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[52] Computer Analysis of Nucleic Acid Sequences  
By MICHAEL S. WATERMAN 

Introduction 

The increasing body of nucleic acid sequence data has created interest 
among many scientists in computational aspects of data storage and data 
processing. In fact GenBank and other data bases hade been created in 
order to store the data in a useful format, both for archival and analysis 
purposes. (See Burks et a/.' for a review of GenBank activities.) The value 
of simply have easy a m e s  to alJ ribosomal RiVAs, for example, is not to be 
underestimated. The purpose of this article is to examine some of the array 
of tools that have been created in order to look at sequences in a rigorous, 
systematic way, utilizing the power of modern computes. These analyses 
k 3 a n  in the early 1970s and are now becoming more j iwd on specific 
problems such as conscnsus patterns in regulatory xquencts or RNA 
folding. 

The sections below will outline soerne methods of computer anal)sh of 
sequence data The intent is to describe the analyses and to give emphasis 
to the possible utility of the analysis, not to present detailed mathematics 
or computer science of the techniques. Reference is made to papen w h m  
more technical dctaib of equations, pointers, and data svuctum arc to k 
found. 

A great many algorithms have been proposed in recent years. See the 
issues of Nucleic Aci& Reear&-' and the Bulletin of Marhematical 
Biology' devoted to computer methods for a good sample ofthis literature. 
Frequently ideas such as open reading fnme analysis or dot matrices arc 
rediscowred and reimplemented over and over. For this reason I make no 
attempt to survey the literature. Instead 1 uy to'descrik some useful and 
interesting metbods of sequence and+ that utilize the power of com- 
p u t e s  

Sewd different questions might be asked about a sequence. One 
concerns unexpected relationships With other sequences: these discoveries 
are sometimes made by screening a'data base with the sequence; Wilbur 

I C. Burks, 1. W. Fickctt. W. B. Goad, M. Kanchk  F. I. Lrvittcr. W. P. Rindone. C. D. 

: D. Soil and R J. R o k n s  hjKleicAci& Res. 10 (1982). 
J 0. Soti and R 1. Robens, h'uclrit Acid Res. 12 (1984). 
0. Sol1 and R J. R o b  .Vwdeic Acid Rm. 14 (1986). 

9 H. hi. himinu Bull. .Ua:h. Bid. 46 ( 1984). 

Swbdcll, C.6. Tung and H. S. Biiofsky, CIBIOS 1,125 ( 1985). 
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and Lipmad devised a search algorithm based on the computer science 
technique of hashing and theirs is the method of choice for such questions. 
Several groups have implemented versions of their technique. Essentially 
the search looks for exactly matching k-men (usually k - 4 to 6 )  and 
repons regions where the test sequence has a high density of matches with 
the data base. There is no funher discussion of data base searches in this 
article but they should not be overlooked. 

Sequence alignment is a popular computer activity. The computer 
alignments are often based on some explicit optimization function, re- 
warding matches and penalizing mismatches and insertions and deletions. 
Sequence alignment can give useful information about evolutionary or 
functional relationships between sequences. I distinguish two types of 
alignment: ( 1 )  alignment of full sequences and (2) finding segments of 
sequence that can be well aligned. Full sequence alignment should only be 
attempted when it is believed that the sequences are related, from one end 
to the other. If this is not the case, the sequences can be forced into 
incorrect relationships due to the necessity of matching the "dissimilar" 
segments. Lfeel much easier about running a maximum segments analysis. 
that only finds those segments of the sequences matching at or above some 
preset level. 

Consensus sequence analysis is usually done by "eye" and experiment. 
Of course we only believe a protein-binding site when it is wrified by 
experiment, but analysis by eye can be b i d .  So it is useful to have 
computer methods that can find con'sensus patterns best fitting explicitly 
stated criteria. Some algorithms hare been developed along thee 
and they are described h m ,  along with example output. Consensus repeats 
and consensus palindromes within a sin& sequence and among a set of 
several sequences arc analyzed. 

Secondary nmun of single-stnnded nuckic acids is another popular 
computer analysis. For one sequence, tbe minimum energy algorithms 
which employ dynamic programming am the usual method, and I bn'etly 
describe them Mow.  For sets of several sequences which fold into a 
common structure, the comparative or consensus method is very useful. 
The methods that Woese, Nokr, and have so powefilly 
employtd arc now included in an explicit algorithm that is described and 
illustrated on a set of SS sequences 

W. J. Wilbur and D. J. Lipman. Pa. Nal. A d .  Sei. trSA 80,726 (19S3. 
M. S. Wa~ennan. R. Anah, rad D. J. G.hc. Bull. Math Bid. 46, 5 15 ( 1984). 

* D. J. Galas, M. Egg& and M. S Wainnro. J. Md. Bid. 186.1 I7 (19SSE ' H. F. Sollcr and C. R W-. Scincr 21% 403 (1981). 
lo H. F. Sollcr. &nu. Rn.. Biochm. 53, 1 19 (1984). 
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Computer analysis of sequences has some distinct advantages over 
analysis by "eye." The computer analysis must be well defined, explicitly, 
so that the same search can be duplicated elsewhere. Many more cases can 
be examined by computer, and the calculations are done correctly. Inher- 
ent in these advantages are some important disadvantages.. The computer 
will only do exactly what it is programr cd to dc. If the task is the "wrong" 
one, massive and correct calculations c 3 not help. In addition, a machine 
sill not notice a patrern it has not been programmed to notice, something 
at which humans excel. The sequence analyst should be aware of what the 
computer is and is not doing. Computation might be useful but it should 
not stand alone. 

1 

Sequence Comparisons 

The majority of mathematical effort on sequence analysis has k n  in 
the area of sequence alignment. One of the reasons for this is the appeal of 
the basic problem that can be described as follo(vs: Given two sequences 
u - uiu2 . . . u, and b - bib2 . . . b,, what is the minimum number of 
substitutions, insertions, and deletions needed to transform u into b? The 
obvious application in molecular biology is to find minimal evolutionary 
pathways between sequences. The correspondences between u and b are 
usually displayed as alignments where it is easy to see highly consewed 
regions of sequence. 

Applications to many other areas exist and a book has been written on 
the topic of sequence compahns . i l  In computer science there is the 
problem of recognizing mistyped words as well as file comparisons, and a 
large literature exists in that field on the so-caIltd string matching problem. 
Some of that literature is parallel to and largely independent of the biologi- 
cal literature. Transpositions of adjacent letters are conu'dered in computer 
science; in. biology inversions pose related problems. Recognizing the rela- 
tionships between groups of birds b sometimes studied via bird song 
comparisons, as is the manner in which younger birds acquire vocalition. 
In geology, an important class of problems relating stratigraphic sequence 
can best be approached by sequence cornparkon methods. These and other 
applications require careful algorithm development, with attention paid to 
the specifics of the problem settings, 

In 1970 Needleman and Wunscht2 wrote a landmark paper that a p  

. 

D. $ankoband J. B. KnukaJ (&). "Time Wups String Edits. and Macromolmls The 
Theory and PnCricc of String Cornparkon." Addison-Wesley. London. 1983. 

I: S. B. Sedlcmm and Wunrh. 1. dfd. Bid. 48.464 (1970). 
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proached sequence comparison (alignment) through a dynamic program- 
ming algorithm. Their algorithm finds maximum similarity between two 
sequences, where matches receive positive weight and mismatches and 
insenions and deletions receive nonpositive weight. Some mathematicians 
begin to attempt lo define a distance between sequences and so lo con- 
struct a metric space. This search culminated with Sellen,13 who obtained 
the desired results for single insenions and deletions, and with later 
workers who estended his work to multiple insertions and deletions.“ 
While it has been proven that similarity and distance are equjvalent con- 
cepts when matching full sequences,” for certain other problems similarity 
is superior, and I concentrate on similarity here. 

Sellersi6 wrote the first ankles on finding the best matching pieces 
(segments) between two sequences and has continued those efforts. A 
much simpler approach through similarity was taken by Smith and Water- 
man,l’ and an extension” of that technique is prexnted below. 

Matching or aligning entire sequences should be attempted when the 
sequences are known or suspected to be ctcstly related. Even when this is 
the case, an extraordinary number of optimal alignments can result: many 
of these will differ only slightly from one another. I illustrate this klow 
with some recommendations on how to deal with the 6tuation. Most 
sequence comparisons will, however, involve sequences only significantly 
related in pieces, if at all. In how cases a full alignment is not informative 
and tbe madmum segments algorithm is the most appropriate. Thest 
algorithms can produce segment matching which are best, second best, 
and so on; this is shown in examples. 

Aligning Full Sequences 
As explzdned above, what is to be pmentcd is a similarity method for 

sequence alignment. The function s(a,b) is to define similarity beween the 
letters a and b. In the exampks k l o w  matches receive weight 1 and 
mismatches receive - 1, sa that 

+ I ,  ifo-b 
-1, i f Q # b  s(a, b) - 

I)  P. W e n ,  SI.4.44 J. Appl. Math. 26,787 (1974). 

Is M. S. Watamm. Bull. Math. Bid. 46,473 ( 1984). 
‘6 P. Sellen 1. .4lgorirhmr I, 359 (1980). 

M. S. %‘atennm, T. F. Smith, a d  W. A. +r, Ah. Math. 20,367 (1976). 

T. F. Smith m d  M. S. U’atennan./. A h / .  Bfd.  147, 195 (1981). 
M. S. U’atennan and M. Eggm, J. J4d. Bid. 197,723 (1987). 
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Deletions of length k receive weight 
algorithm is based on recursively computing a matrix S. First 

and below only xl is used. The 

Soa - 0, 

SoJ'-xj, 1 s j 5 m  
Si.o--xI, 1 s i s n  

Then 

~ 

Si., max{Si- I.,- I + S(OIobj), m a k a  *(Si+& - %)v mmkr I{Si-kj - .rk)) 

For single insertions and deletions only, 

Si/mmax(SI,l.j-r+S(O,.b,),S,-ij-xI, Skj-1 --yJ 

The idea of these calculations is that S,J is the maximum similarity of 
uluz . . . a, and b,bz . . . b,. This is why for example, SoJ = -xj.  The 
recursion is baxd on the ways an alignment can end: 

. :. a, 

... bj 
corresponds to S,, IJ-l SL ~(o,, b,) 

and 
... - 

corresponds to SI,,- I - xI . . .  bj 
and 50 on. 

When n - m, the multiple insertion and deletion program mns in time 
proportional to n3, while the single insenion and deletion program runs in 
the much p r e f d  time n2. Fortunately, when the function xk is linear in 
k, ik = a +/3.&, the running time" can still be made n2. Multiple inser- 
tions and deletions are important as adjacent bases are deleted or inserted 
by one event and should be weighted accordingly. 

Alignmenu can be produced from the matrix by two methods. One is 
accomplished by dving pointen at each matrix entry @at indicate what 
events were nmSfary to calculate S,. Then beginning at S,, pointers an 
followed to Go, producing the optimal alignments. The second technique 
is, at each matrix entry beginning at Sa,, to recompute to see which events 
produced the entry. Both methods take little time in comparison with the 
matrix construction. 

For the examples, I first align 5s Escherichia coli (rmS operon)" with 

I* V. .4.'Erdmmn. E. Hupman. A. Vandenk. and R De WacLer. h'tu/eic Acids Res. 11. 
t I OS ( 1983). 
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the cloxly related 5s Beneckia Itaneyi.N As mentioned above. 
+ 1 ,  i fa==b 
- 1 ,  i f a # b  

Nu. 6) 5 

and s, = 2. (.uk 5 a, k 
allowed.) The two sequences have similarity of 76 with alignmen1 

2, 50 that only single insenions and deletions are 

There is a second optimal alignment, which results from simply changing 
c- 10 -c 
UU uu 

For a second example, I align 5s E. coli with the more distantly related 
5s .\fycopiasma capricolum.=' H e n  the similarity is 22, with 52,020 differ- 
ent but optimal alignmenu. One of these 52,020 is given next uith the 
portions common to all alignmenu in boxes. 

, 
UGCCUCCCCC;CAGUAGCGCGGUGCUCCCACCUGACCCCA~GCCGAA~'C.4G.4AG~GAA.4CGcc 
U---W;GLYiCUA-UAGCAUAGAGGUCACACCUGL'UCCCAUCCCGAACACAGAAG~~AAGCtCU 

Obviously 52,020 alignmenu are too many to look at individually. The 
idea of displaying features common to all alignments is a minimal a p  
proach for d d n g  wjth these difficultiek As will be seen in the next 
section, a maximum segments algorithm will product much of the same 
information. 

Marimum segments 
This i t  a prcfemd method for explorirlg sequence relationships if com- 

puter time is available." See Smith ef a].= for a data base search with the 
algorithm. It consists of a simple alteration of the preceding method. The 

~lLRR.LuehneaandG.E.Fox.J.Md.Erd.17,52(198lI. 
'I H. H d  M. slurdr, S. Osaur, K. Muno, and H. Irhikun. .Vueleic Ad& Res. 9. S W  

3 T. F. Smith, M. S. Watuman, and C. Burls, h'ucleie.4d& Res. 13.645 (1'982). 
(19SIl. 
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recursively defined matrix here is Hand  recursion begins uith 

Notice that a simple addition of Os in the boundary conditions and 
recursion is the only change from the definition of S. These simple changes 
have the pleasant e f k t  of causing HIJ to be the maximum similarity of all 
possibie segments ending in ai and bj. 

After the 1981 Smith- Waterman algorithm1' much work has gone into 
finding second, third, . . . best segment Fortunately there is 
also a simple, useful solution to this question. There is no problem with the 
observation that the best segment matching is associated with the entries 
where maxuHu is achieved. Since large entries influence the entries 
nearby, it is not cicar whether or not the second-best matching is near the 
fir? or not. One way to make cemh of finding the second bcst is to 
recalculate the matrix, only this time no match, mismatch, insertion, or 
deletion from the maximum segment can k used. With single or linear 
insenion and deletion functions, only a small part of the matrix need be 
recomputed. 
. To illustrate the algorithm,11 I compare the sequences 5s E. culiand 5s 

Mycoplasma capricolum as above. There the similarity was 12, with 52,020 
different but optimal alignments. Asking for all nonintersecting segment 
alignments with score 10 or larger produces two alignments, the fim with 
score 29 and the second with score 11: 

. 

~GCCCC~CAGUAGCGCCCUGUCCCACCUGACCCCAUGCCGAACUCAGAAGUGAAA~~GCGAGA - 
U<jCUCC~.~-U~GCAUAGA~UCACACCUG~CCCAUGCCGAACACAGAAG~AAAUGUGAGAA 

G-UAGGGAACUGCCAG 
GAUACCAAGCUGCCAG 



t 
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' These t \vo segnicnt matchcs comprise most of !he alignment lhnt  is corn- 
nion to 311 52.020 optimal full sequcncc alignnicnts. 

A ponion of lhc firs1 matns calculation is given in Table 1. No rccalcu- 
lation h3s k e n  done so that the reader can check underslanding of  the 
niel hod. 

As 3 final example, 5s E. coli is compared to E. coli Phe-1RNA. This 
second sequence (from GenBank) is CCCGGAUAGCUCAGUCGG 
UAGAGCAGGGGAUUGAAAAUCCCCGUGUCCUUGGUUCGAUU 
CCGAUCCGGGCACCA. There are five segment matches with scores 
greater than or equal to 6. Each is shown, SS on top, with sequence 
position numbers indicated. Two segment matches have score 5: 

99 AGAGUAGGGAACUG 
20 .4G.GCAGGGG.4UUG 

65 C.GCGCCG.kUGGUAGUGL1GGGG 
07 UAKUCAGUCGGUAGAGCAGGG 

The remaining three segments have score 6: 
89 UCCCCAUG 
58 UCCCCGUG 

13 GUAGCGCGGUGG 
18 G U A G A W G G G G  

? 4  L ! A K G C a u G G u  
07 U.~GCKAGUCGGU 

Consensus Patterns 

Perhaps the most important, certainly one of the most dificuh, tasks of 
genetic sequence anal?& is that of finding unknown patterns that occur 
i m p e d d y  among a set of sequences or within a single sequence. Usually 
these searches a n  for approximately conscmd regions that have func- 
tional significance. If the patterns are exactly anscmcd they are easily 
found; this it frequently not the case. Thesc consmed patterns indude the 
famous boxes such as TATAAT in bacterial promoten and CAAT in 
eukaryotic promoters, as well as enhancer and other sequences. Generally, 
gene regulation seems to involve some rqxated protein binding sites. The 
q u a * o n  treated in this section is bow to search for these unknown pat- 
terns. 

When the problem is to locate shorter unknown patterns that occur 
imperfectly among a set of several sequences, the task seems hopelew due 
to the combinatorial nature of dgning many sequences. Aligning 10 
sequences With 10 possible positions or shib per sequence gives a total of 
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TABLE I 
MAXIMUM SEGMENTS MATRIX FOR 5s E. co!i ASD 5S .WycopIasmo capricoohrm 

U U G G U G G U . 4 U A G C A U A G A G G U C A C A C  C U G 
- 

u l l o o l o o l o l o o o o l o o o o o l o o o o o  0 1 0  

c 0 0 0 1 0 0 I 0 0 0 0 0 2 0 0 0 0 0 0 0 0 I 0 1 0 1 1 0 0  
c 0 3 0 0 0 0 0 0 0 0 0 0 1 I 0 0 0 0 0 0 0 l 0 1 0 I 2 0 0  
u I I 0 0 1 0 0 I 0 1 0 0 0 0 2 0 0 0 0 0 - 1 0 0 0 0 0 0 3  1 
G O O 2 l O 1 I O O O . O I O O O I I O I I O O O O O O O 1  4 
G 0 0 I 3 I 1 3 1 0 0 0 1 0 0 0 0 2 0 I 2 0 0 0 0 0 0 0 0 2  
c 0 0 0 1 2 0 1 2 0 0 0 0 2 0 0 0 ~ 0 1 0 0 1 1 0 1 0 l  1 0 0  
G 0 0 1 1 0 3 1 0 1 0 0 I 0 1 0 0 1 0 2 I 0 0 0 0 0 0 0 0 1  
G 0 0 1 2 0 1 4 2 0 0 0 I 0 0 0 0 I 0 1 3 1 0 0 0 0 0 0 0 1  
c 0 0 0 0 1 0 2 3 1 0 0 0 2 0 0 0 0 0 0 l , 2 2 0 l 0 l  I O  0 
A O O O O O O O l J ' 1 O O 3 1 1 O I O O O 1 3 1 2 O O O O  
G 0 0 1 1 0 I I 0 2 3 1 2 0 1 2 0 2 0 2 1 0 0 I 2 0 I 0 0 I  
l 2 1 1 0 0 2 0 0 2 0 3 2 0 1 0 2 1 0 1 0 l 2 0 0 0 1 0 0  I O  

c 0 0 l 1 0 I 2 0 1 2 2 5 3 1 1 1 4 2 2 1 0 0 0 0 0 0 0 0 1  
C O O O O O O O 1 O O ~ 3 6 4 2 O 2 3 1 l O l O l O l  1 0 0  
G O O I I O I I O O O O 2 4 5 3 1 I 1 4 2 O O O O O O O O I  
c 0 0 0 0 0 0 0 0 0 0 0 0 3 3 4 2 0 0 2 3 ) 1 0 1 0 1 1 0  0 
G 0 0 1 1 0 1 1 0 0 0 0 1 1 2 2 3 3 1 1 3 2 0 0 0 0 0  0 0 1  
G 0 0 1 2 0 1 2 0 0 0 0 1 0 0 I I 4 2 2 2 2 1 0 0 0 0 0 0 1  
w I 1 0 0 3 ' 1 0 3 1 1 0 0 0 0 1 0 2 3 1 1 3 1 0 0 0 0 0  I O  
G 0 0 2 I 1 4 2 1 2 0 0 1 0 0 0 0 I 1 4 2 1 2 0 0 0 0 0 0 2  
C 0 0 1 3 1 2 5 3 1 1 0 1 0 0 0 0 1 0 2 5 3 I I O O O  0 0  I 
U I I 0 I 4 2 3 6 4 2 0 0 0 0 1 0 0 0 0 3 6 4 2 0 0 0 0 I 0  
c 0 0 0 0 2 3 1 4 5 3 1 0 1 0 0 0 0 0 0 1 4 7 5 3 1 1  I 0 0  
C 0 0 0 0 0 l 2 2 3 4 2 0 1 0 0 0 0 0 0 0 2 5 6 6 4 2  2 0 0  
C 0 0 0 0 0 0 0 1 1 2 3 l 1 0 0 0 0 0 0 0 0 3 4 7 5 5  3 1 0  
A 0 0 0 0 0 0 0 0 2 0 3 2 0 2 0 1 0 1 0 0 0 1 4 5 8 6 J 2 0  
C 0 0 0 0 0 0 0 0 0 1 1 2 3 1 1 0 0 0 0 0 0 1 2 5 6 9  7 5  3 
C 0 0 0 0 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 0 0 1 0 3 4 7 1 0  8 6 
W I  1 0 0 1 0 0 1 0 1 0 0 1 2 3 1 0 0 0 0 1 0 0 1 2 S  8 1 1  9 
G 0 0 2 1 0 2 1 0 0 0 0 1 0 0 1 2 2 0 1 1 0 0 0 0 0 0 0 3  6 9 1 2  
A 0 0 0  1 0 0 1 0  l o l o o l o 2  I 3  I O 0 0 1 0 1  I 4  7 1 0  
C 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 2 0 0 1 0 2 0 2  2 5  8 
C O O O O O O O O O O O O l O O O O O O l O l O l l l 3 3  6 
c o o o o o o o o o o o o I o o o o o o o o l o l o 2 2 2 4  
c 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 I 0 1 3 1 2  

u 1 1 0 0 1 0 0 1 0 2 0 0 0 0 3 1 0 0 0 0 l 0 0 l 0 1 0 2  I 

~ 3 O 1 I O ~ I O O O O I O O O O 1 ~ I I ~ ~ ~ O O O O O 2  

A O O O O O l O O 3 1 j 2 O f O 3 1 I O O O I I O I O O O O  

A O ~ ~ O ~ ~ ~ ~ 1 ~ 1 0 ~ 2 ~ 1 ~ 1 ~ ~ ~ ~ ~ O ~ O I ~  0 
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. .  

1 0 ' O  possible alignments. This is at the limits of computability of modern 
computers with no consideration given to sequence length or to analysis of 
the alignments themselves for consensus patterns; any larger problem is 
clearly impossible. This is an instance o r a  so-called combinatorial explo- 
sion. Fortunately, recenily developed methods' are able to find these con- 
sensus patterns in reasonable time for large data sets. 

The first problem type considered is consensus patterns in a single 
sequence. Solutions are available for the "best" consensus repeat or palin- 
drome. The found patiems are not allowed IO overlap, and all patterns of a 
chosen word size (k) are considered. Mismatches, insertions, and deletions 
are allowed; the algorithm can locate a consensus word not actually occur- 
ring in the sequence itself. The second problem type is repeating words or 
palindromes between a set of sequences. In either case the analysis is more 
often limited by storase than by computation time. All 4'[ words (patterns) 
of length k are stored for DNA and RNA; in proteins the storage is 20k. 
Thus this analysis is suitable for smaller patterns. 
Single Sequence Parr erns 

Under consideration first is finding a given length consensus palin- 
drome in a single sequence. The procedure described here will locate the 
best nonoverlapping palindrome. If overlapping patterns are of herest ,  an 
easy modification wjll allow that option. Actually there are two problems 
of interest: (a) that of finding nonoverlapping palindromes of some given 
length, regardless of composition, and (b) that of finding a specific (but 
unknown) palindrome of giwn length. It is important to allow some 
amount of mismatch in these patterns. Examples are 

GAGGGCTCilTTATATGAGTmACWTGG (2) 

C . ~ A C G T ~ % A T A C ~ A ~  (b) 
where in (a) t h m  nonidentical palindromes (allowing one mismatch) are 
marked and where in (b) three versions of MCGTT an marked. The 
second probkm is more d i f h l t  and k discused here. 

The following method Seems natural but has serious flaws: take each 
word of the fixed length actually occumng in the sequence and, if it is an 
approximate palindrome, use it as a template along the entire sequence to 
see if it has any other approximate nonoverlapping occumnces There are 
two difficulties with this naive procedure. ( I )  Such a method takes com- 
puting time proportional to the square of the length of the sequence times 
the pattern length. (2) It is frquently the case that the best consensus 
palindrome never exactly OCCUK En the sequence. While (2) is the most 
important objection, it is overcome by an algorithm which has computer 
time linear with sequence length. 
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Initially the length of palindrome of interest must be chosen. Odd- 
length palindromes of length 2k + 1 are of the form 

x,x, . . . . . . Y*Y, 
where x', = Y,  (x = T ,  etc.), N = (A, T, G, C), while even lengths of 2k do 
not have the h; in the center. Therefore all length 2k + 1 or length 2k 
palindromes can be encoded by 4k patterns. 

Now the word w - ATTCCG.4T is considered to illustrate the ideas. if 
up to three mismatches (mm) are allowed, the following palindromes are 
within the neighborhood of w. 

Len01 6 Palindromes mm from w - ATTCCGAT 

ATTATMT 3 
A r r r A M T  3 
ATC.4TGAT 3 
ATCTAGAT 3 
ATAGCTAT 3 
ATGGCCAT 
ATACGTAT 

3 
3 

ATGCGCAT 3 
ATACGTAT 3 

Obviously the situation is more complex if for example the mismatch 
level is raised to 5. Here, for example, the pair X,  Y, * A T can be 
altered, for example to G C, giving an additional two mismatches. This 
general idea of finding a neighborhood of exact palindromes within mm 
mismatches of an existing word of the sequence is the basis on which the 
palindrome algorithms are built. 

Consider the problem of finding the palindrome pattern of length 2k 
(or Zk+ I )  that occurs most frequently, nonoverlapping, in the given 
sequence. Of course none of these OccurnnceS needs be exact so a weight 
I., (c) can be introduced for a word o that is a fixed number of mismatches 
from a given palindrome H'. Here if there are mm mismatches, 1. = mm/ 
(word length). Let S,(i) be defined by 

I S,( i )  = ma.. (2J.J ~ 9 )  
1 when the sum is over nonowlapping words o of the sequence 

uIu2 . . . am. Suppose S,( j )  is known for 1 5 j 5 i and all w*. Then to find 

c 
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plindromcs of length 2k 

S& + I )  = max(S..(i): S& - 7 k )  + ~ . . ( ~ l ~ - ~ + ~ n , - ~ + ~  . . . a,)) 

The consensus word has Ihe maximum value of  S,.(n). 
This formula shows that the calcula~ion is linear with sequence length. 

an estremely valuable feature. If an overabundance of palindromes (not 

50 sa 40 38 20 10 
1 ~ 5 2 1 ~ 7 ~ ~ 3 2 1 ~ 3 2 1 ~ ~ 1 8 9 8 7 ~ 3 2 1 8 9 9 7 6 5 0 3 2 1  
~ g u o g c g c c ~ ~ g u o g u g u g Q ~ g u c u c c ~  - . g g e o c u g c c ~  

Ro. 1. Coruensur panem in E di 5s RNA. b number 120 is the S ' e d  of the 
su4umcc. (a) The. result of a vuch fix bkta mu, dowing one mismatch. Tbe pnem 
GUAGUG occurs 6ve tima with a sore of 4.33, and the venions of the pnaa arc shoun in 
Iowa ase  knuz (b) The result of a Kvcb for (r-kner pplindromes, allowing up to three 
mismatches. The palindrome F U G G C  occurs eight dma wilhin the mirrnatcha ai- 
Id (c) The result of a search for 9-lctta pdindiomer, ailouing up to three mirmrtcha 
The palindrome GGCMVGCC b found seven t i m a  
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iecessarily identical) is of interest, the above procedure is easily applicable. 
The neighborhood calculations need not be done, only counting of com- 
plementary pairs in the word. 

Very similar, althou& somewhat simpler, concepts can be applied for 
an algorithm that finds consensus fixed-length repeats in a single sequence. 
This completes discussion of concepts for a single sequence and these 
algorithms are now applied to SS E. coli. See Fig. 1. 

Muliiple Sequence Patrerns 
Much the same ideas from the single-sequence case are employed to 

study consensus patterns in a set of sequences.'** The basic parameten of 
the method are a window width W, word size*k, and the level of mis- 
matches allowed. (Insenions and deletions can be included in the method.) 
With the window positioned on the sequences, the search finds the highest 
scoring word where each word w is given its highest score j&), occumng 
within window Win sequence i. The scon of w b 

S( w) = X,jJ(w) 

, 

and the object is to find the winning word W* 

S( w*) - rnaxJ(w) 
For each window position, S(w*) is plotted, and the resulting data can be 
graphed and examined for fcaturcs of interest. Patterns in the sequences 
that compond to the score S(w*) can be displayed. 

W I ~ J L ~ W  rvLt;lr*n 

FIG. 2. Consensus pattern scores for a set of 30 E. mfi promoter sequencer digned on 
3131-1 site. with window size 9. word size k - 6. and up to 2 mismatches allowed. The graph 
+a score wrsus position of right edge of window. The psition. scores. and ptlernr crr~tin# 
the scores can be d i m l y  related to the rcqucnm themselves. 3nd the graph gbm dirmion to 
directly studying the sequences. See Fig. 3. 
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FIG. 3. The sequencer and patterns crating the two major peaks in Fig 2. The right-hand 
pattern has =re 21.E3 and is the famous - 10 consensus, TATA4T. The left-hand pattern 
has rorc 17.17 and is the - 55 consensus panern. 

It is con\mient to understand these methods with an example. .4 subset 
of 50 E. coli promoter sequences/‘ is aligned on known mRNA start sites. 
The sequences are approximately 60 bases long. They are analyred with 
IY= 9, k = 6, and maximum mismatches mm = 2. The resulting plot 
appean in Fig. 2. The sequences, their descriptions, and the patterns 
causing the highest peak appear in Fig. 3. The rightmost pattern is 
TATAAT (the famous - 10 pattern) which has 8 exact pccumnces, 1 1  
with I mm, and 7 with 2 mm. The leftmost pattern is the -35 pattern, 
which has its strongest representation in these data as TTGCCA; it has 7 
Occurrences with 1 mm and 17 with 2 mm. 

It is possible to analyze the sequences with the sequences written in the 
RY, or any other alphabet. There arc no pattans found in the RY alphabet 
which an not found in the usual four-lata alphabet. 

Finally, u’milar ideat can k used to find consensus palindromes in a set 
of sequences. Since protein-binding shes sometimes are palindromes, this 
is a useful tool. 

. 

D. K Hawrly a d  W. R. McClurc, h’uclrk A& Re. 1 I, 2237 ( I  983). 

e c 
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Secondary Structure 

The first tRNA sequence by Holley er aLZ5 in 1965 was published with a 
secondary structure inferred from the sequence. Since that time many 
other secondary structures have been presented and the problem of how to 
estimate stmcture by experimental as well as theoretical techniques has 
frequently been addressed. The current structures of 16s and 23s RNA 
were found by a combination of both appro ache^.^.'^ Here of course I 
restrict discussion of computer methods for prediction of secondary struc- 
ture. 

Two major approaches have emerged for the computer analysis. The 
first employs dynamic programming, in an algorithm clostly related to the 
sequence comparison algorithms presented above. Tinoco er ai." pre- 
sented a base pair matrix [with (iJ) entr), = 1 if base i Will pak base j ]  
which led them to consideration of minimum energy stmctures. Dynamic 
programming algorithms came later and are the current method of choice 
for a single sequence. The second class of methods employs consensus 
ideas, tracing back to early deduction of a common tRNA str~cture.2~ 
W-, Noller, and colleagues have advanced and refined these methods, 
and I discuss a mathematical version of this consensus analysis below. 

If the data consist o f a  single sequence then the dynamic programming 
approach is recommended. On the other hand, if the data an a set of 
sequences suspected to have common suuctural elements, then the con- 
sensus method can succnd in cases when dynamic programming cannot. 

Folding by Dynamic Programming 

. The application of dynamic progmmming to secondary structure pre- 
diction war begun by two groups. The approach of one group had the 
advantage of incorporating general loop, bulge, and base pairing f m  en- 
ergy functions: the disadvantage was the building up of complex stmctum 
from simpler ones.- The other group did optimization in one pass but 
only found stmctures with maximum base pairhgm 

Since the presentation of the first algorithms, Zuker has betome the 

R. W. Hollcy. 1. Apgar. G. A. Everett J. 7'. Mdison. M. Marquisee. S. H. Merrill. J. R. 
Pentwick. and A. Zamir. Science 147. I462 (1965). 

:* 1. Tinoco. 0. C. Uhlenkck and M. D. M n e .  .Wure(London) 230,362 (1971). :. hl. Levitt Xature (Lond04 224,759 (1969). 
=ht.  S. Walcnnan. Ad*. Math. Suppl. Studies I, 167 (1978). 
9 hf. S. Watmnan and T. F. Smith. Mut .  Bios& 42.257 (1978). 
10 R. Suuinov. G. Picctenik. J. R. G r i m  a d  D. J. Weitman. S1.W J.  Appl. Mad.  35.68 

( 1978). 
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leading figure with his usdul dynamic programming codes (see Zukcr and 
Sankoff for a He has combined realistic energy functions into a 
single pass algorithm that is quite efficient. His program runs in time 
proponional to n', where n = sequence length, and it requires storage n2. 
Fully rigorous prediction takes exponential time (which is unacceptable) 
and ti2 storage. Recently it was shownJ2 that, by increasing stonge to n3, the 
exponential time can be reduced to n'. None of this should deeply concern 
someone with a sequence to fold. Zuker's efficient and useful code is 
recommended. 

To understand why complicated programs are needed IO srudy RNA 
folding. I briefly consider the number of candidate s~ructures.~~ If F(n) is 
the number of secondary structures for a sequence of length n. it is r: quired 
that F(0) = F( 1) - F(3) = F(3) = 1; that is, there must be at least 1 bases 
in an end loop. Since secondary structures do not include knorred struc- 
tures, a recursion is obtained: 

F(n + I )  = F(n) + F(j- l)F(n - j ) ,  n 2 3 
Isjrn-2  

This formula counts all possible structurq forcing pain berueen base j 
and base n'+ I .  The recunion can be sho\\d3 for large n to behave like 

F(n)a[( I + J ~ ) / x ] ' % - ~ ' ~ (  1 + J2)" 

For n - 1 50, F(n) t 1.2 X 1 Os. Even sith all allowances for the overcount 
as compared to real sequences, there large numbers show that an algorithm 
is needed. 

Surprisingly, the dynamic programming algorithms arc based on logic 
u'milar to that for the counting. The maximum number of base pairs 
algorithm go# Iike this: let M,J - maximum number of base pain in the 
sequence segment from base i to base j. Take M,, known for 0 S i,j S n. 
Then add base n + 1. I t  in the optimal structure base n + 1 is unpaired, 
M1,+I=.441,.0therui~,basen+l ispaindtoj,u4en lsjSn-2. 
Then 

M1,+1- -UIJ-l+ 1 + &, 
Here the 1 counts the new base pair ktwccn j and n + 1, while the other 
twu terms arr optimal for the other two pieces of sequence. To coUect this 
into a recursion, let S, = 1 if bases i and j can pair and 0 otheruise. Then 

MtJ - maxw,,; ~ ~ l s , s ~ - z ~ ~ l J - ,  + 1 + J~+laVl,Jl 

M. Zukw a d  D. Sankofil Bull. Math. B i d  4 , 5 9 1  (19841 
sa M. S. Waaumrn and T. F. Smith. A h .  A&. Math., 7,455 (1986). 

P. R Stein and M. S. Witenam,  Di#rrrr Math. 26,261 (1978). 
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C U  
c' c C A  

G / C  c c c 
c' c c 11 c C 

C C C A A c /  C C G C C C  C U G A  c 
C 

'C 
1 1 1 1  

G A C U  
1 1 1 1 1 1  A 

' G A G A G F  U C C C G C  

' A  C c  
c, G A A A 

U , "  A C A A A 

G u c  c c  A 

G C  
c c  A\ IV c\ u 

C Y  u c  
A G  c, 'G 

U G  
c u  

FIG. 4. A secondary mrtute  for E coli 5s RXA. 

All the complication of algorithms, coding, and running times comes in 
converting this simple, elegant idea to handle the various free energy 
functions d a t e d  with base pain, bulges, interior looor and multi- 
branch loops. This is a difficult task! 

Folding by Consensus 

The consensus methods of folding arc sometimes referred to as compar- 
ative methods. Lcvittn in 1969 gave an analysis of the known tRNA 
sequences by this approach. In contrast with his i m p d w  results, the 
dynamic programming codes currently fold about 50% of tRNAs into a 
cloverleaf. More recently, comparative methods were used by Woex. 
Noller, and c ~ l l e a g u e s ~ - ~ ~  to solve 16s and 23s stmctures. I now describe 
programs and mathematics IO fold a set of RNAs. The ideas are based on 
the insights of Woesc and Noller but differ from their methods by being 
able to perform systematic, complete, and explicitly defined searches. 

The, algorithms will be illustrated by 34 5s sequences from E. coli and 
related sequences that were obtained from a collection of Olscn and Pace 
and which can be found in GenBank. A 5s model for E. coli is taken from 
the literature" and is shown in Fig. 4 for reference. 

B. L w i n .  "Gcna" 3rd Ed. U'iky. New York. 1987. 
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This analysis is v c v  different from dynamic programming: liere i t  is 
desired to find many "common" helices of a cenain size and quality. No 

'minimum energy calculations we made. The base pairs A U, G C, and 
G * U are dlowed. These helices are ailowed to shift in location with 
reference to the sequences in some fixed alignment. Two windows are 
placed on the sequences and it is these windows which determine the 
shifting. For example with 

U'ISDOW 2 
CCGU ......... 

the &base pair helix 6 " s  is formed and the patterns could appear any- 
\\here in their windows. Window positions determine approsimate helix 
position while window width derermjnes the amount of shifting allowed. I t  
is not required that the' helices in the various sequences be composed of the 
same base pain. These features wil l  be illustrated with the 5s sequence set. 

The sequences must be aligned initially. Obvious features to align on 
2re the right and left ends of the sequences. This can be done in three ways: 
( 1 ) align on left ends, (2) align on right ends, and (3) align on both ends, 
leaving saps in the center of the shorter sequences. Other features to align 
on include known bioiogkal features or highly significant long patterns 
common to all the sequences. In our sequences such a pattern (cgaac) uill 
prove useful. These various alignments are explored for common patterns 
of folding. f 

In Fig. 5 ,  the longest common pattern is seen to be cga, shown in 
Jowercasc letters in the figure. The pattern cgaac is in 32 of 31 sequence 
while ccgaac is in 3 t of 34. Notice the small amount of shifting to achieve 
the alignment. The expected length E common to 32 of 34 random se- 
quenccslS is given by 

and u 9 0.29 with all logs to the bare 421 Therefore cgaac OCCUK almost 8 
us above expected. 

The fim analysis of secondary structure now takes place. There are 
many ways to place two windows on the sequencer To organize the 
analysis, 6rst fix the sepqation of the windows First with no (0) separa- 
tion, k., adjacent windows, move the two windows across the sequence 
set. Then increase the separation, moving across the set at each fixed 
separation until the windows arc at the maximum separation. In each 
position the number of helices found is ploncd. Mifirs  arc allowed. Thus 
each separation produces a graph. All these graphs arc supm'mposed so 
that i n t d n g  peaks, representing a larger number of helices, can be 
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Joc3ted. As is sccn below. this is 3n ovcrwhrlming amount of information. 
To handlc these data. thcn. i t  is possible to move bctwcen graphs and thc 
sequences to observe which sequence patterns produced the peaks. 

With the 34 sequences in the alignment of Fig. 5. the algorithm is run 
with a window of 8, a helix size of 3. and no mispairings (mm = 0). The 
superimposed graphs are shown in Fig. 6a and several interesting peaks 
show up. The lefimost of these peaks is the result of helix I11 (see Fig. 4). 
and one of the graphs with separation 9 is shown in Fig. 6b. A sequence 
pattern or set of helices producing the highest peak in this gaph  has score 
3 1. so that all but three of the sequences have ihis pattern. 

By allowing two mispairings, the alignment shown in Fig. 7 is pro- 
duced. This method of representing helices in secondary structure by 

1 
window Poridon 

b 
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parcntheses is unambiguous: for example. 
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5' ( ( (  1 )  0 1 3' 
represents the 5s structure of Fig. 3. The highest peak of Fig. 6a corre- 
sponds to helix I1 and this helix is added to the alignment in Fig. 8. 
Actually a helix of 6 base pairs fits best and mm = 1 is allowed. Three of 
the sequences do not obtain a helix according to these criteria and conse- 
quen~ly do not have parentheses inserted. 

The peaks of Fig. 6a which are the third highest group. those at  the 
nghtmost of the plot, correspond to helix I, while the founh highest group 
corresponds to helix IV. Helix IV has 8 base pain and all but one sequence 
has a helis u i th  three or less mispairs. The final folding is shown in Fig. 9. 
The folding is achieved in an iterative manner: longest common pattern, 
helix 111. helix 11. helix IV, and finally helix I. Frequently finding one 
pattern assists in finding another. 

It must be emphasized that the main concern here has been consensus 
helices and not simulraneous folding and alignment. These activities 
should properly be done together or iteratively as Woe= and Noller do. 
Whenever there were multiple choices for a folding pattern the choice here 
is that giving the "best" consensus alignment. Clearly, additional work is 
needed to make the criteria more explicit. 

\Yhat about additional folding patterns? This can be approached using 
the folded sequences. For a brief look, set JY= 10 and helix sire 4 with no 
nispain allowed. The major helices I-IV already discussed are labeled in 
Fig. 10 and some other intereshg patterns are labekd A, B, and C. These * 

hbdnbr P*IW* 

FIG. 10. Graphs of folding scorn varur window position on the scquenca Jiyrcd as in 
Fig 9. with window size 10. helix length 4, and no mirpsia palu 1-IV cormpond 10 the 
found helices while A, &.and C we= not obraved d i e t  in this uul)rir 
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tlirce pedis are all produced from intcractions with the 5' part of helix I 
(see Figs. 1 I - 13). While I do not tske the space to do so, an exlrcmciy 
dctailed study of tertiary structure is possible. 

Conclusions 

I have by no means discussed all the topics that are important to 
computer analysis of sequences. Several others come to mind: statistical 
approaches to significance, consensus repeats for large patterns. and align- 
ment of many sequences. I will give some thoughts on these topics in this 
section. 

The issue of biological venus statistical significance frequently comes 
up. Biological significance is the goal here; all that statistics can do is 
provide hints about what might be taken seriously. Sequences can be 
viewed as satisfying some model of randomness, such as uniform and 
independent bases, and the analyst might ask whether some absented 
pattern is the result of sequence conservation or simply is to be expected 
from sequences satisfying the model of randomness. Since each person 
doing the analysis might view randomness differently, there is  a prolifera- 
tion of different simulation techniques. I prefer simple assumptions of 
randomness, since for maximum sqmcnts problem3 they have been 
shown IO model the matching of unrelated real sequences." There are two 
theoretical approaches that are useful. The first is the theory of large 
de\iations, which is extensively discussed by Galas et of.' This theov is 
appropriate when there are a large number of short sequences. When long 
sequences are matched, the recently developed extreme \*slue theory pro- 
vides excellent information about longest matchings between the se- 
quences.u This so-caUtd log(n) theory is discusxd.in Watennan.lS While 
these theoretical approaches can be very uxhl, simulation is oAen resorted 
to because of sequence compliations. For example, the E. cofl promoter 
sequences have varying sequence cornposhion and this complicates the 
large deviation theory. Fonunately, the distributions of the quantities of 
interest, such as highest peak or maximum segment score, do not have 
large variation, and a fcw simulations can give a good picture of the 
maximum expcacd from random sequences. 

The algorithms that produce the consensus repeats analysis reported in 
this article depend on storing all patterns of interest. The methods do not 
g e n d i ,  for example, to finding 72-base pair repcats. What I can suggest 
is dong the lines of a study in progress with I. Wool, J. McNally; and 
R, Jones that is concerned with 15- to 25-letter repeats in a large set of 
nbosomd protein sequences. We UK each pattern of appropriate length 
actually occurring in the sequence set. Then we find the most oAen repeat- 
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ing sequence word. We use the found occurrences to rnodifL the pattern 
and iterate. While this can hardly be said to be a highly efficient search, it is 
effective and much more informative than the usual approaches that try to 
analyze many pairwise comparisons. 

Finally, I bring up the old problem of the alignment of many sequences. 
In the realm of dynamic programming, the usual combinatorial explosion 
sets in. and even three sequences are almost beyond reach. A solution can 
be based on the consensus word between many sequences, and an algo- 
rithm can be constructed to ghe  the maximum sum of scores of consensus 
words. This practical is very useful for multiple sequence 
alignment. 

The computer analysis of nucleic acid sequences has produced some 
interesting mathematics, and some algorithms and programs useful for 
sequence analysis. As biology continues to gather sequence data at inmas- 
ing rata and to find new, fundamental qwt ions  of interest, the mathe- 
matics and computer science to solve related questions will also progress. 

Acknowledgments 
I appreciate receiving the 5s collcdon from c;Y. Olvn and Nom Pace Much ruin- 

ance from Huir Ep~crt and Peter Su&ono u QIrCfuUy rckaowledged This woik wy sup  
ported by the System Development Foundatioa rad the Natioad Institutes of Health. 
Is M. S. Watennan. Nucleic Acids Res. 14,9095 (1986). 

[S31 Phylogenetic Analysis Using Ribosomal RNA 
By GARY J. OLSEN 

The inference of phylogenetic relationships from molecular data (i.e., 
the field of molecular evolution)' is conhbuting greatly to our under- 
standing of the evolution of life on Earth. Although the discussion that 
follows is directed toward analyses based on rRNA sequences, nearly all of 
the concepts, and many of the details, are equally applicable to the other 
DNA, RNA, or protein sequences. The rRNAs will be identified by their 
typical prokaryotic sedimentation values: 5s. 16S, and 23s. No issue will 
be made of the fragmentations of these RNAs in some organisms (gbing 
rise to the 5.8s. 4.5s. 2S, etc. rRNAs) or of the absence of 5s rRNA in 
some mitochondria. 

The merits of rRNA for phylogenetic inference have been extensively 

I E. Zuckerkandl and L. Pauling. J. Thhew. Bid. 8.357 (1965). 
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