which is position 10 in Figure 2. The usual biological indexing would
have this position indexed + 1, the bering increasing to the right; any position to the
left of the start of transcription is negative. There is no 0 in the biological scheme of indexing
positions. For ease of sequence handling, we number the sequences from + I, right to left,
as indicated in Figure 2.

The first analysis has the window width set at W = 9, with the word size k = 6, and
allows a neighborhood of up 1o 2 mismatches. To index all possible window positions, we
take the right-hand edge of the window. The resulting graph appears in Figure 1. The
horizontal axis represents window position in the sequences. When a feature of interest is
located on & graph, the program allows us 1o move the window 1o the position pointed to
on the graph. For example, the sharp peak at the right-hand edge of the graph corresponds
to the sequence pattern indicated in the right-hand column of Figure 2. The black region
indicates the window; notice that it is of width 9. The lower case letters show pattemns found
1o produce the score at the peak. In the right-hand column, the consensus pattemn is, ap-
proximately (within the neighborhood), the well-known — 10 patiem TATAAT. It occurs
exactly 9 times; in 17 sequences, its best occ ¢ is with | mismatch (mm), while in 18
sequences, its best occurrence is with 2 mm. The resulting score is s = 35.17.

The middle column represents the — 35 consensus pattern. In this analysis, the consensus
word is w = TTGACA with 4 exact occurrences, IS with § mm and 13 with 2 mm. The
Siruaca ™ 26.83. Aligning on the — 10 patiem does not enhance the — 35 pattern, nor does
sligningonthe — 357 hance the — 107 ' We conclude that, while the sequence
pattems are about 17 bases apart, the pattemn spacing is pt too closely linked.
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ARALAL TIVN SRR TN TTATOCA INRERE TCCATACOOGTITTT
ARN GCAaatsat PLINIGt gpac thygh “TUODG TG ATTATARSRIRNNEY STTACCOGTTITIGCT
GALPY CTAATIREREE Y S TR NS LoCATCTT TGTTAY BATTTICATACCATANG
GALF2 CActast tAT(Rat gt cacaCTTTTOGCA . TGGTTATTTCATACC
LACF! TAREEBOMA (B t tac o TTATCCTTOONO TTGTGAGC
LACP? TTANUERACRETIRREN TACCCACCOCAGCL TATGCTTOOGGCTOG
o] GAcaccatPH TRIRBILLL OGOGGTATG g GO

MALEFG PYERNEL A L g e AGGTTOOCGTATANDSIENING AGTODGTTTAGGTGT
MALX et AP TEIR IS CCATCTCC TGATGARE c o L a2 URAGOCCATCATGAATG
MALT LUK FTOTATT r LR T ANCCATTAATTACG
TNAA aacaat t \CAIEYt agac sAAMCTCTGAGTGT sat aa t IR CCTCGTGTCTIGNG
120 ] VEEEPYIN T ApPYERREY CATCTOG! tageati TAACATACCGTICC
DE0P2 ATRMTIHE T AR rod STTOOGGAGTAGA TR ¢ a gas tRCTAACAAACTOUCAA
TRP TCt gasat PEFCTRt t gac (LHTAATCATOGAACTARREEIPRY T ACCCAAGTTCACLT
TRPR CORPEPee o T ANTHSIS PR ACGTTTATGATATCR ¢ at c g t R TCTTTAGOGAGTACA
ARCH QLG A UM IWACCTTATT (@t st catPR TANOCACOOGOOGAG
TRPP2 PR LALRLEA AR ot TTTAACACGTTTGT t acea R AAGROGACGOCGCO
HiS ATAtasssssyt TONUBRIBNAACGTGAAAGTO At TCAGTTGAA
HISA GATCTRcaanc R TTAATTAACD

(8>1] gaco TATCCAS

ILVGEM GCconsnaatFTORIIEIIN TTACAAAACCTAT( ) TAGOCATTOCTICGA
ARGCEH IROTERRREC A TR ¢ gacACCTCTGG TCATGAL agt at c aaTATTCATGCAGTATT
THR tesastP T At t gac \JRPITCACTAAAT, : AGGCATAGOGCACA
BIOA (RSN YIA RPNy T TGTTGTTAATTOUEME Lagac t TGTAAACCTAAATCT
8108 ACt L gt arQBRAMTTGAAAAGA EBAACTCTACACUGAAT
oL CEHPI SN (R L cgac (R0 : , TTTTITTIT
UVRBF1 RcagtetPATHE t t gpca TAATTAAG TACCACRER t asaat TACATACCTGODUGC
UVREP2 TCageast st PATEHRTRNERN TGTTTTTTTATOCRK [TGTTIGGCATAATTAA
UVREF3 YIS ACKC NI St (P SGATAACCA ; JAGAAAACACGAGUCA
RECA LA AL t 28t oCTGTATGAGCATACE CTTCANCAGANCAT
LEXA e A TESHPEITATOOCTT TIOCT( (PACNTATANCTGTAT
AFC Earriiosnt ACEE SCTGA CUCATOOLCAATG
(934 TR i-asaacgATE JEATAA . I TANDCTNATOG
RIS) (s.t B tagestCORttg R TOGCO h STCCCATOGGATCTQ
POR]-r GATREcacpe S TSR TTCAGTAAATTAN]

PORL-1L RETEEIRG ACR  t 2ot TGTGTATAACCO

SPOT 42 RN ATIR TG BRI “TGAACAA

Nl RNA ATRANEETIRAC B COGCGCAAMOC TR tatact ]}

NAS YATRIS 0 . -

TRPS (A RGO IO "ACOCAGCCTGATRERNREHY

GLNS tasassactAANIE t 2t caGOCTGTODOUCTTAtsagatcat ACGOUGTTATACGTT
TWB ATRceat t HRTARRETCIINACTOS Tﬂ% ACTTGATOCC
TYRT sacpth B GOOCCGTCA

LEL tRNA TCrataatERCTR RANG AACCACtagaat

S B-E g g bt CAMGCTCTATACE cat sat

RRNAEP TTttaaat theC 00

RGP IEIRENE (R ¢ t gt cof® OGGAATAACTOCt st aat

KRN F) LT ATPIEPLL

RRNEF1 M)y Bre8 TGOGGAGAACTO tat ast

RRNXF1 ATEEITIRY (S Lt gtctBeC ;

RRNAEP2 caosas KANIYR L t gact CTGTA

RRIES R cassgar TR t gactCIGTAYG

RRNCEXFT (Rt ganat tPAEELL gact JTGAAAGAGGAAAGL

STR EHTTCHA 1St t pacalCTTTIOS GCATUL

80 ) ooy LT T SR TATCUT TV AAGOLL

Siv TATTRYINY) 02 ETTOGTO T L

Ry EALEICIT TRESR L t gcasAGTIORT > Lagat LADCAVAAATUTTT
NLY TR Ara I BEATER81 1 t ac TN ATTTIVER Lac At BTTAD NN TATA
LA 8 (p2:tranfr gcguclgm;'li))'imm ATGAATULTITAA

FICGUREZ. The 39b

ial p tyzed. The three black columns indicate the window

Tocetions of the — 44, - 35, and —lowl‘cvu.vimmewlcmldminbwﬂuu.

Table 1
C-POLYAT PATTERNS
IN -~ 44 REGION

A
Ipp CAAAAAAAT
mal T TAAAAAAAC
his TAAAAAAG
ginS TAAAAAAC
spoT 42 RNA  CAAAAG
mAB P2 CAAAAT
wpB -E GAAAAAG
the TAAAT
recA CAAAC
bioA CAAAAC
up P2 GAAAC
hisA CAAAC
anC CAAAT
] © TAAAC
naA TAAAC
mAB Pl TAAAT
waD Pt GAAAT
deo P1 GAAAC
up GAAAT
wB P2 GAAAT
G P2 GAAAT
mDEX P2 GAAAT
his) TAGAAT
wiB PY TATAAT
bio B CATAAT
B

spe GAAAAAAT
nfB TAAAAAAT
oA GAAAAAT
G Pt GAAAAAT
mE Pt GAAAAAT
mX Pt GAAAAAT
the TAAAAT
deo P1° TAAAAC
mAB P TAAAAT
leaA TAAAC

N gal 8P2 TAAAT

Note: In columa A the sequence pat- -
terns are shown, while those sc-
quence peticrms with paniern in
reverse oriestation are thown n
columa B.

Next, we examine the new pattern found by Galas et al.,' spproximately at position — 44:
CAAAAT. In Hawley and McClure, an **A** was noted in this region. The pattem CpolyAT
appears, in forward or reverse ori ion, in approxi ly half this data set (see Tablc |
for these explicit sequences). Wu and Crothers' and Crothers et al."* have presented evidence
of an unusual conformation associated with these sequences, 2 bending of the DNA. The
sequence may have functional importance in these promoters. The C RP protein (CAP) alters
the conformation in the lac control region when it binds 10 a site just 8 of the ~ 35 region. "
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This suggests that the role of CAP could be played by sequence conformation in some [
bacterial promoters.

To sce how 10 set the window and mismaich parameters, we present some graphs in
Figure 3. With fixed W and k, let mm increase from O to 3. At mm = 0, the signal is _—
small; pechaps the — 10 signal might be suspected, but even that is doubtful. As mm increases
to | and then to 2, the sequence features become more clear. When mm = 3 the noise of
the sequences is beginning to affect the signal. It is even more interesting (o vary the window
width. AtW = Kk = 6, no shifting is allowed. Then the signals become a little more evident »
st W = 7and evenclearer st W = 9, Finally, with W = 1S the signals have again become [
swamped by sequence noise. Much can be leamed from sitting at a graphics terminal and
varying these parameters.

To illustrate sequence patterns quite invisible to the cye, we take the three alphabet C,T.R mme2 "
= {A.G). Figure 4 shows the graphs for two runs. Some new patterns appear besides those
st —10, -35, and —44. Figure 4A finds at approximately —23, a pattern TRR which ;
occurs 23 times with W = 6,k = 3, and mm = 0. This is above that expected from

d quences of these positions. The literature assigns a CAT patiem at + 1, the
transcription start site. Here we find CRT occurring 24 times at the transcription start site.
In Figure 4B, we have W = S, k = 4, and mm = 1. The pattern TRRR at —23 occurs Posivion
3 times exactly and 27 times with mm = 1. This is less statistically significant than the k —
= 3 version of the pattem.

When the program is run on the data set searching for absent pattemns, $* = min_{s_}, A
the only features of interest correspond exactly to — 10 and —3S. We interpret this as being
due to the occurrence of the — 10 and — 35 consensus words. Nothing new is leamed from -
this analysis.

mme)

mmet

H1. CONSENSUS PALINDROMES IN MULTIPLE SEQUENCES

»
It is feasible that additional information is available regarding the possible consensus —
pattems. This knowledge can be used 10 restrict the set of possible conscnsus pattems from
the 4* possibilities for k-letter words. Having a smaller set is certainly useful in terms of o
storage and can help reduce running time if the neighborhood structure is convenient. In »
addition, detection of a pattern in this reduced set of pattems can be more sensilive.

This section treats one such example, that of palindromes or patiems with reverse com-
plement. Protein binding sites are frequently approximate palindromes, the motivation for
these considerations. The example studied in Section NLB is the Drosophila heat-shock wes
promoters. In these sequences, the determinant of hest-shock response does not seem to be b
detectable with the consensus word method of Section 11, but some signal does appear when
the consensus palindrome method is used. ) ;

A. Algorithm
As discussed above, we restrict the set of consensus pattems to palindromes. Specifically, Fesition
palindromes of length 2k + { have the form

A, ... ANB, ... BB,

wtmn.-A.(A-'r.c-c.f-A.mdc-GlmdN,orcoum.dcmuesmubiumy o ;
base. Palindromes of length 2k do not have the N in the middie. Thus, there are 4* palindromes P . o e b Tae imivw witt o sct ot W=6.2.9.15 with k= 6 and swm = 1.
of length 2k or 2k + 1. The idea here is similar to that for consensus words. Each sequence < OL1Iwhh W = 9 '

or word can contribute to the score of 8 palindrome if it is in the palindrome’s neighborhood.

Therefore, it is of interest to look at an example, w = TAAGGCTA. Notice that w is not

a palindrome and, in fact, no palindrome is 1 mismatch (mm) from w. If the neighborhood

allows up 10 3 mismatches, then the following neighbors result.

(A) The mi ) is sct ot W
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ms‘a;‘mmmumc.r.x “ (AGLA)W e 6 k=3 andmm = 0. (D)W =
. . mm = |, A acw pettern TRR or TRRR sppears st approsimaeiely —23.
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L

FIGURE §. w'«mwmlmhmwm-“lpnmﬂ. Here w = 20, &
= 6, ond mm = I.Sutudmnmmdm-!hkhl.

wmm from
Length § palindrosmes w = TAAGGCTA

TAAGCTTA
TAACGTTA
TAGGCCTA
TAGCGCTA
TAATATTA
TAAATTTA
TAGTACTA
TAGATCTA
TATCGATA
TACCGGTA
TATGCATA
TACGCGTA
TATGCATA

- NN N

The remainder of setting up the algorithm goes as with the previous algorithm in Scction
ILB. Let the window and neighborhood be defined. Then let V = [v, ] be defined by
setting v, , equal to the number of lincs a palindrome p has its best occumence as a d
ncighbor. Then the scorc for p is

S, = Z | 9 A
P

where as before ), is the weight given to s d* ncighbor occurrence of the palindrome p.
The winning palindronic is that with max,{s,). The algorithms to accomplish these tasks are
similar 10 those of Section 11.B.

B. Heat-Shock Promoters

In higher organisms, there is 8 collection of genes that are principally expressed st higher
temperatures. These genes scem lo be stimulated by a number of physiological stresses, one
of which is heat. It is natural to study these genes to d ine the f that dif[
their control from that of other genes.

In Drosophila, these genes are known as hest-shock genes. A number of Drosophila heat-
shock genes and their 3° Manking DNA have been sequenced. While there are no patiems
which obviously differentiate these sequences., several studics have addressed this issue "’
The consensus paticm suggesicd by those authors is a weak palindrome. In this section, we
study these sequences using the touls described above,

The first approach is by the analysis for consensus word. The sequences arc aligned on
the start of transcription, approximately position 90 of Figure 6. In Figure 5, we give the
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graph of scotes vs. positions for window width W = 20, word size k = 6, and a ncighborhood
of up 10 2 mm. Clearly, there are some patterns of i and those appear, along with
the sequences, in Figure 6. Patterns (A) and (B) have not been noticed before, while (C),
the patiern TTCAAA, 3’ of the transcription start site has been described earlicr. Patiern
(E) is the famous TATAAA box and is almost perfectly aligned with the start of transcription.
Pattem (F) would not be noticed, but it appears approximately where the consensus palin-
drome was noted by Petham. Finally, we show pattern (G) which is some distance §° from
signals previously noticed.

The Pelham pattern is not located by the consensus word search. For reasons of computer
storage, we are unable 10 use longer ivords, such as length 14, in that program. The conscnsus
palindrome algorithm allows longer words since there are, for example, 47 palindromes of
length 14. The window is set at W = 25 and up (o 6 mismatches arc allowed. Some patterns
found by this search for consensus palindromes are shown in Figure 8, with the graph
appearing in Figure 7.

The strongest palindrome (C) involves the region near the transcription start site. It is
possible to include the TATAAA box in a coasensus palindrome (D).

Two other interesting patierns are noticeable, 5° from the TATAAA box. The first of
these shown in Figure 9A has not been noticed before, This new palindrome is disjoint from
and just 3° of the pattern in Figure 9B, which is approximately the Petham pattem. In Figure
9C, we show the pattern of Petham.® :

IV. CONSENSUS IN ONE SEQUENCE

The algorithms in Sections I and HI are designed to find consensus words and palindromes
between several sequences where the sequences arc in some initial alignment and a fixed
amount of shifting is allowed. The motivation for those problems was the determination of
consensus protein binding sites. Related motivation exists for studying consensus binding
sites in a single sequence. Below, we give algorithms for consensus words and consensus
palindromes in a single sequence. The algorithms are applied to study possible binding sites
in a yeast regulatory sequence.

A. Algorithms

The sequence being studied is a = 3,3, . . . 3. Initially, we discuss determining k-letter
consensus words in the sequence, where the repeating words are not allowed to overlap.
Our approach is refated (o that of the eartier sections.

Set A(v) = weight of the word v in the ncighborhood of the k-letter word w. For a fixed
w, set

S(w) = max {z, A-(V)}

where the maximum is over nonoverlapping words vin aa, . . . a,. The idea is to find the
largest sum of weights, not allowing the words v to overlap. The winning word w® maximizes
Si(w),

S(w’) = max_ S, (w)

over the enlire sequence a,a, . . . an.  The approach here is to find S,(w) for cach w. This
is casily done by recursion:

S(w) = max ‘Sl—l(w): St L ¢ R a)}
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FIGURE 6. The patterns and their scores that correspond 10 A twough G in Figure 3.
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FIGURE 7. Graph for conseasws palindrome scores in seves Drosophils heat-shock gene promoters. Here W =
”_Pwﬁuhll.mdnphm = 6 are sllowed.
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FIGURE 8. The petterns and scores that correspond 1o the labets A thwough D in Figuere 7.

If .ne1 - - + W i8 in the neighborhood of w, and this is optimal, then S(w) equals the
second expression within the brackets above. Ifa,_, ., . . . 3, is not in the neighborhood of
w of if such & pattemn is not optimal, then S, _ (w) = S,(w). This establishes the recursion.

1t would appeas that max _{S,(w)} would take time 4'-N to compute. This number can be
reduced, since the S(w) need only be updated if &,_,,, . . . & is in the neighborhood of
w. Therefore, for every sequence word &,_, ., . . . %, We need only update S(w) with w
in its neighborhood. Therefore, the time complexity of this method is n(d)N, where n(d) is
ncighborhood size.

It is only the complication of computing neighborhoods that makes the palindrome al-
gorithm distinct from the sigorithm just discussed.

B. A Sequence from Yeast

Giniger ct al'* studicd the yeast regulatory protein GALA which binds to four sites in the
sequence UAS,, to activate transcription of GAL! and GAL10. The sequence from pasition
161 to position 486 is presented in Figure 10, along with our analysis. In Figure 10A, we
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(ind the. best consensus 17-Ictter palindrome, allowing up to 6 mismatches (out of the 16
letters, excluding the middlc letier). The pattem is CGGATGAGNCTCATCCG and achieves
score 2.75 with four-occurrences. From §° to 3°, the first three patterns coincide with those
of Giniger et at., while the fourth (rightmost) pattern differs in location.

For completeness, we also give a repeats analysis for conscnsus words in Figure 108,
with k = 8, allowing 2 mi hes. The ¢ pattern CGCCGTCC occurs five times
with score 3.75.

V. LONG CONSENSUS PATTERNS

The consensus algorithms of Sections I, 111, and IV depend on storing scores (and other
information) for all patterns of interest. With k-letter words of DNA, this implies that storage
is proportional to 4*. Fork = 10, 4* = 1,048.576. in the introduction we mention the Alu
family of repeats where k = 300. Obviously, the techniques above, practical fork = 9 to
12 larger. will not be of any use for these problems.

While we do not know, for farger k. of any algorithms guaranteed to be optimal for
computing °
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max_{s.}

we do have some uscful and practical algorithms to suggest. The following method was
developed for a study in progress with Wool, McNalley, and Jones. Ovur problem is finding
the long consensus words among a set of sequences.

Recall that above, in the passage from the set of all k-letter words to the set of all k-letter
palindromes, we effectively decreased the size of the set of possible consensus patterns from
4% 10 42, The simple idea here is to decrease the set of possible consensus words o include

u
{ only those k-letter words actually occurring in the DNA sequences themselves. That is, our
. i conscnsus word w must appear exactly somewhere in
- e
Ay e Bp
R R Bala o Bw
M lay oo Man

™
sg_:nmmuwanmnmnm:mnm:mnm;m-mnmn
A
343210007834 32 1 OISTESATI 1 SUFTES4 X21 SIFPES4 321 F90TEI4 32| SITESA T SRETE4 321 OMITES4 321 097634 321 (US4 321 OB 54 521 OIITES4 321

We then look for the best occurrence of w in each sequence. It is guaranteed to occur
exactly in at least one sequence. If no insertions or dektions are allowed, scarching one
sequence for w can be done in time and storage k(N — k + 1). (Actually, using techniques
of compuiter science, this ber can be reduced to approximately N + k.) However, it is
unlikely that in long DNA patterns, insertions and deletions can be ignored. The dynamic
programming methods of Chapter 3** allow us to find the best fit of wintoa,,...a,in
time and storage proportional to k.N, allowing insertions and deletions. Thus, the score s,
can be found in RN steps. Still, this must be done for each sequence word, so that the
time is proportional to RN — k + IXkXN).

This number is large for many problems, but is not much larger than the time of making
all pairwise comparisons, ( JIN?. The difficulty of the pairwise comparisons approach is
that best matching segments between two sequences might not have any relationship with
the consensus word between (say) 60 sequences. This is certainly the case with the bacterial
promoters discussed in Section 1.

The method can be made adaptive by taking the words matching the consensus w and
further refining it, modifying the pattem to one not actually in the data. The procedure is
iterated until the patiem does not change.

There is a way 10 use all pairwise comparisons which does not require us to set word size
before the search. The maximum segments algorithm from Chapier 3°* computes a matrix
H = (H,) where H, is interpreted as the maximum of all subsequences ending in i (from
one sequence) matched with a subsequence ending in j from the second sequence. If the
first sequence isa, = a,, . .. 2,,. . . B, then max H, gives the best matchofla,, ...,
matching the second sequence for all £ 5 i. We use

-
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to score subsequences from a that end at a, ;.

Clearly, we have suggested algorithms that are not 100 efficicnt. Still. they will often run
on available compulers in reasonable time and are much more informative than trying o
look at the sequences two st a time.

FIGURE 10. C
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V1. ESTIMATES OF STATISTICAL SIGNIFICANCE

Statistics is useful in sequence analysis 1o provide clues sbout what pattems or alignments
should be taken seriously. It is by no means our intention to equate biological significance
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with statistical significance, however, cither of these terms might be defined. To use a
statistical approach, the sequences must be viewed as foliowing some model of randomness.
Then the analyst estimates the likelihood, under the' model, of observing some pattemn at
least as extreme as that sctually observed in the sequences. The logic employed is that
patierns that are extremely likely to occur in random sequences of similar compasition should
not be examined as carefully as patterns which are very unlikely to occur. Biology must
provide the resolution of these issues; statistics is only a tool lo distinguish pattems of
possible interest.

We now discuss the issue of what model of rand 10 usc. Sometimes there is
confusion of what actually needs 1o be modeled. To mode! the sequences themselves is not
the object. If it were, higher order Markov chains, with memory of at least 2, would be
required.® However, what is really needed is a model of rand that produces, for
example, the same distribution of maximum scores as that obtained from unrelated biological
sequences. The distribution of scores from best matching segments between two unrelated
biological scquences has been shown o be very well modeled by that from comparing
sequences of identical composition with independent and identically distributed bases. See
Smith et al.® or Chapter 3** for discussions of this work. This is the basis for our assumptions
of very simple statistical models in this section.

When long sequences are being compared, the recently developed extreme value theory,
referred to here as the log(n) distribution, is very useful in assessing the best matching
segments between the sequences. Karlin and cotlaborators® have developed a theory which
gives the distribution of the longest exact match, common betweea L or more sequences of
length N, with s total of R sequences (2SLSR). A theory allowing increasing amounts of
mismatch (including insertions and deletions) has been developed elsewhere and is discussed
in Section VII of Chapter 3." Since the log(n) theory is treated clsewhere in this book, we
discuss other approaches here.

A. The Binomial Distribution and Large Deviations

When the sequences are not long enough for the log(n) theory to apply, there is another
useful theory to consider. Let a be the probability of a word occurring within the neigh-
borhood of w in a sequence, within the window. We refer to this event as a *‘success”.
Here, we give an estimate of the probablity of nBR successes where Bra. The probabitity
of n successes is, by the binomial distribution,

@ a(l - )"
and we wish to evaluate

T @alt - ar--

If R is small, this sum can be directly calculated.

When R is not small, it is necessary that there be enough sequences for the law of large
numbers (o be valid. The case of the Escherichia coli promoters with R = 59 sequences is
2 good onc. The approach we now discuss is from the theory of large devistions and is
found in Bahadur'® and Ellis.” Large deviation theory deserves to be more widely applied.

To present the most basic feature of the theory, assume that we have R trials with the
probability a of '*success’* at each trial. Since R is large, the law of large numbers assures
us of about aR successes. The central limit thcorem gives additional information about the
number of successes. The large deviation estimate of this probability is

P(at least BR successes) ~ ¢~ " A~
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where
H(P. a) = B log(P/a) + (1 — Plog(t — B¥(! ~ a)

When B = 1, H(B.a) = log(l/a) and ¢~ *"*#~" = a". ' '
How is the large deviation estimate 10 be used in the casc of consensus patierns in E. coli
promoters? Let us take a window size of W = 9, a word size of k = 6, and allow up 10
mm = 2 mismatches. The scquences are approximately N = 60 bases Iong.. 1t is assumed
that all bases are equally likely, P(A) = P(T) = P(G) = P(C) - 14, llld' mdependt.:n?l.
The probability that a given pattem appears on a given tine with fixed window position

a=(W-k+1-F-a

where F is the neighborhood size. The factor W ~ k + 1 is to allow for m‘diﬂemm
positions of the word in the window. The probability p that at least BR of the lincs have
the consensus word w for a fixed window position is

p = e~""=t fixed window position and fixed word

while
p = (N —W + 1) ¢~"**= any window position and fixed word
is the probability for some window position. Since the snalysis has been done for a fixed

word w, we can relax that to any word, any window position by multiplying by 4*, the
number of k-letter words:

p=(N— w+ 1)4 ¢ ™ any window position and any word

For our specific numbers, k = 6, N = 60, R = 59, and W = 9, we still need to
determine a and B. To calculate a, recall that

a=(W-=%k+ )F4a-*
wlw}e F is ncighborhood size. Since F = 154 for up to 2 mm.

a=(9— 6+ IXI15414"°
= 0.150...

In Scction 11, we found 9 exact occurrences of TATAAT, 17 with | mm, and 18 ‘vi&h 2
mm. This makes B = 44/59 ~ 0.746. Then $(0.746, 0.150) = 0.890. For any window
position and any word, )

P60 -6+ Ndse ™™ ~42 x 10"
Therefore, the TATAAT paitern is extremely unlikely in random sequences.

B. Simulations

The promoter sequences unfortunately are not even close to all being composed of 23%
A, cic. The problem is that base compasition differs from sequence to sequence. The large
deviation theory could be applicd for sequences of differing compositions, but that would
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be difficult. In these cases, we tum to simulation for additional insight, although simulation
will never be able 10 estimate significance levels such as 4.2 x 10-",

No(onlyisﬂnedneuyoflugedevluimnhudwapplywhenﬂiexcquemhnediﬂemm
Miﬂkdch«xuﬁs(ia.hﬂkonlywedictsﬂnmmb«ofml in a neighborhood
WemlithdnmimmmofmmMs.F«Mmmm
employ simulation.

The approach is quite simple; we generate sequences with the same aumber of A, T, G,
MCnhmmm.Mkammhnmﬂmuﬂmemnﬂu
pto;nmlogeuunmleofdnmimmmofmmmds.mauiudmmm
= 60 letters) is scanncd, with the window in sl positions. The value of the maximum in
these sequences, with N = 60, w = 9, k = 6, and mm = 2, is approximately 17. The
score of TATAAT is, from Section 11.C, 35.17.
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