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SYNOPTIC ABSTRACT 

Simulated annealing is a probabilistic algorithm that has shown 

some promise when applied to combinatorially NP-hard problems. One 

advantage of the simulated annealing algorithm is that it is based on an 

analogy with statistical mechanics which is not problem-specific. How- 

ever, any implementation of the algorithm for a given problem requires 

that several specific choices be made. The success or failure of the proce- 

dure may depend on these choices. In this study we explore the effect of 

choice of neighborhood size on the algorithm’s performance when applied 

to the travelling salesman problem. 
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1. INTRODUCTION. 

Certain discrete versions of the simulated annealing algorithm are 

probabilistic approachs to combinatorially NP-hard problems, that is, to 

a class of problems for which no polynomial time algorithms are known. 

The key to the simulated annealing algorithm is an analogy with sta- 

tistical mechanics which is not problem specific. In a typical discrete 

optimization problem, one is given a finite set S, (typically large), and a 

cost funtion f ,  and seeks u E S such that f(u) is a minimum. One may 

regard the function f as the energy function of some physical system; if 

one could now simulate the cooling of this system, a state of minimum 

energy would be obtained. Although this parallel is universal, any imple- 

mentation of the algorithm requires choices to be made that are specific 

to the problem at hand. 

In order to simulate a physical system, the algorithm proceeds e 

quentially by moving from one state to another by a certain probabilistic 

mechanism. h m  any given state s, there are a set of states, say N,, 
where transitions from s are allowed. We call N. the set of neighbors of 

5 

It is with the choice of neighborhoods N, that this study is con- 

cerned. It seems to be often overlooked that the performance of the 

simulated annealing algorithm depends critically on the choice of neigh- 

borhood structure, and more importantly, that one is free to choose a 

system that allows the algorithm to perform well. If the choice of neigh- 

borhood is too small, then the resulting simulated process will not be 

able to move around the set S quickly enough to reach the minimum in a 
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reasonable time. On the other hand, if the neighborhoods are too large, 

then the process essentially performs a random search through S, with 

next possible state chosen practically uniformly over S. The question 

now arises: what choice of neighborhoods N, will allow the algorithm to 

converge quickly? Intuitively, it seems that a neighborhood system that 

strikes a compromise between these extremes would be best. 

Neighborhood structure is not the only aspect of the simulated an- 

nealing algorithm that is free to be chosen in a way that improves the 

performance of the algorithm; the form of the energy function may also 

affect the behavior of the algorithm. For example, if f is nonnegative 

one may contrast an implementation of the simulated annealing algo- 

rithm that minimizes f with one that minimizes this problem is not 

studied here. 

2. THE SIMULATED ANNEALING ALGORITHM. 

We now describe the simulated annealing algorithm in a general 

setting. We begin with the underlying neighborhood system. 

Consider a finite set S. For each s E S, suppose there is given a 

subset N. C S that satisfies 

1. Vs  E S,s E N,. 

2. Vs,t E S,s E Nt if and only if t E N.. 

4. Vs,t E S, there exists an integer m and ul,up,. . . ,urn in S such 
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for i = 1,2,. . . ,m - 1. (That is, we require the graph on S con- 

structed by joining two elements of S with an & whenever they 

lie in the same set N, for some s E S, to be connected.) 

We call such an indexed system of subsets {Nd},Es a neighborhood 

system. 

Now assume given a cost (or energy) function f ,  where f : S + R, 
it is required to locate the element of S that minimizes f. For each 

neighborhood system, we can consider an associated “greedy” algorithm 

as follows: 

Algorithm G ( { N , }  ,s E S )  : Begin at any point SI E S. At stage n, 

choose sn+l to satisfy 

f (sn+l)  = min{f( t )  : t E Nd,.}. 

It is clear that after a finite number of iterations of algorithm G ( N , ) ,  
the state will become trapped in a local minimum of f. 

The simulated annealing algorithm is a probabilistic modification 

of the greedy algorithm G ( N , )  that does not get trapped in a local 

minimum. This is accomplished by occasionally accepting a new state 

that increasea the energy function. The idea of a simulation of this type 

was first introduced by Metropolis, Roaenbluth, Rosenbluth, Teller, and 

Teller (1953). For any given T > 0 the Gibbs distribution over S, assigns 

to s E S probability 

ezd-f ( s ) / T )  
ZT 

*T(S)  = 
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where ZT (the “partition function”) is chosen so that the above prob- 

abilities sum to 1, that is 

ZT = Cexp(-f(s)/T). 

Note that for T > 0 small, the Gibbs distribution concentrates its mass 

on favorable states, that is, states s with small values of f ( s ) ,  and this 

effect is more pronounced the smaller the value of T. One may easily 

construct a Markov chain that has the above distribution as its stationary 

law. As the Markov chain converges in distribution to this law, one may 

run the simulation for a time and find a state of low energy with high 

probability. The greedy algorithm G (N,) is essentially this Markov chain 

run for the case of T fixed at 0, whereas in the limit of high T all states 

are essentially weighted with the same probability and one is moving 

from a state to its neighbors uniformly. 

8 E S  

Of course, by the above mentioned analogy with statistical mechan- 

ics, T here is seen to play the role of temperature, and one may now 

suspect that T may be lowered as the simulation proceeds in order to 

force the system to a state of minimum energy. This idea is due to Kirk- 

Patrick, Gelatt, and Vecchi (1983). As with a physical system, tempera- 

ture may be lowered too rapidly and the system may become trapped in 

a local energy minimum, that is, the algorithm will too closely resemble 

the greedy algorithm G ( N , ) .  A theorem of Geman and Geman (1984) 

shows that if Tn = c/ log n, for c sufficiently large, then the system will 

in fact not be trapped. With this choice of Tn, the algorithm proceeds 

as follows. 

Algorithm S A  ({N,} , s E S): Choose an initial point s1 E S, uni- 
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formly over S. At time n, assume un given. h m  the set N,,, choose a 

point uniformly, say t .  Calculate 

A = f(t) - f (sn) 
NOW, set sn+l = t with probability p = erp( -A+/Tn), and set Sn+l = Sn 

with the complementary probability 1 - p, where 
A + = {  A i f A > O  

0 otherwise. 

In order to implement the simulated annealing algorithm S A  (N,) 
one is required to furnish a neighborhood system N, and a cost function 

f. It is exactly these elements of the algorithm that are problem specific. 

We now turn to a specific problem, and a description of a neighborhood 

system for that problem. 

3. LIN'S k-NEIGBORHOOD SYSTEM FOR THE 

TRAVELLING SALESMAN PROBLEM 

The travelling salesman problem models the salesman who is re- 

quired to visit a number of cities and return home covering minimal 

distance. Let the "cities" c1, c2,. . . , CN be independent and uniformly 

distributed in the unit square [0, l]', and let di,j denote the distance be- 

tween city i and city j .  The finite set S over which we seek a minimum 

is the set of all permutations of { 1,2,. . . , N); a given permutation gives 

the order in which the tour of the cities is to be taken. The cost (energy), 

function f that is to be minimized is the total length of the tour taken 

in the order dictated by the permutation u E S and can be written 
N-1 

f(s) = d,(i),,(i+l) + d.(N),,(l)- 
i- 1 
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This problem belongs to the class of NP hard problems, hence no poly- 

nomial time algorithm for its solution is known (see for example Garey 

and Johnson (1979)). 

In this particular problem, while there is a “natural” choice of an 

energy function, as stated in the introduction there is really no reason to 

believe that f will be prefered to some other function on S that attains 

its global minimum at the same optimal tour, such as fl or f2 for 

example. Given the function f as above, one is now only required to 

choose a neighborhood structure for the set of permutations S. 

In a study of deterministic algorithms for the travelling desman 

problem, Lin (1965) introduced the notion of k-optimality, which gives 

rise to a neighborhood structure for each k. In the terminology used 

here, a tour is k-optimal if it has the smallest cost of all tours in its 

neighborhood. The larger the value of k, the more neighbors any given 

tour will have. For h = 1 a tour is a neighbor of itself only and hence 

every tour is l-opt; for k = N every tour is a neighbor of every other 

tour, and hence only optimal tours are N-opt. 

For fixed k we define a system of neighborhoods M follows. Imagine 

that there is a link between any two cities in a tour. We say that two 

tours are neighbors if one can break k or less links in the one tour and 

reassemble to obtain the other. n o m  this definition it becomes clear that 

two toum are neighbors for k = 2 if and only if one tour can be obtained 

from the other by reversing the order of the cities in a portion of one 

of the tours. For k small relative to N, the number of k neighbors of 

any given tour is approximately (f)w2k. The factor (f) counts the 
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number of ways k links may be broken from the N possible, the 

number of ways the k components of the broken tour may be reassembled, 

and the factor 2' counts the number of orientations possible for the k 
components. The formula is not exact since it ignores the possibility of 

having components of size 1, and so a factor of 2 should not be entered 

for this component; indeed, for k = N all components are of size 1 and 

no factors of 2 enter yielding the correct answer of C$ for the total 

number of possible tours. We have the term N - 1 as we are considering 

the tour to be in a loop, and we may consider it to begin at city 1; the 

factor of 2 takes care of the fact that a given tour and the same tour 

taken in reverse order are to be considered equivalent. For the cases of 

interest below, k is small relative to N and the formula above gives a 

reasonable approximation to the order of growth of the neighborhood 

size in k. 

With the above ingredients, that is, with a cost function and a neigh- 

borhood structure now fixed by a choice of &, we can implement the sim- 

ulated annealing algorithm SA (N#). Our interest below is to determine 

which value of k allows the simulated annealing algorithm of locate the 

minimum quickly. 

4. EFFECT OF NEIGHBORHOOD SIZE ON SPEED 

OF CONVERGENCE. 

Bonomi and Lutton (1984) implemented a version of the simulated 

annealing algorithm with Lin's 2-opt neighborhoods and reported posi- 

tive results. In this study, we are interested in how di#erent choices of 

neighborhood system, that is different values of &, affect the performance 
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of the algorithm. 

In Bonomi and Lutton (1984), N points are laid down uniformly in 

the unit square [0,1l2 as described. This area is then subdivided into 

many smaller subsquares; using a path that tends to a space filling curve 

in the limit, a short path is found that tours the subsquares and the 

algorithm is then run independently among a group of subsquares. We 

will call this procedure “modified simulated annealing” for the travelling 

salesman problem. This modified procedure will speed up convergence 

to the minimum. 

In our study, we consider the unmodified version of the simulated 

annealing algorithm S A  (N,). That is, we study the simulated annealing 

algorithm’s performance as a function of k without the above modifica- 

tion that speeds convergence. We have three reasons for making such a 

study. 

First, the heuristic used in Bonomi and Lutton (1984) is highly - 
problem specific as it relies on the fact that points close together in 

[0,1]* are likely to be close together in the optimal tour. In fact, one 

takes advantage of knowing the average intercity distance in the optimal 

tour (see Bearwood, Halton, and Hammersley (1959) and the discussion 

below) and therefore, a priori, need only consider moves that result in 

intercity distances on this order. In many problems, among them even 

problems such as those in Goldstein and Waterman (1987) that bear 

significant resemblance to the travelling salesman problem, one does not 

have such a priori information about the solution, and therefore cannot 

build a heuristic that uses this information to advantage. Therefore we 
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retain more generality by considering the unmodified algorithm . 

Second, it is preferable not to complicate the outcome of the sim- 

ulation with the choice of some particular heuristic that may affect the 

results of the study in an unknown way. That is, with the modification, 

the choice of k is confounded with the choice of heuristic. In short, our 

second reason for making this study is that throughout, we are more 

interested in the simulated annealing algorithm in general than its per- 

formance for this problem in particular . 
Lastly, even as applied to the problem at hand, if one were to adopt 

the subdivision approach for the travelling salesman problem, one would 

always be solving the unmodified version of the problem on subsquares 

anyway and would still like to be using the best value of k on each sub- 

problem. (In any implementation designed to actually solve the travel- 

ling salesman problem it would certainly be advisable to adopt a heuristic 

such as the subdivision approach in order to speed convergence). 

In most minimization problems, one is not usually given in advance 

the value of the cost function at the minimum. In fortuitous cases where 

this value is known, the information can be used to devise a stopping rule 

for a procedure to halt when it gets sufficiently close to the minimum. In 

addition, this value can be used to gauge how well an algorithm performs 

against such a standard. 

The travelling salesman problem with a uniform city distribution is 

an example of a problem where the value of the cost function is known at 

the minimum (that is, the optimal tour length is known), in a probabilis- 

tic senac in the limit for many cities. (For an example where the value of 
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the cost function at the minimum is known deterministically for any size 

problem see Goldstein and Waterman (1987).) A result of Bearwood, 

Halton, and Hammersley (1959) shows that the length I N  of the optimal 

tour that connects N cities put down uniformly in [0, 112 obeys 

IN lim - = p, with probability one 
N + w  0 

where Monte-Carlo simulation puts the constant p at approximately 

0.749 (Bonomi and Lutton (1984)). Using this result, given a partic- 

ular tour, we can say how far away we are from the optimal tour. 

We now describe the simulation for the unmodified case. As alluded 

to above, the unmodified version of the algorithm is clearly an impractical 

way to solve the travelling salesman problem, particularly if N is large. 

However, the simulation described in this section is valuable as it yields 

a clear pattern for the choice of the optimal neighborhood size k. 

As noted above, if the neighborhood size is small relative to the 

size of S, the Markov chain cannot move around the state space fast 
enough to fhd  the minimum in a reasonable time. On the other hand, 

a neighborhood too large has the algorithm merely sampling randomly 

from a large portion of the state space; this is most clearly seen in the 

extreme case where N, = S. It is therefore reasonable to expect that 

the best value of k furnish a compromise between these two conflicting 

extremes. Furthermore, regarding these considerations, it may be the 

case that the best value of k depends on N, 88 in fact we observe. 

The simulation was run by random number generating N indepen- 

dent and uniformly distributed points in the unit square [0, 112 to serve 



420 

1s - 
12 - 
11 - 
10 - 
9 -  

8 .  

GOLDSTEIN & WATERMAN 

as locations for the N cities. Random numbers were generated using the 

generalized feedback shift register psuedorandom number algorithm of 

Lewis and Payne (1973). For various choices of k a random permutation 

was generated as the initial condition and the algorithm was run with 

temperature decreased as described in section 2. 

As we do not expect to obtain the best tour for any large value of 

N ,  we gauge the effectiveness of a choice of k by running the algorithm 

for a fixed number of iterations and graphing I ,  the value of the best 

tour found by the Markov chain up to this time, versus the value of k 
used in the algorithm. For example with 128 cities independently and 

uniformly distributed in the unit square, we expect the shortest path 

to be of length IN = a ( 0 . 7 4 9 )  = 8.47. We find from Figure 1 that 

after 10,000 iterations and with k = 2 the best tour found w&8 roughly 

18.5 units long, about 10 units longer than the optimal tour, while using 

the value k = 3 we located tours roughly 16.5 units long, about 8 units 

longer than optimal. As the figure shows, using the value of k = 4 for 

this N is markedly wore  than using k = 3. 

I 

i 
I 

7- 
1 2 3 1 I B k  
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FIGURE 1. Length of shorteat tour found In 1O.OOO Itentlons by the almulsted 
annedlng algorithm udng k o p t  neighborhoods for vuious pmblan &e#. 

nom Figure 1, we see that for N=128 or 512 cities the optimal d u e  

of k is 3, while for 2048 cities a k of 3 or 4 performs better than any other 

value of k, and for 8182 cities, the optimal value of k suggested by the 

figure is 5 (or, perhaps larger). It would of course be of much interest to 

quantify in more detail the behavior of the slowly growing optimal d u e  

of k ELS a function of N. 

The results of the simulation above for the unmodified cme recom- 

mend the choice k=3 even for problems of size 128. This suggests that 

an improvement can be made to the procedure in Bonomi and Lutton 

(1984) where the choice k = 2 is used throughout. 

5. CONCLUDING REMARKS. 

The simulated annealing algorithm can be a useful tool to apply to 

hard combinatorial problems, and although one appeal of the algorithm 
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is its apparent universality, one must keep in mind that some care must 

be taken in application as each implementation requires choices that 

essentially determine the actual efficacy of the procedure. 
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