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{. INTRODUCTION

When two of more sequences are displayed with one sequence written over another, the
resuiting configuration is known as an alignmcnl of the set of sequences. These displays
arc very common in molecular biology as they ¢ icate information about proposed
common evolution or function of the nucleotide posmons found in any given column of an

lig . Seq ¢ alig s are frequently obtained in an ad hoc manner, and simply
written down in a way that makes the result *‘look good®'. Sometimes this means that
important but implicit criteria have been satisfied. No mathematical approach devoid of decp
biological intuition could hope 10 compete with this method. What is to be hoped for is
that, over a long period of cooperation, mathematical and biological scientists can make
explicit some of the biological nsights. However, alignments that asc pleasing to the eye
of the scientist may not have much merit beyond that. The commonly used phrases ““aligned
$0 as (o maximize homology '’ and *'gaps inserted in order 1o maximize homology®’ might
conceal a fairly confused attempt to maximize matches and minimize gaps. It is ofien not
clear what has been attempted and **homology®* is left undefined. In these cases, an explicit
optimization function is an advantage, both for checking whether the alignment is optimal
and for discussing the desirability of the optimization function itself.:

One of the first mathematical questions concerns how difficult the problem of sequence
alignment really is. A naive approach o the problem is to sys ically list all aligs
evaluating cach one. Alas, even for the iwo sequence case, when gaps are allowed, lhcrc
are 2 huge number of alignments, and this exhaustive approach succeeds on only the smallest
of problems. Section Il will give an account of what is knows about the combinatorics of

The ge is that alig is a difficult problem!

Nexl Section I turns to the problem of aligning two sequences by dynamic programming
methods. This problem has received more mathematical atication than any other in molecular
sequence analysis and the lengih of Section I reflects this. Computer science has studied
the same problem under the description of the string ¢dit problem; the problem statement
is to find the minimum number of changes (substitutions, insertions, deletions, inversions)
1o convert one string (sequence, file, or word) into another. This probiem has often been
studicd in many different forms and a book’ has appearcd on dynamic programming ap-
proaches to the problems of scquence comparison. In the present chapter, Section 11D on
most similar segments is probably the most uscful dynamic programming algorithm for
curvent problems in biology, and some new developments are reported. A program writien
in C for the similar segments algorithin appears in the Appendix. Both similarity and distance
methods are given for aligning two sequences. Methods for producing the optimal and near
optimal alignments are described.

Many very interesting problems involve more than two sequences. Section [V gives
dynamic programming approaches to the scveral sequence problem. Line geometries, a
recent method employing ideas from the geometry of geodesics, are described and illustrated.
While the line geometry approach is practical, it is likely 10 fail when the sequences arc
processed using the most unrelated sequences first. Line geometries handle the uqucnccs
in a given order, not simultancously. Another dynamic progr ing method is p
that does not suffer from this shortcoming although it is prohibitively expensive in terms of
lime storage.

It will have escaped few readers that alignment is closely related 10 consensus. While the
methods for consensus pattierns do not instantly solve the problem of aligning several se-
quences, Section V describes an important new and practical approach, Based on the con-
sensus word algorithm,? these techniques can align many long sequences in reasonable time
and storage. Many problems in biology involve more than two sequences.

One of the major tasks facing a sequence analyst is that of comparing new sequences
with all, or a major portion of, a large data base. The maost successful algorithms for that
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problem are based on hashing the data base, hashing the new sequence, and then comparing
hash tables. Section VI treats these issues.

Finally suppose that these or some other methods have produced an alignment of interest
to the scientist. Section VI discusses how the alignment might be cxamined for statistical
significance. Some mathematics has recently been worked out that solves several aspects of
this problem. Extreme value theory has been employed to derive the so-called log(n) dis-
tribution.* that gives the statistical distribution of the best matching segments between two
or more long sequences.

Recently in Waterman,® miethods of sequence comparison were reviewed and osganized.
Many references of that paper do not appear in this chapter. Here, the goal is 10 more fully
describe some major methods of sequence alignment and pot (o provide 3 review

1l. THE NUMBER OF ALIGNMENTS

In this section, a combinatorial treatment of sequence alignments is given. Biology pro-
vides the motivation for aligning sequences and for considering how difficult alignment is.
It is then a mathematical task to estimate the ber of sequence alig . The results
are applicable to biology in a negative sense; they assure one that a huge number of possible
alignments exist and that direct enumeration is hopeless. The two-sequence case is handled
first.

Notation is important here. Let s = 2,2, . . .3, and b = bb, . b_ be two sequences
of length, n and m. Onc way to think of alignment is that an alignment is produced when
null clements, ¢, arc inserted into the seq cs; the new seq es must be of the same

length, L. Then the two sequences are writien, one over the other. 8 = a,a, . . a, becomes,
with the insertion of ¢, a* = aja; .. .a while b = bb,.. b, becomes b* =
bib; . . . b;. The subscquence of a* or b* whose clements are not cqual 10 ¢ is the original
q c. The alig is
aay ... 2
bib; ... b;

To sce this process, let 8 = ATAAGC and b = AAAAACG. To obtain an alignment,
one of many possibilities is 10 sct 8* = GATAAGC and b® = AAAAAGCG. For example
b; = A, b, = ¢,and b= Cwhileb, = A, b, = Candb, = G The alignment 1s written

2’ = ¢ATAAGCH
b’ = AAAAAGCG

Here by = A is said 10 be inscried into the first sequence or deleted rom the second,
depending on the point of view. a; = A matches b; = A while o, = Tand b = A
constitutes 2 mismatch.

The problem of this section is to find how many ways can . be wnitten. No alignment
terms  $ are allowed as there is no point in maiching two deletions. This makes it clear that
maxfnm} = LS n + m. The case L. = n + m comes, e.g.. by first deleting all 4, and
then deleting all by

aa, . .add ... ¢
dd. bbb, .. b

Combinatorial insight comes by recognizing that alignments of these two sequences can end
in exactly one of three ways
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b by, b,
where § corresponds 1o an insertionvdeletion of a,, corresponds (0 a match or mismatch
of aand b, and $_ cormesponds (o an insertion/deietion of b,,. Note that the fate of the unseen
bases (those not displayed) is not specified. Define

fti.J) = number of ull possible alignments of one sequence of
1 letters with another of j leners

The above three cases imply
fiom) = fin - 1o + fn = tm = 1) 4 f(nm - 1)

This follows because, for exumple. the first term corresponding to deleting a, can obtain
with the aumber of alignments of s, . . . a,_, and b, . .. b, which is f{n—1,m).

The author obtained the above recursion equation and with P. R. Stein determined that
it specified the Stanton-Cowan numbers.® Then Stein communicated the problem of asymp-
totics to H. T. Laquer who obtained the following theorem in 1981.7

Theorem 1 — Let f(n,m) be delined as above. Then

fn,nt = (1 + V2)**'"Va

as n—x, where c(n) = d(n) means lun,_ c(n)id(n) = 1.
Two sequences of length 1000, then have

f(1000,1000) = (1 + V2™ /1000 = 10
alignments! There are approximatcly 10* elementary particles in the universe: Avogadro’s

number is on the order of 107}
If it is agreed not 1o count

Cd and $C
$G G

as distinct, the sitation improves (slightly). Let gln,m) demme this smaller number of
shgnments. ¢ has three possibilities

T b P g

b, b N U T b,
while § has

LA, TN oo,

b, b [ O

The new version of the recunsion cyuation is

glnm) = g(n — L) + glnan = 1) 4 glo =t 1)- glo - L 1)

substracting the double count The teaultis given i the neat theorem, where the asymptotics
are derived from Stiding’s formula *
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Table 1
BEHAVIOR OF h(b,n) =~ y,n" "1y,
THE NUMBER OF ALIGNMENTS OF
TWO SEQUENCES OF LENGTH n
WITH MATCIED BILOCKS OF
LENGTH AT LEAST b

b D, h 3

} S.8284 0.57268

2 4.51%9 0.53206

3 4.1489 0.34290

4 4.0400 0.55520

s 4.0103 0.56109

10 4.0001 0.36183

. 4.0000 . . . 056419 . . . = u ¥

Theorem 2 — If g(n,m) is defined as above, g(0,0) = g(0,1) = g(1,0) = 1. and g(n,m)
= ("1™ fn=m,

gan) = () =~ 2%@Vam', asn— =

Two sequences n = m = 1000 have g(1000,1000) ~ 10°° alignments so that direct search
* IT:: lp"(‘wsp:lsbsl?l:) further reduce the ber of alig ts by requ'in'ng mzlchcs. and mis-
matches to occur in blocks of length at lcast b without interruptions by deletions. The
motivation for this is that biologists somctimes reject alignmenis with sma}l groups of
matches. The counting scheme of Theorem 1 is readopted with this new fequirement. The
following theorem appears in Griggs et al.* where it is derived via gencrating functions.

Theorem 3 — Let h(b,n) be the number of alignments of two sequences of length n
where matches must occur in blocks of length at least b & 1. Define d(x) = (1 —x)* -
4x(x*—x + 1)?, and let p be the smallest real root of $(0) = 0. Then

hb,n) = (0 "I}, asn-—>®
where D, = p~' and

o= - p t D—mp®'(p)

Notice that b = | has h(1.n) = f(n,n). Table 1 shows the behavior withb When b = 2,
for example,

2, n) = (0.53206)n " “*(4.5189)"

More than (wo sequences is bound to make the problem more complicated, ;really n-
ing the ber of alig) . The question is to determine how many more alignments.
Recently, Griggs et al.’® have provided an answer which is given in the next ‘lhtuftﬂ-L The
methods of proof are the most difficult of any required so far, using a saddle point techinque
Theorem 4 — Let f,(n) be the number of alignments of k sequences of length n. For a

fixed k 2 2,
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. An it
limy ~—* L inc,
woaa [
where
. 1}k
o= R - I)"=V§ m]
For our use adtice that
o=@ -
a w ,_L)"
()

Fora = 1000 and k = 3, £,(1000) = 10",

1. DYNAMIC PROGRAMMING ALIGNMENT OF TWO SEQUENCES

Needleman and Wunsch®' wrote a juper titled A general method applicable to the search
for similarities in the amino acid scquence of twa proteins’. It was surely unkpown 1o the
authors that their method fit into a broad cluss of algorithms inttduced by Richard Bellman
under the name dynamic progrumining. Their paper has had a grea deal of influence in
biological sequence alignment. lts great advantage is that wa explicit criterion for optimality
of alignment is stated, as well as an efficient methad of solution givea. lascnions, deletions,
mismatches (negative similarity), and matches (positive simifatity} were allowed in \he
alignments.

During carly 1970s, Stan Ul i some other mathematicians became interested in
defining a distance D(a,b) on sequences. The minimum distance alignmient was defined 10
be an alignment with the smallest weighted sum of mismatches, insertions, and deletions.
The advantage of a distance was the construction of a metric space on the space of sequences:

! D{a,b) = Oifandonlyifu -~ b.
2. D(a.b) = D(b,s) (symmetry)
k| D(a.b) = D(a,e) + D(c.b) for any ¢ (triangle inequality).

The emphasis an sequence metries came from the fact that 3 matrix of sequence distances
way often used (0 construct an evolutionary tree. PP.H. Sellers'? gave a dynamic programming
algorithm, very similar o tat of Needleman and Wunsch, o caleutate the distance.

The historical order is reversed here. Distance methods are described in Section [11LA,
with similarity methods in Section {{1 H. As mentioned in the introduction, we find similanity
to be the most satisfactory. All problems known (o be solvable with distance methods can
be solved with similarity methods. Huowever, in Section 1D, a similarity solution is given
that has no distance counterpart. Stll, the metric space associated with a distance makes it
worthwhile to present distance methods. Section HEL.C shows several simple modifications
to solve related problems such ay best it of a short sequence into a tong one. Section N1
studics the important probliem of locating segments of two sequences which are unexpectedly
similar, although the full sequences night not hiave s good alignment, New results are given
here for shis problem. Section HLE closes with a recemt modification of the dynamic pro-
gramming algoriims that allows all alignments ncar the optimal to be produced.

A. Distance Alignment
e sequenves 8 = oo, a, and b2 Db, by, are writien over the alphabet
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{A.C.G,T}. Any Finite alphabet will of course wark here. fa panicutor the 20-levter, amna
acid, alphabet of proteins, or the purine/pyrimidine alphabet for DNA can be used. Let
d(a,b) be a distance on the alphabet and fet g(a) be the positive cost of a gap of the tener
2", The distance d(a.b) represents the cost of » mutation of 3 iato b. 1 dta.b) 1» exiended
so that d(a,$) = d(.a) = gla), then define

)
Diab) = min Y, d(s.b))

where the mini is extended over all alig of 8 with b. Scller’s resulr* cun be
summarized in the next Theorem.
Theoren | — If & = a,a,...3, and b = bb, . b definc D,

D(a,a, . . . 4.8, . .. b) Also set

. .
Dy = 0.0, = > ddb). and D, = X da.d)
by

(L)

Then
D, = min{D, ,, + d@.d)L D, ,, ¥ dab), D, , + dd.b) n

If d(_,.)is 2 metric on the alphabet, then D(...) is a metric on the sct of finte sequences

Proof — We verify Equation | with reasoning similar to that foc verifying the recursion
equation for {(n,m) in Section 1. The alignment of a, . . . 2, and b, . b, can end n one
of three ways

If the optimal alignment ends in 3. the cost must be D,_,, + d(a,.d) since the nital
pant of the alignment must itself be optimal and align s, . . . a,., withb, . b,

if the optimaf alignment cads in ;‘ the cost must be
)

D, ,,., t da,b) since a ..a_ , ad b .. b,., must be optimally aligned

The case § is identical in reasoning with the case §.
The optimat alignment has least cost of these three possibilities and Eqguation | is proven
Another statement of Equation | is

D, = min{D, ., + gD, ,,  + da.b). D,.+¢g

when g is @ constant gap cost, g = dib.a) = da.d). These afgorithing have computation
cost propurtional 1o pm, O{nm).

To illustrate the algorithm, we align two Escherichia coli RNA sequences, threonne
IRNA (sequence 8; GenBank aame ECOTRTACU) and valine (RNA (scquence b, Gentlank
name ECOTRV1). The algorittun has d(a,b) =12, if a#b, and g=2.5 Entrics 1n the mainx
in Table 2 are multiplicd by 10 ta allow use of integer arithmetic. Table 2 shows the matnx
for the 5' (i) ends of the sequences. There are 72 oplimal alignments, one of which 15
shown next. Portions of the alignment comymon to all 72 alignments are bored
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$(.a)

to distinguish this function from the gap weight of distance aligniment.) Sct s(a,dy)

~ (a). Then define the similaruy of 8 and b by

h))

mux}:s(n

Stab)

The theorem of Needleman and Wunsch is

er all abtpnments.

where the maximum is ov

. b, define

bb, . .

a, and b

aa,

Theorem | — If a =

0,

Also set S,

b).

Caubby

A,

S,, = St

Then

> sta.d).

[y

S,, = max{S, ,, + s@.d) S, ,, , +sGu.b) S, + s(d,b))

}

<
i
i
=
=
=z
P
+
u' -
= <
5 :
2 v
. e
=0
; .
n 7
4 2
7 3
n [}
2 v
b
=
=

‘This theorem is proved exactly as was Theorem I, Section 111.A.

To illustrate the similarity algoithm, we align the same sequences as above, E. coli

threonine tIRNA and E. ¢

coli valine (RNA. We use a single gap algorithm and choose the

able 2. Table 3 shows the matrix (S,)

~tifa#b,and g = 2. In Theorem 4 it is shown

that for these parameters, the set of optimal similarity alignments is identical to that for the
The multiple gap case is covered by the next theorem. Gap penalty 8, is again assumed

to be a function of gap length k.
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The following result obtains th

Theorem 3 — Let §,

L

Se,

dl,,

l-“)

)

mandS,, =l

E,

B}

a, B,y

man{S,

k.,

then

5
Z
<
=

s,
The paratlels between the fonmutas for distance and simifarity aligmnent Jead o & natural

question. When are similarity and distance algoritduns equivalent? This question was an-

A
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swered by Smith and Waterman®™ and Fitch of al.*? When full sequences are aligaed by

distance (similarity), there is a similarity (distance) atgorithin than gives the sume set of

optimal alignments. That is, finding similarity and distance alignments are dual problems
v Theorem 4 — Let @ similarity measure be given with s(a,b) and gap penalities §, and A
gniun'cimeasure be given with dia,b) and gap weight g,. Assume there is a constant ¢
S = max, »da’b") such that s(ab) = ¢ ~ dlab) and & = g -~ (k2. Then al.
uh:;)mncrm I} }‘unilurily optimal if wid only if iCis distance optimal. ' . l
T00f — |- \ 1 Wt . 3 Ny s\ r
clementiry :ol:‘f“lsilll‘l;plltlly, the proof uses the single gap case (g, = % for k 2 2). Now by

notom o= 2#miches + #gaps

obviously holds. Using this simple cquation,

Diab) = luin{ D wab 4 g,#gups}

<
marche

(]

min{ Z [ E sta.h) + g,lgap.\}

ety s nuatches

miu{c(n + myl ~ E s(ab) + (g, ~ c/2)#gups}

CUNEN

cn 4 m)d - max E stab) - (g, - cIZ)#gups}

natches

Natice that

Dia,by + S@ab) = c(n + a2

;0 large distance™ is "sn_mll similarity”’. After seeing this equivalence, it is surprising that
' here are prot:rlcms WFIh 8 5||erIc sinularity algotithm for which no equivatent simple distance
algorithm exists. This sitwation arises in Section D.

C. Filting One Sequence into Another
Next (h.c algorithms are madificd (o solve a new problem: the best fit of a **short’
sequence inlo a “larger’’ sequence. An example of when this might be of interest is in
locating a rcgululury patiern in a nucleotide sequence, such as TATAAT in a bacterial
?::::(:‘t:: The algorithm finds wheie the short panem approximately appears in the longer
First consi'dv:r fhc problem of Luttng # = aa, .. . a into b = hb, . b,,. For the
purpose of visualizing the problem think of n us much smaller than m.. ("ch 'rcl:l.ivc siu::

and m are imelev mathemalics C praviem s o = C
of n ant to the themat ) The P blem 1o find i and Jjh = j) such

Stabb, b b)) = max,, Stabb b, by

lI"Im [lft\!)'tlll is simply solved. We just use the similarity algoritim of Theorem 1, Section
- L ey . P 9 v
LB with S, = 0 for all j. Then the required j is found by

Stab, b)) = max, L S600)
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and i is found by tracing back beginning at (n,j) Ginstead of a.m)). The same procedure
works with distance, as first shown by Seffers ** "

To illustrate this algorithm, we take as sequence b the E. coli promoter sequence of lacl ™
In E. coli promater scquences, the — 10 signal or patiern TATAAT iy well known 1o have
functional significance. The designation ~ 10 refers 1o the distance 1o the Jeft (37 of ihe
mRNA stast. We take 8 = TATAAT. As above s(a.a) = |, s(ab) = ~1ifa # b.and
& = 2. The matrix (S(3.j)) is shown in Tablc 4. Scarching the last row of the matnx gives
1wo solutions of max, ., S(6.§) = 2, at (6.13) and (6,43). The paticrn at (6,43) has the
alignment

TATAAT
CATGAT

and is CATGAT in the promater sequence, the canonical — 10 pattem. The patiern 6.13)
has the alignment

TATAAT
TCGAAT

with TCGAAT in the promoter sequence, an cqually good fit.

This illustrates the utility of the algorithm, in that it focates the puiative - 10 signal
CATGAT in lacl. It also emphasizes the difficulty of promoter signal analysis by finding
an equally good pattern TCGAAT 30 bases 5 of the — 10 pattem.

D. Identification of Similar Segments

Surprising relationships have been discovered between sequences that overall have little
similarity. See Weiss,? Doolitile ct al.* and Naharo?* for accounts of some unexpecied
long matching scgments between viral and host DNA. The subjegt of this subscction is 3
dynamic programming algorithm to find these similar segments. This is probably the most
useful dynamic programming algorithm for current probl For a math ical statement
of the problem, it is pecessary (o assume 3 similarity function s(a,b). The object is to find

max,,.... S(23,., ... a. .2,.5.5; ot - Do (Be)
1t 2w

This amounts 10 (3 sequence alignment problems, and 3 new algorithm must be
devised.

While Scllers'®"* began the work on problems of this lype, his problem formulations were
based on distance functions and his algorithms involved forward and backward recursions,
each recursion requiring 8 matrix. Although later® similarity functions are recommended
by Sellers, those algorithms still involve intersection of path graphs and are guite complex
The similarity formulation given above was presented by Smith and Waterman and is solved
in a straightforward way. Define i, 10 be the maximum similarity of two segments ending
at a, and b

H, = max{0; S(aa,,, .. abb,,..b) PExS 1=y s
A recursion similar 10 those given for the similarity problems discussed above is oblained

for H.®
Theorem 1 — Set H,, = H,, = 0 for 15ign and 15jSm. Then

T
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Table 4
MATRIX FOR BEST FIT OF TATAAT INTO THE E. COLI PROMOTER OF lacl
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H, = max{0, H, ,, , 4 stab)omax, A, - )
"““nu,‘".., . - l‘,."
Of course, single or lincar gaps can be treated as discussed above (sce Gaoh'). A

racehack from (i) satisfying

H,, = max,..0H, ]
e

will give a maximum similarity scgment. What about other highly similar segments?

The following procedure finds one alignment from the highest score and then continues
10 find the next-best alignment with no matches or mismatches of its alignment in common
with those already output. The original algorithm® stopped after the maximum scgments
were output and the algorithm given here is new.™

When calculating the matrix H, stack all (i,j,Y) with Y = 1, and i, = C = cutoff
value. The stack is ordered by > where (i,j.1,) > (k& H, ) if

N, H,
or i)H,=H,, and i+ jek+ ¢

or iH, =H,.i+j=k+€ and 1k

During traccbacks for some stack entry, we only output onc alignment. For this one

dd I concept is ded, that of mini length alig . Define the length of an

alignment beginning at (p,q) and ending at (i,j) 10 be [i + j — (p + q)|. We only output minimum
length alignments, although this is entirely a matter of choice.

The algorithm begins with the top (i.j.Y), i.c., the largest under **>"", and that alignment
is output. Next we must find the next largest scoring alignment that has no matches or
mismalches in common with those alrcady output. The simple concept of recomputing the
matrix, not allowing matches or mismatches already used, is employed. This docs mvolve
more calculation. As the elements below and to the right of an alignment’s end (i.c., (i)
must be rec d, each succeeding alig: takes n*mv4 matrix entry recomputations
on the average. While this might be warth the cost because of simplicity, much more efficient
algorithms can be given in the cascs of single and lincar gaps.

Take the singlc insertion and deiction case, and let (k,€) be the upper lefumost position
of a match. (The alignment must end in a match or it is not optimal.) The new matrix N

satisfies

N,=H,ick and jet

Define N, , by
Nie = max{O, Ny iy — B Noeoy = ')

Note that the match ending the alignment is not allowed. Consider the row (k,j). (<j.
Recompute eachentry j = € + 1,0 + 2, .. . umill{,, = N, . Then it is clear that H, ,
= N, , for the rest of the row. Similar considerations hold for the remainder of the alignment
Note that on cach row and column it is necessary 10 go al lcast 10 the position thal was
necessary for the preceding row or column. By this device 3 much more efficient algorithm
is obtained. If an alig has lengith L the secomputation required is approximately L?
and if several alignments are output the recomputation is proportional to YL
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FIGURE §. Maximum sumilanty segmest analysis of two sequences. Here 5(s.3)
= |, 3(ab) = -1ifs b, andg = 2 In Figurc 1A, the initial matsin is shown.
Tracing back froni the mavimum entry 6.2 produces the alignment given in the teal.
in Figure 1B, the mawna iy shown with recomputed entrics with ¢ 10 the right. Now

the mazimum entry is 6 1.

A computer program written in C for this algorithin is given in the Appendix. The program
is also available on tape or dish from the author. To illustrate the algorithm, we sct s(a,a)
=1, sab) = -09,ifa# b and g = 2. Two sequences are compared and Figure 1A
gives the matrix H(x 10}, where the best matching segnents are

CCAATCTACT
CTACTCTACT

with score 6.2, The matrix Nt « 10) is shown in Figure 11 where the recomputed entries
are shown with * to the right For this step, the best matching segments are

CTACTACTGCT
CTACTHCTACT

with score 6.1.

E. Near Optimal Alignments
The optimal alig ts d 4 on the input sequences and the slgorithm parameiers. The
igh igned 1o mi hes and gaps are determined by cxpericnce. An effon is made

10 use biological data to infer meaningful values. Of course, in addition to assigning weights,

there are sometimes unknown ¢ ints on the es that cause the comect alignmen!

10 differ from the optimal alignment given by an algorithm. Hence, it is of some interest k

produce all alig ts with score (di ¢ or similarity) within a specified distance of the

optimum score. Recently, Walterman?® and Byers and Waterman, ** presented a new algorithn
which accomplishes this. The algorithm has been previously presented for (he distance
algorithm. In this chapter, it is given for the similarity algorithm.

To be explicit, let S = (S,,) be the single gap similarity matrix with

S, = max{S,_,;-, + s(a.b). S,., — & S5, - 8}

“

The task is to find all alignments with score within ¢ > 0 of the optimum value S, Al
optimum alignments are included.

At position (i,j) assume a traceback from (n,m) to (0,0) is being performed that can resu!
in an alignment with score greater than or equal to S, . — ¢. The score from (n,m) to be
not including (i) is T,,. T, is the sum of the possibly nonoptimal alignment weights to reac

(i.j). From (i,j), as usual, three steps are possible: i~ 1.4, Gi—1)- 1), and (1,3- V). Bac
step is in a desired alignment if and only if

T, -8+ S, &S.."¢

T, + s(ab) + S, & Sem — €

T,~2+S,. S,..- ¢
respectively. Multiple near-optimal lig s can be produced by stacking unexplore

directions. Of course, multiple insertions and deletions can be included.

A study of sequence alignment sensitivity 1o weights and mulliple insertions o deletior
has been carvied out by Fitch and Smith.?* The sequences displayed below are chicke
hemoglobin mRNA sequences, nucleotides 115-171 from the B chain (upper sequence) af

118-156 from the a chain (lower sequence):

UUUGCGUCCUUUGGGAACCUCUCCAGCCCCACUGCCAUCCUUGUCACACGGCAACCCCAIIGGU(
UUUCCCCACUUCG  AUCUUUGUCACAC GCUCCGCUCAAAUC

This alignment is presumed correct from the analysis of the many known amino acid s
quences for which such RNA sequences code.

Wiih a distance function, using a mismaich weight of § and a multiple insertion or deletic
function x, = 2.5 + k, where k is the length of the insertion or delction, the corre.
alignment is found g the 14 optimal alig (This is region Q of the Fitch ar
Smith paper.) To indicate the size of neighborhoads in this example, there are 14 alignmen
within 0% of the optimum, 14 within 1%, 35 within 2%, 157 within 3%, 579 within 4%
and 1317 within 5%.

A mismatch weight of | and 3 multiple insertion or deletion function 2.5 + 0 Sk 1

region P of Fich and Smith; accordingly. the correct alignment s not in the hisi of the tv
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optimal alignments. This example dlustrates the sensitivity of alignment 1o weighting func-
tons.

IV. DYNAMIC PROGRAMMING ALIGNMENT OF MULTIPLE SEQUENCES

Many sequence alignment problems involve more than two sequences. The straightforward
generalization of our two-sequence alignment algorithm 10 R sequences has complexity to
O(2"n*) when comparing length n sequences. For R = 3 this is frequently not practical and
for R > 3, n must be very small. In Section IV.B these algorithms are discussed with some
recent improvements. In the next section, IV.A, a geometrical approach, also based on
dynamic programming, (o these problems is presented.

A. Line Geometries
For this section a new, simple representation of sequences is required. It arises from
consideration of a column in un alignment of several sequences. For example, the column

seq!
seq?

A
A

seqd T ..
seqd A
¢

seq$

is frequently summarized as the “consensus® letter A. Much information is lost in this
summary, and our representation of the column is with the “letter™ a = (p, . pePa.pe.Py).
For example, p, represeats the proportion of A in the given column. In this example p =
(3/5,0,0.1/5,115) = (0.6,0,0,0.2,0.2). Of course, usual sequences can be represenied in
this format by using C = (0,1,0,0.0) etc. To compare two “letters™ 2 = (pa.peuPoProPy)
and b = (q..4:.q,;.Qr.4,). the well-known metric

s = (3wl -ar)”

15 used, where w, are weighting factors and a 2 1 is a constant. We have found in examples
that w, necds 10 be larger than the other w,; certainly & plays a quite different role from
ACG, or T

The distance D(a, b) or similarly S(a,b) between two sequences & = ay, . .. a, and b
= b,b, . . . b, is computed by dynamic programming as above even though the sequence
clements are themselves vectors. Associated with 1a,b) is an optimal alignment.

ajay ..oy
bib; .. by
Now, for this alignment, define c(A) = Aa @ (1-M)b by ¢,(\) = Aa; 4 (1 = Ab. The last
s simple vector addition. 1t iy not surprismg that ¢(1/2) is midway between 8 and b.
In fact, much more is true.
Theorem | — let ¢(A) = Ao () (1= A)b where 0 < X = 1. Then
Daeby= Da,e(A)) + Die(A),b)

Duactan = (1 - D),

n

4,

E-21 ' =$

FIGURE 2. Tree relating 8, (E. culi), a, (B. siewro). &, (H
volcanii), 8, {D. discoidewm), and 8, (S cerewsiar)

and
Dic(h)icr,)) = A, — AD(a,b)

This theorem is proved in Waterman and Perlwitz. ™

This technique was devised (o align several sequences, but it does not always behave well
on sets of seq es. Methods of finding **center of gravity'’ sequences were studied and
did not always converge rapidly. However, if the sequences are related by a given phylo-
genetic tree, uscful alignments can be produced by use of "@®""

As an cxample of this alignment algorithm, consider the tsee of Figure 2 with the associated
5 sequences. Alignment is performed by using the tree to suggest the order of sequence
aligoment:

- 03 [1G01) 03 (G01)

The deletion term needs a heavier penalty than A,C.G.T:

d@a,b) = 2 |P. - QJ + ‘Ipo - qol

EYTYCORT)

The resulting b is used to obtain an overall alignment by aligning eachofa,, . a, with
b. The result given below is identical with Woese et al..** who obtain it in Table 31 of therr
analysis of 16S-like rRNAs.

E. coli (a) CAACCCUUAUCCHUUUGUAACUCAAAGGAGGAAUGUUGGGA
B. nearo (a)) CAACCCUCGCCUSCUAGUCACUCUAGAGGGGAAGGUGGGGA
H. volcanii (s,) AGACCCGCACUUSCUAAUUACAVUAGAAGGGAAGGAACGGG
D. discoideum (0} AGACCUCGACCUGCUAACCUUCUUAGAGGGGAAGUCCGAGG
S, cerevisiue (a,) AGACCUUAACCUACUAAACUUCUUAGAGGGGAAGUUUGAGG

B. Generalization of the Two-Sequence Algorithm

For a straightforward ¢ ion of the two-seq algorithm to more sequences, some
notation is first set. There are R sequences, 8 = a3, ... a,,b=bb, . b, ... .r
= 1,0, . ..r, The algorithm from considering an alignmentof 8, . . . a;b, . b,
f, . .. r,. The last col of the ali will appear as

€,b,

6fr,
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wheree, = Qor Land Oa = . e = (g,. . . . ¢) # 0,001 required that there age 24 - |
such columns. Recall that for R = 2 theee are 29 -1 = 3 lerms w optimize, Here, i 2

Tdistance ' fuaction is defined on R variables, the formubs extends o

D, L= mn b,

'

LA e b, e

e oy

‘This formula appeared ia Waterman ¢t al.,** and has computational complexity proponiona)
10 O(2"n*) where the sequences are assumed to have length v, Swrage takes O(n*). Carmrillo
and Lipown® have improved the complexily of these algorithims with a branch and bound
technique.

A deeper anaslysis by Sankoft™ appeared earlicr. Sankoll assumes that the sequences are
refated by a given phylogenetic tiee. His algornhun constructs sequences for cach interior
node of the tree and produces an alignment of the R sequences at the exterior nodes along,
with the (N} sequences (X,.X,, . . . X)) constiucted for e isteciar nodes. Sankofl and
Cedergren* give an excellent secount of this procedure. The dyniumie programming step is
given by

€3,
€9,
D, .=mab ., ..t W g (55)
“eu X
]
Xy
The second minimum is 1o dicate it X, . .. X, have been chosen for the interior nodes

in such a way as to misimum-number of mutattons afoag the tree. A pencsalization of Fieh's
parsimony method™ is used here and @kes N steps. The computation requires O(2%n*N)
steps. R = 3 is nearly the fargest practical R and Sankoff has devised an iterative method,
which works with groups of three sequences. 10 build up a solution for larger problems.
Alischul and Lipman® have extended Carrillo and Lipman® 10 align mulliple sequences
with & given ree.

V. CONSENSUS ALIGNMENT OF MULTIPLE SEQUENCES
As Section 1V illustrates, dynamic programming methods have generalfy not been found
practicatl for more than two sequences. It is natural to ask whethee methods for findiag
consensus pattemns can be apphied w0 find aligaments; which are in u real sense consensus

puttems themselves. Usually, it will be reasonable to himit the amoumt of shifting one
sequence can have, relacive to the others, That is, the alignment

scquence 1 ... a

sequence 2.0 b

sguence @

s only wowed when fi- 3l .. b-al b-al . o are all fess than, or cquat to, some
bound. It iy feasible 10 set the bownd cqual to sequence fength and, thereflore, to allow
unrestricted siufting. The object of this scction is 1o use the algorithm for consensus words

TR A

&
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10 make a useful, practical, alignment algorithm (see the chapicr on consensus pattems’).
This algoeithny is presenied in a recent paper.™

To conform with the canventions of the previous chapler, the abject 1s o lind consensus
words w, k letters in fength, where the window widih is W. This aeans the maaimum shilt
between matched words is W—k. The bound on li-jf, .. ., Ji~xl, §j - «f, 15 thus
W —Xk. The window at position | appears as:

Position
it i+
sequence | 8,8, 8,,W
sequence 2 b,.b,,...b W
sequence R ... ., . ooy oo T W

window width = W

A neighborhood of, say, less than, of equal 10, 2 mismatches is specified for maiching
words, and a score 5,(v) is given to 3 word v in the ncighborhood of w, where 0 X s (v)
= 1. Define the maximum scoring word in the window of sequence i to b v, so that v, best
matches w. Then the score of w in the sequence set is

) -
Sw) = J, mpxds.v)) = 2 slv)
<

)

A copsensus word w* is one satisfying
S(w*) = max_ S(w)

where w ranges over all k-letter words,

An ilfustration of the location of such a conseasus word is given next, where only the
window is displayed.

Position
q
sequence |
sequence 2
sequence 3
sequence R

The words v, are in the neighborhood of w. Here, sequence 2 fails o have a word v, in the
neighborhood of w.

Define a pantial ordes on coasensus words by their location in the sequences as follows:
w't < w if the occurrence of W' in sequence § is 10 the left of (and not overlapping) the
occurrence of w'? in sequence i, furall i = 1, 2. RO v v'" mark the individua)
sequence patterns, respectively, in sequence i, then the order appears as



L] Mathematical Methods for DNA Sequences

.......................

An optimal alignment A, 1y one that satisfics
S(A) = max, S(A") = max,. 2 e (W)

In gencral, it is not known how 1o find S(A). However, ane version of the problem can be

sulved exactly.
Let w |w, mean that consensus words w, and w, can be found in nonoverlapping windows:

The modified optimization problem is to find the alignmeat A, satislying
R(A) = max,R(A") = max, E et R(WY

A simple recursion for R is eusily given which is lincar in sequence length. Define R, to be
the value of R for the set of scquences ending with column i. Then
R, = max{R, , + S(w )i=W+1=)Si}
where w,, is the consensus word with the window from column j to column i.
If much shifting is taking place in the optimal alignment A associated with S(A), then
the alignment A in R(A*) is unsatisfactory and overlapping windows must be considered.
To overcome this difficulty in a practical way, find

T, = max {1, +8(w, )i~ W+ I=jsi)

where §(w, ) is the largest scone for a consensus word in the window of width W, such that
all occurrences of w,, are to the right of the matches in T,... While this algorithm is not
guaranteed 10 find S(A), it is much more useful than R(A) for most problems. la addition,
it is practicat for the alignment of many sequences, while dynamic programming is aot.

Another hicrarchical algorithm is to find the maximum scoring word w in the entire
sequence, max,,, . -S(w’') = S(w), and to realign the sequences on w. This breaks the set
into two shoster blocks. The same procedure can be reapplied, recursively, to produce an
alignment.

V1. DATA BASE SEARCHES

In summer 1988, there were approximately 20 X I bp of data in GeaBank, a nucleic
acid data base, containing approximately the same data which is in the EMBL. data base in
Heidetberg. The data represent nearly S6(0 nucleotide sequences, at an average of approx-
imately 900 10 1000 bp per sequence (see Chapler 1). When a new DNA sequence is
determined, there are usually some sequence comparisions suggested by the nature of the
sequence. If the new sequence is a coding region for a rat immunoglobin (1), running the

new sequence against all known mammalian Ig sequences is a natural thing to do. Howeves
in addition 10 these sorts of comparisons, there is increasing (nferest in secing if any wi
expecied relationships show up when the sequence is run against all mammalian DNA «
all cukaryotic DNA. The scarch need not stop even there. Ribosomal RNA structures has
been preserved across all life forms.” There scems 1o be some homology between ribosom

proteins from rat and E. coli"). Therefore, it is not ble 10 just run the new sequence
against the entire data base and sce if any unexpected matches show up.

If the search for a match between 3 new sequence of 10° bp and a data basc of 6 x 1!
bp were performed with the dynamic programming algorithm of Section I1.D, then tt
running time is proportional 10 6 x 10° = (10" (6 x 10%). On & VAX 117780, this mig
take a day or more of CPU time. With increasing computer capacity, this should not be
disturbing, but it indicates that such a venturc is not to be lightly undertaken.

Onc response to this important problem has been to utilize the computer science techmg:
of hashing to obtain information about possibie regions of high maiching. The first use
hashing in molecular biology was made by Dumas and Ninio.” The method was later utiliz:
by Wilbur and Lipman™ and Karlin ¢t al.* in developing their own approaches to sequen

comparisons.

The basic method begins with a choice of word size, say k letier words. Then a DN
SCQUERCE B = 2,8, . . . &, is transf d 10 2 s¢q of integers by associating each
wriple, a3,,, - . . &,y With one of the integers 0,1, . . . 4* — 1. For example, let

0, ifa=A
4 =\1, fa=C
2, ifa=G
3, fa=T
Then define

x = &4+ R R GRURRY UL S

Notice that x,,, = x4 + &,,, mod 4*, so that these transformations can be rapidly mad
To continue with a numerical example, let 8 = TAGAGCA. Withk = 2, $ = l6a

x, = 3-4+0=12

X, =12:4+ 2mod 16 = 2
x,= 2:4+0mod 16 =8
X, = 8:4 +2mod 16 =2
X, = 2:4 + lmod 16 =9
= 94 +0mod 16 = 4

and 8 = (12)2UBU2HIN4).
Next, lists are made of locations of all occurrences of the mtegers 0,1, A -
our numerical example, there are only five nunempty lists
0:¢
1: ¢
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02,4
b

T

Another approach is 1o keep a Jist of positions of the first occurrences of O, 1, . . . 4~ 1.
_ln place of the x, at those locations, are pointers to the next occurrences of the associated
integer. In cither case, storage is O(n) and the hashing can be perfoaned in time O(n).

. Next, two methods, both duc to Wilbur and Lipman, which allow use of this information
in sequence companson.

A. A Regions Method

The algorithm described here appears in Wilbur and Lipman. Define a region r by (v;i,j)
where v is 3 word of length k which begins at position i in & and position jinb.

Define 1, = (viij) <6 = (i) if i, + k — 1 <, and Wtk =1 <j Sety,
= ($:0,0) as a least element and r* = (¢;n,m) as a greatest element. ' = (41, ... 1)
1s 3 path if p < q implics 1, < 1. The score of path | is given by '

[

1=
score(l) = 2 s(ry) - z g(ik'l -lwll bl l-jn-: _'WA' - j; =1
el

[ X )
where 5() s a similarity score for regaon 1, like [w,[, and g(-,) is a gap penalty. Then
score(a.b) = max{score(I): 1 is a path from 1, 10 1.},

The algorithm makes two lists of regions: [, ordered by < and L *, ordered by the
usual order << of best scores from 1, 10 the region listed in L.° .

Yy = oswore () oty - fw o - Ly Iwd - 1)1y o seone(s )

If there is no region r, in L* below ry under < with a score greater than score
(1) ~ s(c,), or if the inequality cannot be satisfied, go to (C)

(H)  Set score r, = yand go ) (A)
(Cy Remove 1, from 1. and insen ot in L under <<,
IfL # ¢, got(A)

Changes can be made 10 this algorithm 10 give maximum scoring segments. A more
practical algorithm is given next.

1. Rapid Sinularity Searches
The method described here is due 10 Wilbur and Lipman®™ and was extended, especially
for protcin data base scarches, by Lipman and Pearson.** Recently, Pearson and Lipman®

7
have madificd their carlicr work 10 DNA sequences. Each of the 3¢ words w, of length &,
can be located in each sequence, and the positions of the word w 1a a can be conswdesed 1o
match the b positions of w. Each such match, say position i in 8 and position j in b, has
an associated offset i—j. The offsets or diagonals with a large number of maiches are
candidates (or good matching regions This technique is not so rigorous as the dynamic
programming mcthods but it is a greal deal faster. In fact, scarches of the entite DNA data
base can be accomplished on an IBM PC and several groups have programmied this atgorithm.

VII. THE STATISTICAL DISTRIBUTION OF ALIGNMENT SCORES

Much has been writien about the statistical distribution of di c and similanity scores.
In this section, we focus ion on the ical distribution of the scores of maximum
similarity scgments (see Section [11.D), when the scores are computed for random sequences.
The idea is that when the sequences satisfy some model of randomness, such as uniform
and independent bases, there is 8 resulting distribution of maximum similanity segment
scores. The scieatist can use this distribution to ascertain whether the scores from real,
biologicul sequences are, in the statistical sense, significantly larger than those from random
sequences. Of course, there is litile agreement about the appropriate model of randomness.
Fortunately, as we discuss in Section VII.B, the distribution of maximum similarity scgment
scores for rea), unrelated biological sequences coincides with that of independent, identically
distributed sequences of the same composition.

Although simulations are often recommended to determine statistical significance, there
arc several drawbacks to this approach. First of sll, it is expensive in terms of computer
time. Also, it often requires more time from the scientist 1o set up and process the simulations.
Frequently, the simulations fail 10 give the desired results. If statistical significance of a real
sequence matching is to be estimated and that significance is a, then 1/a simulations must.
on the average, be run before sceing a result as extreme as in the real sequences. When o
= 0.000], a not unreasonadble case, we must do on the order of 10,000 runs. While

lations are often unavoidable, they are not ideal.

Recently, however, some new results in probability theory give very precise answers (o
certain problems that asise in practice. These are discussed in the subsections on the **log(n)
law'’. What is less well-understood, is that the log(n) law and another equally special result
give guidance on what 10 expect fos the distribution of any maximum similanity algorithm
There are only two behaviors of expected similarity score with sequence length: cither
proportional to sequence length or to logarithm of sequence length. This result, along with
a 1able of means and variances, is given in Scction VII.C on expected behavior.

A. The Log(n) Law
Erdos and Renyi®® proved in 1970 that the length R, of the longest run of heads 1a
indcpendent coin tosses with P(Heads) = p grows like log,,(n):

l‘(lim R . |) =1
wen 108, (n)
If our sequences are perfectly aligned

3,3 ...4,
bb, ... b,
this mathematical result pravides the answer (o questions about Jongest match. Simply write
Hifa = b, Til a # b, and calculate

———————
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p=p.+pietPht Dt

The length of the longest match is the leagth of the longest head run. Notice that we assume
the distributions of the sequences are identical. The results stated here hold if the sequences
have base distributions that are **not too different”’.

When the sequences are allowed to shift relative (o one another, the answer changes.
Now matches can include affscts such as

a8, ey e Ay
b, b, b b, ... b,

It has been shown®’ that shitting doubles the growth of the longest match length M,:

. M,
P(lun = 2)
n o tog,,(n)

Much more precise results have been obiained. With s = aa, .. . a,andb = bb,...b,
it is required below that log(m)log(n) —» 1. The expectation (mean) of M, the longest match
length including k mismatches, is approximately

i

E(M) = log(qmn) + kloglog(gmn) + kiog(g/p) — log(k!) + v log(e) — 112

where @ = I-p, log = log,, andy = 0.577 . .. is the Euler-Mascheroni constant. The
vanance is approximately

Var[M(n,m)] = [ log(e)]/6 + 1/12
In the case of k = 0,
E(M) = log(qmn) + vy log(e) — 172

While it might seem natural 10 perform the normal approximation at this point, that is
not correct! The tai} behavior of the distribution is extreme value which has exponential
tails. The comect procedure can be found in Theorem 2 of Armatia et al.‘ Results closcly
related to these were first announced for repeats in a single scquence, with k = 0, and
minor differences in constants, by Karlin ct al.> The more general case stated here is from
Arratia et al.* As discussed in Chapier 6, these formulas can be extended to study the longest
match common 1o R of N sequences. Instead, here we pursue gencralizations that allow less
exact matching.

B. A Data Base Study
In Smith et al.,** the following similarity and gap functions are used:

s{a,u) = 1|
s(a,b) = =09 fa#xb
w(l) = 2

wik) = ifkz2

10 study maximum similarity segment scores from real, biotogical sequences. While the
log(n) law appears useful tor a fixed number of mismatches. what is the distribution of

S(a,b) = maxS(l.))
I©Ce
nwe

for a similarity function such as that specified above? Here, | and ) denote contiguo
segments of sequence.

In the study cited above, all pairwise comparisons were made with a set of 204 vencbra
and eukaryotic DNA scquences and pl s for a total of (3*) = 20,706 companson

The results display remarkable linear behavior with log,,(nm). The best fit of the data, aft
adjusting for outlicrs by techniques of robust statistics, is

$ = 2.5 log,,(nm) ~ 8.9

This {it of real seq e data is identical 10 the fit of simulated sequences reporicd bele

Thercfore, allowing insertions and deletions does not change the log(nm) growth, althou
the slope is certainly changed. Note that log(nm) = log(n?) = 2lognifn = m.

C. Linesr and Logarithmic Behavior

Let p be the non-negative mismatch penalty and $ the non-negative deletion penalty
the maximum segment similarity; measure S and write S = S(u,B) to indicate this dep
dence. The goal of this section is 10 give information about the probability distribution
S(j.8) for all =0, 5Z0. 1t was only recently that anything was leamed about these questis
and much work remains for mathematicians to complete the theory.* Still, the broad outli
have been established and the results are both theoretically and practically of interest.

Now for two random sequences of length n,

S(,) = 2 log(n)

-
e

bases, !

A
2

by the above discussion. In contrast, if no penalty is iated with
known® that

S(0,0)=c-n

where ¢ is a constant. While the precise distribution of $(,) is known, cven the valu
¢ =¢(0,0) has cluded probabilists for more than 10 years. It has recemtly been shown
this contrasting behavior between lincar and logarithm growth is general. There is a «
dimensional curve through 10,%)%, such that the behavior is lincar on one side of the ¢t |
and logarithmic on the other.* Let R(0) be the region containing (0,0) and R() the re,
containing (,%). Then the theorem is that

S(r.8) =~ c(pB) -0 il (1.8) € RO
and
S(.8) =~ d(,5) - log(n) if (p, B) € R(®)
Table $ gives sneans and variances for a large simulation. In this simulation, 28 indepen
pairs of sequences were generated of lengths 2.2% ..., 2% where py = pe = Py ¢
= 1/4. At cach (ju.,8) of Table S and for cach of the 28(6) = 168 pairs of sequences, 5(

was calculated. In the segion R(0), (which contains all of column = 0.50), a linea
was made o the data for each pair (1,8). In Table S, the triple
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in region R(0) means that
S(n.b) = a + bn
with standard deviation s; while for (i1,8) in region R(«), the triple means that
S(.8) = a + blog,(n)

with standard deviation s.

These means and variances can be used for estimates of statistical significance. Above,
it was noted that $(,) has exponential tails, not the tails of the normal distnbution. We
conjecture that all of region R(«) has exponential tails, but that is by no means established

h ically. M ver, convergence to extreme value distributions is usually very siow,
so that cxcept for S(%,m), it is unclear what constants to use. To further complicate the
situation, in R(0), knowledge beyond lincar behavior is completely tacking. Still, it is possible
10 use the present state of knowledge to obtain uscful information.

For illustration, consider E. coli th IRNA and E. coli valine IRNA. Both sequences
arc 76 in length. To be consistent with the analysis of these sequences in Section 1L A,
take . = 1 and § = 2. A computer sequence comparison yields $(1,2) = 24 ~ I(7) - 2(1)
= 5. This is the score of the longest boxed portion of the alig in HILLA. The par
(1,2) is in R(w) and Table S givesa = —~5.09,b = 1.95, and s = 1.71. Therefore,

a + blog,(n) = —5.09 +1.95l0og,(78) = 7.0935

S(1,2) = 15 = 7.1665 + 4.624(1.71)

so that $(1,2) is 4.624 standard deviations above the mean.

If additional infi ion is required about the significance, Chebyshev's inequality can
be used, as in Smith et al.** This conservative result, valid for all probability distributions,
is that the probability of [S(i,8) — mean| 2 X is less than, or equal to, ($A)." In our
example, A = (4.581)s and the statistical significance of our result is therefore no larger
than (1/4.581) = 0.0477.

APPENDIX

/¢ code for finding segments from two sequences with maximum cimilarity */
/% Michae) S. Waterman and Mark £gqert */
/* see "A NEW ALGORITHM FOR BEST SUBSEQUENCE ALIGNMENTS

WITH APPLICATION TO TRNA-RRNA COMPARISONS

Michael S. Waterman snd Mark Eggert., Journal of Mulecular

siology (1987) 197,723-728 ¢/

tinclude "maxseqs. h®

/* sequence lengths */
int . m, n;

/* sequences as arrays ol chacacters */
char *x, /% xi1).. x{m} */
sy: /0 ylit). . yln) o/
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/* score cells as arteys ot artays of short integers */
short

SCF, /* FIO)IOL.. . ¥[))in) /

**5; /* SIO)(0}...S5(m}n) */

int maxantidieg: /* maximum entidiegunal of traceback end */
int maxS, maxSi, maxSy: /* maximum scare and its location ¢/
int mexi; /* maximum i ot traceback end */

int force; /* flag to torce reporting maximum score ¢/

/* weighting constants for SIMFLE match/mismatch score */
int match, delta; /* s(a,b)-match if a=--b
delta f al=b ¢/

/* weijghting constants fo: LINEAR inscruion/deletion score ¢/
int alpha, beta: /* wi{k)l=alphastbeta®(k-1) */

/¢ cutoft, tracebscks are nut done trom cells with scores below this value
int cutoff:

/* structure for cell information */
typedef struct (int 4, ) cellinfo;

/* array of cell structures to be ordered ¢/
cellinfo *list:

/* number of cell structures in array */
int listcount;

Jesevsacsasesssasssuennnne

/* maxsegsi) is the entry point after all initialization is done
/* BEFORE maxseqs() is called:

/* match, delta, alpha, beta and cutoff must be assigned

/* x and y must be loaded with the sequences to be compaiud

/* m and n must be assigned the sequence lengths

/¢ the score arrays must be initialized thus:

/v S1i}10)==0 Cor al} i

/¢ FLO)[)}=-=0 for all }§

/* ${0)[j)=-=0 for all j§

A R L L R Y P T T P PP PR PSS

maxseqgs ()
{

make_S():
tracet):
1

tdefine FAST_REG

/* load score cells with pre-tracebach values */
make_S{)

i

register int i, j;

/* register to hold xj1} */

register char cx;

/* registers to make asrray access essier ¢/
1egister short E, *Sp, *Fp=Fl0}, *bFp=Fil), <stp:

maxS=0;
listcount=0;

for (J=i; j<=n: s+))
Fpljl=0;
/* recursive 5 for LINEAK weiqhting */
tor (i=): i<em; se1)
{
E=0;
sfpetbp;
Fp=bbp:
by peskp:
Spe S{i):
cxex|i]:
tot (d=1; jeen: 010}
i
0] EN) e max 1 O, man uver %k {S[i)F)-k)-wik))
Eemax (U,

./

Seseacesssassenanaeis

¢/

PPIC NP

A

[EPET .

W s B -

A
!
.

8)

Sply-1)-alphe,
E-beta):

/% FLLNIY) == mex { O, max Over b anfa -S| {)) wihb) V *y
Fplj-manto,

Sli-111)]-alpha,

bFplj)-beta):

Spljl-max(Sli-1)13)-1}estcx, ylyl,
tint)Fpigl,
(Int)E);

10 (Spl))o>maxs)
{

maxS«Sp(jl;
maxSi=i;
maxSi=3;

)
Af (Spl3)>=cutoalt)
(

1ist{listcount).i=i;
list{listcount) . j=}:
s+e¢listcount:

}

/* match/mismacch scoxe */
int s(a, b) char a, b:

{

it (a==b)
return{match};
else
return(delta);
t

/* deletion/insecrtion score */
int w{k} int k;

1
return{alphacbeta®(k~1));
}

/* 1ecalculation varjables */
int lasti, last);
/* It row ) is being analysed
all cells from cell{lasti)()-1) to cellim)[3-1] are unchanged. */
/* 1f column { is being snalysed
all cells from cell[i-1)(lastj} to cellii-1}in) are unchanged. °/

/% Cellorder returns & value of type RELATION. The RELATION type, and its vélue
BEFORE, SAME_AS and AFTER are defined in max_segs_defs. The celloider code
compares two cell structures, item] is 'collo:dor(t:genl. Gitem21” 1tem? Ou
program uses this, but its use is hidden in the sorting code */

RELATION cullordex (item]l, item2) cellinfo *jteml, *item2:
t
/¢ order by cell’s content °*/
1f (Sliteml=>1)[itemi->§)>Slitem2->1]} [item2->}])
return (BEFORE) ;
if (Slltonl—)llllto-l->,|<5|l1002‘>ll|ll.n2->jll
retusn {AFTER) :

/* ovder by distance of ceil‘s antidiagonal from vrigin */

11 ((itemi->isiteml->3)<(item2->1¢item2->)))
teturn{BEFORE);

((iteml=->1citeml->§)>(item2->i¢item2->4))
retur A {AFTER) ;

/* order by cell’s position on cell’s antidiagons] ¢/
i (ltem)l->icitem2->1})

return{BEFORE) ;
1f (fteml->1>1tem2->1)

return{AFTER) ;
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/* same content, sam: position on same ant wdisgonal ¢/
return{SAME_AS)

/" make tidcebacks
trace()

./

int i, §, k!
int scorei, scorej, scureS:

/* enqueue qualitying cells ¢/
/* if the highest i5 tvo low */
printf("maxS is VJd\n", maxS);
it (maxS<cutoff)
{

il (foice)

(

list|listcount] . i=maxSi;
listilistcount] . j-maxS):
+elistcount:;

cutott=0;

1

else

{

/* sort array with an algorithm following celluider’s behavior:

/* sort{pointer tou array, number of objects in array) */
sort{list, listcount);

)

/°* start traceback at each queued entry,
taking entries from “"top™ of array */
/* this allows us to easily sortL remaining entries
indexed 0 to listcount-1 */
while {--listcount>=0)
L
scorer=list[listcount ] .1
scorej-listilistcount]).
scoreS=S[scorei)|score)):
/* check if e¢ntiy is OK */
it (scoreS>=-cutoff)
{

maxantidiag=0;

maxiem;

/* finds “shortest® traceback */
findnude (scorei, scorej):
lasti~lastj=0:

/% it this tiaceback succeeds... */
it (plot(scosei, scorej))

redoscores|scorei, scorej):
/¢ print the alignment in ¢/
/¢ a foum the user likes */

/* resort list ¢/

sort {list, listconnt):

else
/¢ 1t the top entsy is Loo low, all are too Juw
bread,

i

BUOLEAN plot (i, §) int 3, §:

: int X, );
/% svop st zerons, setarn TROE UF thiy Is shar
i1 (v )<manantidiag)

return (FALSE) .
it tsh)j)--0)
i

¢/

it (itje-maxant 1diagééi-=maxi})
tetur n{TRUE) ;

wlse

)

/* recalculate scores vttt end of Lraceback

diagnostic_stuff(scorei, scotej, scoreS):

./

./

geturn (FALSE):
]

/% check deletion branch ¢/
tor {(k=1; k<i; #¢Xk)

i
it (S1i-k}{)}==0}
break:
else +f (S14)(3)==S1i-k][)1-w(k})
{
it (plotii-k, N
{
for (1=k-1: I>= --1)
{
/% note that cell 1-1,3 */
/¢ is deleted ./
/% output something like */
A x11-1] ./
1A - .
diagli-1, ), XDEL):
redoone (i-1, J):
redocolumnii-1, §};
1
return{TRUE);
)

/* check match/mismatch branch ¢/
if (SEilE3l==SLi-2119-2)es(xli), yIIID)
t

it (plot(i-1, j-1))
{

/* note that cell i,3 has had eatch or mismatch
/* produce alignment output something like:

/" x(i)
/- yii

’
/* S is bullt "left to right* )
/* cecursion is "right to left” ./
/* alignment output OCCurs on recursion exit */
/* 30 it comes out "left to right® o/

diagli, 3., MATCH):
if (xedoonsii, 3}
{

redocolumnii, 1):
redorow (i, jJ):

)

return{TRUE);

/* check other deletion branch */
for tkel; k<j; ¢¢k}
1
if (SIi)11)-Kk)==0}
break:
else if (S{i)[§l==S{i}tl)-Kk)-w(k})
[}

it (plot i, 3-%))
i
for (lek-1; 1>=0;: --1)

{
7% note thet cell §,3-1 13 deluted

/* output something }ike
o -
’° yi3-1}

diagli, -1, YOEL);
vedoone s, §-1);
redorow (i, 1)

)
return {TRUE) ;
|
|

vetu n(FALSEL S

‘!
./
¢!
.
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/e tiad “gharlest™ tiraceback ¢/
tindplot{i, j) register int 1, j:
|
register inL X, 1.
/* stop if alteady to0 low ¢/
if tiey<maxantidiag)
return;
/* stop at zevos */
PEASIill)l==0)
i
1 (tejomanentidteqgt
{
maxantidiag=is):
3 masjei;
1
else if {1+{~-maxantidiag}
{
it (iomaxi)
maxi=i;
'
tetura;
)

/* check match/mismatch Lianch */f
LE (STHE[3Y==Sti-1d13-0)os(xil), yi3)})
findplot(i-1, -1y,

/* check deletion branch ¢/
for (ke=l; k<i; k)
{
i (SLi-X) | j)==0)
breask;
else il (SIL)(J]==Sti-R){))-wik))
findplot (i-k, 31
|

/* check other deletion branch o/
for (kel; h<j; +¢k)
{
if {SEiJ()-k]==0)
break;
else 46 (S{illj)=mSHil[)-K])-w(k})
findplotti, 3-k):

}

/* tind cell common to all tracebacks with minimum ivj o/
findnode (i, 3) int 2, §:
{
int nodei=i, node)=j, righti<i, rightj=3, letti=}, lettj=});
int k, leftindex~luftieleft), rightindex-rightisrightj;

/* move down left-most end right-most tracebacks
until they meet tor the last time ¢/
for (::})
{
/* letr side of
do
{
1t (Sflefrillletrj)==0)
i

break:

]

/* check deletion branch o/

fore tk=l; ke=leftic 1ek)

!
P leftisn)llett j)==0)
t

S Den i) (Tent ))e-

Stletui-n))left )=
sixtlefrd), ylletejh)
S-leftig

Solefr )
Tettindox =2

47

)
else
¢
for (k=); k<iettly; ++k)
{
it tStlefrijllefryl==
Sllefri)flefti-kj-wix)t
1
letiy-=k:
lettindex-~k;
break;
¥
i
)
break:

)
else it (S(lefti](lefrj)=-Slletvi-KItlelt )l-vik)}
{

lefri-~x:
lettindex-=k;
break:

]

}

while {leftindex>rightindex}.;
if (Sllefti)(lafrt]l==0)

{

11 (leftindex>maxantidiag)
{

maxantidiageleftindex;
maxi=-leftl;

)
else Lf (leftindex--maxantidiag)
§

1 (lefti>maxi)
maxi=lefri:
}
break:

i

/+ right side */

do

t
1f (Sizighti)lrighty)==0)
{

break;

1
for (k=1; k<=gight}): e+k}
{
1t (Slrighti) {right )=k])==0}

11 (S(rightl) (zight j)==
Stcighti-1}1s39ht j-21v
sixjeightt), yirightjly)

l
--right §:
--pighti;
rightindex-=2:
]
else
{
(or (kel: hetighti; een}
t
if (Straghti){righty|e=
Sirighti-x)(right ji-wik))
(
right f-ok:
right inden-~k:
break;
!
)
)
bresk:

)

else If (Sirighti)(sight |-
SEeagR L) Iright §=R}-wiki)

t
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tight j-=k

vight fndex-=~k;

break:

i
}
while (lettindex<yightindex);
O AS[righti)(right §)==0)
{

it {rightindex>maxantidiag}
(

maxantidiageright index;

maxi=righti;
I

else Hf (vightindexe=myxant idisg)

{
it (righti>maxi)

maxi=righti;

)
Lreak:

)
if (letti-~righti)
t

nodei=lefti;
nodej=lefry;
)
]

/¢ now, {ind the “shortest” peth trom this node */

tindplot tnodel, uoude)):

SE(i, )
teglster int i, j:

register int k, me0, s0;
register short *Sp=S{i};

for (ke=l:; k<j: ++k)
{
s0-Splij-k);
tf {(s0--0)
bresk:
$0-~w(k);
it (s0>m)
m=s0;
|
returnim);
1

SFL, §)
register int i, 3.
{
register int k, m-0, s0;

for {kel: k<i: +1k)

30=Sli-k}(3):

it (s0-=0)
Lreak;

30-~wik);

i (s0>m)
m=s0;

rveturn{m)
]

/* seturn TRUE 1 fuither colls will be affee
BOOLEAN redoone(l, §) int 4, §;
t

int newS:

/* recalcularte martrix at one place */
/* omit scores from pathways alieady taken
newSemax(ieaddiag(l, 3§, MATCH}?0:(S[i-1){)

readdiag (i, ), XDEL)?0:SF(4, )},
readdiag (i, §, YDELY?0:SE{L, 1))

o/
S estx{i),

yiiln,

89

/* note result */

1t (SUi] ()} teneus)

{
Sii)[))=newsS:
return {TRUE);

/° it further cells will be unaffected, report this */
if (ti>=lasti)ss(j>=last)))

ceturn{FALSE);
4

/* repart that further cells wil) be affected */
return(TRUE);

/* recalculate column of matrix */
redocolumn(i, 3) int 4§, §:

int news:
int first3=0; /* 3§ of cell with lovest j of contiguous unchanged cells */

while (++3<=n}
{

/% recalculate S sans previous paths °/
/* yeaddiage=true §f cell{1}()) was MATCHed or XDELed o: YD[Led *
nevS~max(readdiag(i, j, MATCHI20:(S[4-1)()-2lesixiil, yl(3IDD.
readdiagii, 3J. XDEL)}?0:SF(i, ).
readdiag(i, 3, YDEL)?0:SE({i, 31):

it (SUi)(3)==newS)
{

/* remewber lowest cell
where all further cells don’t change */

it (Livstje=0)
firsti=3;

/* when no further cells will change. we'te done */

it (§>=last))

{
/° remember position for next scan */
lastj=firsty:

break;
)
)
else
! /* note that cell has chanqged */
/* clear 3 of lowest of contiguous unchanged cells */
firet)=0;
/* actually change S */
Sti}(3l=news;
}

/* recalculate row */
redorow(i, 3§) int 4§, 3:
{

int newsS;
int (irsti=0;

while (+ei<=m}

t
newSeman (ceaddiagil, J, MATCHI?0: (S{i-2)11)-hesinis), yiynn,

teaddisg (i, ), XOEL)20:SF {4, 3),
readdiagls, 3, YDEL)?0:SE(i, J)): .

1t (S(3)1))==newsS)

1t {(ficsti==0)
fireti=i;
if ti>=Jastt)
1
/% the first shall be last °/
Jasti=firsetd:
bresk:
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else
frimi=0;

S14)1))=news:

¥

/* redo cells off end of traceback */
redoscores{i, j) int i, j;
{

tor (i {*si<€om)id{ve3<m=n);)

{
/* it cells aeed to be checked, Check *7
il (redoone(i, 1)
[

regocolumn(l, 1);
tedorowti, j§):

else

TeLurn;
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