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[52] Computer Analysis of Nucleic Acid Sequences
By MICHAEL S. WATERMAN

Introduction

The increasing body of nucleic acid sequence data has created interest
among many scientists in computational aspects of data storage and data
processing. In fact GenBank and other data bases have been created in
order to store the data in a useful format, both for archival and analysis
purposes. (See Burks er al.! for a review of GenBank activities.) The value
of simply have easy access 10 all ribosomal RNAs, for example, is not to be
underestimated. The purpose of this article is 10 examine some of the array
of tools that have been created in order to look at sequences in a rigorous,
systematic way, utilizing the power of modern computers. These analyses
began in the early 1970s and are now becoming more focused on specific
. problems such as consensus patterns in regulatory sequences or RNA
folding.

The sections below will outline some methods of computer analysis of
sequence data. The intent is 1o describe the analyses and to give emphasis
to the possible utility of the analysis, not to present detailed mathematics
or computer science of the techniques. Reference is made to papers where
more technical details of equations, pointers, and data structures are to be
found.

A great many algorithms have been proposed in recent years. See the
issues of Nucleic Acids. Research*=* and the Bulleiin of Mathematical
Biology® devoted to ¢computer methods for 2 good sample of this literature.
Frequently ideas such as open reading frame analysis or dot matrices are
rediscovered and reimplemented over and over. For this reason I make no
attempt 10 survey the literature. Instead I try to describe some useful and
interesting methods of sequence analysis that utilize the power of com-
puters.

Several different questions might be asked about a sequence. One
concerns unexpected relationships with other sequences; these discoveries
are sometimes made by screening a data base with the sequence. Wilbur

1 C. Burks, J. W. Fickett. W, B. Goad, M. Kanchisa, F. L. Lewitter, W. P. Rindone, C. D.
Swindell, C.-S. Tung. and H. S. Bilofsky, CABIOS 1, 225 (1985).

¢ D. Soll and R. ). Robens, Nucleic Acids Res. 10 (1982).

) D. Soll and R. J. Robens, Nucleic Acids Res. 12 (1984).

* D. Soll and R. J. Roberts, Nucleic Acids Res. 14 (1986).

* H. M. Maninez, Bull. Math. Biol. 46 (1984).
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and Lipman® devised a search algorithm based on the computer science
technique of hashing and theirs is the method of choice for such questions.
Several groups have implemented versions of their technique. Essentially
the search looks for exactly matching A-mers (usually k=4 10 6) and
reports regions where the test sequence has a high density of matches with
the data base. There is no further discussion of data base searches in this
article but they should not be overlooked.

Sequence alignment is a popular computer activity. The computer
alignments are often based on some explicit optimization function, re-
warding matches and penalizing mismatches and insertions and deletions.
Sequence alignment can give useful information about evolutionary or
functional relationships between sequences. | distinguish two types of
alignment: (1) alignment of full sequences and (2) finding segments of
sequence that can be well aligned. Full sequence alignment should only be
attempted when it is believed that the sequences are related, from one end
to the other. If this is not the case, the sequences can be forced into
incorrect relationships due to the necessity of matching the “dissimilar™
segments. [ feel much easier about running a maximum segments analysis,
that only finds those segments of the sequences matching at or above some
preset level. ) ’

Consensus sequence analysis is usually done by “eve™ and experiment.
Of course we only believe a protein-binding site when it is verified by
experiment, but analysis by eve can be biased. So it is useful to have
computer methods that can find consensus patterns best fitting explicitly
stated criteria. Some algorithms have been developed along these lines,’*
and they are described here, along with example output. Consensus repeats
and consensus palindromes within a single sequence and among a set of
several sequences are analyzed.

Secondary structure of single-stranded nucleic acids is another popular
computer analysis. For one sequence, the minimum energy algorithms
which employ dynamic programming are the usual method, and I briefly
describe them below. For sets of several sequences which fold into a
common structure, the comparative or consensus method is very useful.
The methods that Woese, Noller, and collaborators®!® have so powerfully
employed are now included in an explicit algorithm that is described and
illustrated on a set of 5S sequences.

¢ W, J. Wilbur and D. J. Lipman, Proc. Nail. Acad. Sci, U.SA. 80, 726 (1983).
7M. S. Waterman, R. Amatis, and D. J. Galas, Bull. Math. Biol. 46, 515 (1984).
$ D. J. Galas, M. Eggert. and M. S. Waterman, J. Mol. Biol, 186, 117 (1985).

* H. F. Noller and C. R. Woese, Science 212, 403 (1981).

9 H. F. Noller. 4nnu. Rev. Biochem. 53, 119 (1984).
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Computer analysis of sequences has some distinct advantages over
analysis by “eve.” The computer analysis must be well defined, explicitly,
so that the same search can be duplicated elsewhere. Many more cases can
be examined by computer, and the calculations are done correctly. Inher-
ent in these advantages are some important disadvantages. The computer
will only do exactly what it is programr-=d to dc. If the task is the “wrong”
one, massive and correct calculations ¢ 3 not help. In addition, a machine
will not notice a patiern it has not been programmed to notice, something
at which humans excel. The sequence analyst should be aware of what the
computer is and is not doing. Computation might be useful but it should
not stand alone,

Sequence Comparisons

The majority of mathematical effort on sequence analysis has been in
the area of sequence alignment. One of the reasons for this is the appeal of
the basic problem that can be described as follows: Given two sequences
a=a,a,...d,and b=d,b;, . .. by, what is the minimum number of
substitutions, insertions, and deletions needed to transform a into 4? The
obvious application in molecular biology is to find minimal evolutionary
pathways between sequences. The correspondences between g and b are
usually displayed as alignments where it is easy to see highly conserved
regions of sequence.

Applications to many other areas exist and a book has been written on
the topic of sequence comparisons.!’ In computer science there is the
problem of recognizing mistyped words as well as file comparisons, and a
large literature exists in that field on the so-called string matching problem.
Some of that literature is parallel to and largely independent of the biologi-
cal literature. Transpositions of adjacent letters are considered in computer
science; in biology inversions pose related problems. Recognizing the rela-
tionships between groups of birds is sometimes studied via bird song
comparisons, as is the manner in which younger birds acquire vocalization.
In geology, an important class of problems relating stratigraphic sequences
can best be approached by sequence comparison methods. These and other
applications require careful algorithm development, with attention paid to

the specifics of the problem settings.
In 1970 Needleman and Wunsch'? wrote a lJandmark paper that ap-

"D, Sankoﬂ' and J. B. Kruskal (eds.), “Time Warps, String Edits, and Macromolecules: The
Theory and Practice of String Comparison.” Addison-Wesley, London, 1983.
12§, B. Needleman and Wunsch, J. 31ol. Biol. 48, 444 (1970).
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proached sequence comparison (alignment) through a dynamic program-
ming algonthm. Their aigorithm finds maximum similarity between two
sequences, where maiches receive positive weight and mismatches and
insertions and deletions receive nonpositive weight. Some mathematicians
begin 10 attempt 1o define a distance between sequences and so to con-
struct a metric space. This search culminated with Sellers,'* who obtained
the desired results for single insertions and deletions, and with later
workers who extended his work 10 multiple insertions and deletions. !
While it has been proven that similarity and distance are equivalent con-
cepts when matching full sequences,’® for certain other problems similanity
is superior, and I concentrate on similanty here.

Sellers'¢ wrote the first articles on finding the best matching pieces
(segments) between two sequences and has continued those efforts. A
much simpler approach through similarity was taken by Smith and Water-
man,'? and an extension'® of that technique is presented below.

Matching or aligning entire sequences should be attempted when the
sequences are known or suspected to be closely related. Even when this is
the case, an extraordinary number of optimal alignments can result; many
of these will differ only slightly from one another. | illustrate this below
with some recommendations on how to deal with the situation. Most
sequence comparisons will, however, involve sequences only significantly
related in pieces, if at all. In those cases a full alignment is not informative
and the maximum segments algorithm is the most appropriate. These
algorithms can produce segment matchings which are best, second best,
and so on; this is shown in examples.

Aligning Full Sequences

As explained above, what is to be presented is a similarity method for
sequence alignment. The function s(a, b) is 10 define similarity between the
letters @ and b. In the examples below matches receive weight | and
mismatches receive — |, so that

+1, ifa=b

ob -
K@=y irawb

13 P, Sellers, SI4A J. Appl. Math. 26, 187 (1974), _

14 M, S. Waterman, T. F. Smith, and W. A. Bever, .4dv. Math. 20, 367 (1976).
13 M, S. Waterman, Bull, Math. Biol. 46, 473 (1984),

W P, Sellers, J. 4lgorithms 1, 359 (1980).

17T, F. Smith and M. S. Waterman, J. Mol. Biol. 147, 195 (1981).

1 M, S. Waterman and M. Eggen, J. Mol. Biol. 197, 723 (1987).
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Deletions of length k receive weight —x, and below only x; is used. The
algorithm is based on recursively computing a matrix S. First

SO.O - 0,
Sio ™ —x;, l=i<n
SoJ = "Xj, i Sj sm
Then
Si; = max{S;- j-, + S(GI-bj). maXea S, j—x = Xi), MaXyn {Si—x;— X))
For single insertions and deletions only,
Sty = max(Sj. j- + s(a;, bj)' Sim15= %15 Spjm1 — 1)

The idea of these calculations is that S, is the maximum similarity of
_aay . ..aand bb, ... b. Thisis why for example, S, ;= —x;. The
recursion is based on the ways an alignment can end:

’ :; corresponds 10 S;—, ;- + s(a;. b))
and

o ;; corresponds 10 S, ;. — X,
and so on.

When n = m, the multiple insertion and deletion program runs in time
proportional to 73, while the single insertion and deletion program runs in
the much preferred time n2. Fortunately, when the function x, is linear in
k, x, = a + *k, the running time** can still be made n% Multiple inser-
tions and deletions are important as adjacent bases are deleted or inserted
by one event and should be weighted accordingly.

Alignments can be produced from the matrix by two methods. One is
accomplished by saving pointers at each matrix entry that indicate what
events were necessary to calculate S;;. Then beginning at S, ., pointers are
followed to Sy, producing the optimal alignments. The second technique
is, at each matrix entry beginning at S, ., to recompute to see which events
produced the entry. Both methods take little time in comparison with the

matrix construction. ‘
For the examples, 1 first align 5S Escherichia coli (rrnB operon)'® with

" V. A, 'Erdmann, E. Huysman, A. Vandenbe, and R. De Wachter, Nucleic Acids Res. 11,
r10S (1983).
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the closely related 5S Beneckia harveyi.*® As mentioned above.
+1, ifa=b
-1, ifa#b

and x; =2, (x, = =, k = 2, so that only single insertions and deletions are
allowed.) The two sequences have similarity of 76 with alignment

sa,b)=

UGCCUGGCGGCAGUAGCGCGGUGGUCCCACCUGACC-CCAUGCCGAACUCAGAAGUGAAACGC
UGCUUGGCGACCAUAGCGAUVUUGGACCCACCUGACUUCCAUUCCGAACUCAGAAGUGAAACGA

CGUAGCGCCGAUGGUAGUGUGGGGUCUCCCCAUGCGAGAGUAGGGAACUGCCAGGCAY
ALUAGCGCCGAUGGUAGUGUGGGGCUUCCCCAUGUGAGAGUAGGACAUCGCCAGGCLY

There is a second optimal alignment, which results from simply changing

C- o -C

vy Uu

For a second example, I align 5S E. coli with the more distantly related

38 Mycoplasma capricolum.*' Here the similarity is 22, with 52,020 differ-
ent but optimal alignments. One of these 52,020 is given next with the
portions common to all alignments in boxes.

L3

UGCCUGGCGGCAGUAGCGCGGUGGUCCCACCUGACCCCAUGCCGAACUCAGAAGUGAAACGCC
U= - ~=UGGUGGUA - UAGCAUAGAGGUCACACCUGUUCCCAUGCCGAACACAGAAGLUAAGCLCU

GUAGCGCCGAUGGUAGUGUGGGGUCUCCCCAUGCGAGA -G -UAGGGAACUGCCAGGCAU
AUUACG--G-UGAAAAUAU = = =UACUU- = - AUGUGAGAAGAUAGCAAGCUGCCAGU--U

Obviously 52,020 alignments are too many 1o look at individually. The
idea of displaying features common to all alignments is 2 minimal ap-
proach for dealing with these difficulties. As will be seen in the next
section, 2 maximum segments algorithm will produce much of the same

information.

Maximum Segments

This is a preferred method for exploring sequence relationships if com-
puter time is available.!? See Smith et al.2 for a data base search with the
algorithm. It consists of a simple alteration of the preceding method. The

. K. R. Luehrsen and G. E. Fox. J. Mol. Eval, 17, §2 (1981).
1 H, Hori, M. Sawada, S. Osawsa, K. Murao, and H. Ishikura, Nucleic Acids Res. 9. 5207

(1981). )
2 T. F. Smith, M. S. Waterman, and C. Burks, Nucleic Acids Res. 13, 645 (1985).

.

\
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recursively defined matrix here is A and recursion begins with
H0.0 == 0,
Hio=0, lsisn
HO.]-O' lSjSm

and

Hi = max(H-y =y + 5(a;.8;)), maxen (F j- — Xi),
maxex; (Hi-x;— X, 0)

For single insertions and deletions only,
Hi = max{Hoy joy + (a0, 8), Hieyy— Xy, Hyjoy — X, 0)

Notice that a simple addition of Os in the boundary conditions and
recursion is the only change from the definition of S. These simple changes
have the pleasant effect of causing A to be the maximum similarity of a//
possible segments ending in g, and ;.

After the 1981 Smith - Waterman algorithm!” much work has gone into
finding second, third, . . . best segment matches.*® Fortunately there is
also a simple, useful solution 10 this question. There is no problem with the
observation that the best segment matching is associated with the entries
where max, A, is achieved. Since large entries influence the entries
nearby, it is not clear whether or not the second-best matching is near the
first or not. One way to make certain of finding the second best is 10
recalculate the matrix, only this time no match, mismatch, insertion, or
deletion from the maximum segment can be used. With single or linear
insertion and deletion functions, only a small part of the matrix need be
recomputed.

- To illustrate the algorithm,'® | compare the sequences 5S E. coli and 5S
Mycoplasma capricolum as above. There the similarity was 22, with 52,020
different but optimal alignments. Asking for all nonintersecting segment
alignments with score 10 or larger produces two alignments, the first with
score 29 and the second with score 1 1:

UGGCGGCAGUAGCGCGGUGGUCCCACCUGACCCCAUGCCGAACUCAGAAGUGAAAUGCGAGA -
UGGUGGU A - UAGCAUAGAGGUCACACCUGUUCCCAUGCCGAACACAGAAGUUAAAUGUGAGAA

G-UAGGGAACUGCCAG
GAUAGCAAGCUGCCAG

33 P, Sellers, Buil. Math. Biol. 46, 501 (1984).
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These 1wo segment matches comprise most of the alignment that is com-
mon to all 32.020 optimal full sequence alignments.

A portion of the first matrix calculation is given in Table I. No recalcu-
lation has been done so that the reader can check understanding of the
method.

As a final example, 5S E. coli is compared to E. coli Phe-iIRNA, This
second sequence (from GenBank) is CCCGGAUAGCUCAGUCGG
UAGAGCAGGGGAUUGAAAAUCCCCGUGUCCUUGGUUCGAUU
CCGAUCCGGGCACCA. There are five segment maitches with scores
greater than or equal 10 6. Each is shown, 5S on top, with sequence
position numbers indicated. Two segment matches have score 8:

99 AGAGUAGGGAACUG
20 AGAGCAGGGGAUUG

65 ULAGCGCCGAUGGUAGUGUGGGG
07 UAGCUCAGUCGGUAGAGCAGGG

The remaining three segments have score 6:

89 UCCCCAUG
38 UCCCCGUG

13 GUAGCGCGGULGG
18 GUAGAGCAGGGG

14 UAGCGCGGU-GGU
07 UAGCUCAGUCGGU

Consensus Patterns

Perhaps the most imporant, certainly one of the most difficult, tasks of
genetic sequence analysis is that of finding unknown patterns that occur
imperfectly among a set of sequences or within a single sequence. Usually
these searches are for approximately conserved regions that have func-
tional significance. If the patterns are exactly conserved they are easily
found; this is frequently not the case. These conserved patterns include the
famous boxes such as TATAAT in bacterial promoters and CAAT in
eukaryotic promoters, as well as enhancer and other sequences. Generally,
gene regulation seems 10 involve some repeated protein binding sites. The
question treated in this section is how to search for these unknown pat-
terns.

When the problem is 10 Jocate shorter unknown patterns that occur
imperfectly among a set of several sequences, the task seems hopeless due
10 the combinatorial nature of aligning many sequences. Aligning 10
sequences with 10 possible positions or shifts per sequence gives a total of
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TABLE |
MaxiMUM SEGMENTS MATRIX FOR 5S E. coli AND 58 Mycoplasma capricolum

UUGGUGGUAUAGCAUAGAGGUCACACCUG
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10'° possible alignments. This is at the limits of computability of modern
computers with no consideration given to sequence length or to analysis of
the alignments themselves for consensus patterns; any larger problem is
clearly impossible. This is an instance of a so-called combinatorial explo-
sion. Fortunately, recenily developed methods® are able 10 find these con-
sensus patterns in reasonable time for large data sets.

The first problem 1yvpe considered is consensus patterns in a single
sequence. Solutions are available for the **best™ consensus repeat or palin-
drome. The found patierns are not allowed 10 overlap, and all patterns of a
chosen word size (k) are considered. Mismatches, insertions, and deletions
are allowed; the algorithm can locate a consensus word not actually occur-
ring in the sequence itself. The second problem type is repeating words or
palindromes between a set of sequences. In either case the analysis is more
often limited by storage than by computation time. All 4* words (patterns)
of length k are stored for DNA and RNA; in proteins the storage is 20%.
Thus this analysis is suitable for smaller patierns.

Single Sequence Paterns

Under consideration first is finding a given length consensus palin-
drome in a single sequence. The procedure described here will locate the
best nonoverlapping palindrome. If overlapping patterns are of interest, an
easy modification will allow that option. Actually there are two problems
of interest: (a) that of finding nonoverlapping palindromes of some given
length, regardless of composition, and (b) that of finding a specific (but
unknown) palindrome of given length. It is important to allow some
amount of mismatch in these patterns. Examples are

GAGGGCTGTITATATGAGTGCTACCAATGG (2)
CAACGTTGATACGTTICTTAAACCTTITATCT (b)

where in (a) three nonidentical palindromes (allowing one mismatch) are
marked and where in (b) three versions of AACGTT are marked. The
second problem is more difficult and is discussed here.

The following method seems natural but has serious flaws: take each
word of the fixed length actually occurring in the sequence and, if it is an
approximate palindrome, use it as a template along the entire sequence to
see if it has any other approximate nonoverlapping occurrences. There are
two difficulties with this naive procedure. (1) Such a method takes com-
puting time proportional 10 the square of the length of the sequence times
the pattern length. (2) It is frequently the case that the best consensus
palindrome never exactly occurs in the sequence. While (2) is the most
important objection, it is overcome by an algorithm which has computer
time linear with sequence length.
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Initially the length of palindrome of interest must be chosen. Odd- -
length palindromes of length 2k + 1 are of the form

X X;. .. NY, ... 1hY,

where X, = Y, (A = T, etc.), N = (A, T, G, C), while even lengths of 2k do
not have the N in the center. Therefore all length 2k + 1 or length 2k
palindromes can be encoded by 4* patterns.

Now the word w= ATTCCGAT is considered to illustrate the ideas. If
up to three mismatches (mm) are allowed, the following palindromes are
within the neighborhood of w.

Length 6 Palindromes mm from w= ATTCCGAT

ATTCGAAT
ATTGCAAT
ATCCGGAT
ATCGCGAT

[ S N ]

ATTATAAT
ATTTAAAT
ATCATGAT
ATCTAGAT
ATAGCTAT
ATGGCCAT
ATACGTAT
ATGCGCAT
ATACGTAT

W W W W YW W W

Obviously the situation is more complex if for example the mismatch
level is raised to 5. Here, for example, the pair X;®* Y, = AT can be
altered, for example to G ¢ C, giving an additional two mismatches. This
general idea of finding a neighborhood of exact palindromes within mm
mismatches of an existing word of the sequence is the basis on which the
palindrome algorithms are built.

Consider the problem of finding the palindrome pattern of length 2k
(or 2k + 1) that occurs most frequently, nonoverlapping, in the given
sequence. Of course none of these occurrences needs be exact so a weight
2. (¢) can be introduced for a word v that is a fixed number of mismatches
from a given palindrome w. Here if there are mm mismatches, 2 = mm/
(word length). Let S,(i) be defined by

S.(i) = max(Z4.(v)}
when the sum is over nonoverlapping words v of the sequence
a,a; . . . a,.Suppose S.(j) is known for | 5 j = iand all w. Then to find
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palindromes of length 24
Sn(i + l) = maX(S_(i): Su(’ - 2k) + ln'(ai-2k+lai—2k+1 A al))

The consensus word has the maximum value of S, (n).
This formula shows that the calculation is linear with sequence length,
an extremely valuable feature. If an overabundance of palindromes (not

Goray, 4.3
120 116 153 o0 20 0
210337654321032765422) BIE7ESL 321 BFEPESA I2) 0HG7ESL 321 ORETES AT

CCcuCtCoc AR GoloDC LA COUCACC LU LU

0 = 4D 20 by 12
10ETESA221032TESS 22103 VESA3Z 103 TESAT2 I GHETESAIZ I OMETESATT]
)] LA

TS quoge ofSEETE 3 oguoIEEATSTRRREI TR og 0o SSIEEWEEEST

GLCA S.28
120 118 182 S 22 o
210387E542210357654321 033TE54 221 8387654321 0E7ES4 121 GIETESAT2
vaecuagefgcczuogcoeoguaouBEiRERNE R  ceouge cEEIRVeTRETPITT

62 s3 ) k> 28 18 ;
183876543210527ES4 321 0337654 3210327654721 0367654221 83B7E 54 221 :

SoccguogecgougeufRTETERERA S ccc auge o EREVEERERSYoccoggcol

_ GGCA 5,23
120 110 100 0 =] 7
218337654321 0327654221 0967654321 0357654 321 93376354321 839765432

vaeEEREogc oguogeRiaguagucceRRETER e ougeEIARITIERRENEET

38 52 49 28 20 18

1093765432109337654 3210387654 3210387654321 9337654 3210387654321

BcguogegeciRlgguagugugsggueuce i ERETETEIR g oc uge cRERILY

Fra. 1. Consensus panerns in E. coli S RNA. Base number 120 is the $"end of the

sequence. (3) The result of a search for 6-letter repeats, allowing one mismatch. The pantern -
GUAGUG occurs five times with a score of 4,33, and the versions of the pattern are shown in
lower case lenters. (b) The result of a search for 8-letter palindromes, allowing up to three
mismatches. The palindrome GCCAUGGC occurs ¢ight times within the mismatches al-
lowed. (c) The result of a search for 9-letter palindromes, allowing up 10 three mismaiches.
The palindrome GGCANUGCC is found seven times.
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secessanly identical) is of interest, the above procedure is easily applicable.
The neighborhood calculations need not be done, only counting of com-
plementary pairs in the word.

Very similar, although somewhat simpler, concepts can be applied for
an algorithm that finds consensus fixed-length repeats in a single sequence.
This completes discussion of concepts for 2 single sequence and these
algorithms are now applied to 5SS E. coli. See Fig. 1.

Muliiple Sequence Patterns

Much the same ideas from the single-sequence case are employed to
study consensus patterns in a set of sequences.™ The basic parameters of
the method are 2 window width W, word size‘k, and the level of mis-
matches allowed. (Insertions and deletions can be included in the method.)
With the window positioned on the sequences, the search finds the highest
scoring word where each word w is given its highest score 4,(w), occurring
within window W in sequence i. The score of w is

S(w) = Zifw)

and the object is to find the winning word w*
S(w*) = max,S(w)
For each window position, S(w*) is plotted, and the resulting data can be

graphed and examined for features of interest. Patterns in the sequences
that correspond to the score S(w*) can be displayed.

Window Posinon

Fi6. 2. Consensus pattern scores for a set of 30 E. coli promoter sequences aligned on
stant sites, with window size 9, word size k = 6. and up 10 2 mismatiches allowed, The graph
gives score versus position of right edge of window. The position, scores. and patierns creating
the scores can be directly related to the sequences themselves, and the graph gives direction to
directly studying the sequences. Sce Fig. 3.
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F1G. 3. The sequences and patierns creating the two major peaks in Fig. 2. The right-hand
pattern has score 21.83 and is the famous — 10 consensus, TATAAT. The lefti-hand pattern
has score 17.17 and is the — 35 consensus panern.

.

Itis convenient 10 understand these methods with an example. A subset
of 30 E. coli promoter sequences®® is aligned on known mRNA start sites.
The sequences are approximately 60 bases long. They are analyzed with
Wm9 k=6, and maximum mismatches mm = 2. The resulting plot
appears in Fig. 2. The sequences, their descriptions, and the patterns
causing the highest peak appear in Fig. 3. The rightmost pattern is
TATAAT (the famous — 10 pattern) which has 8 exact occurrences, 11
with | mm, and 7 with 2 mm. The leftmost partern is the — 35 pattern,
which has its strongest representation in these data as TTGCCA; it has 7
occurrences with | mm and 17 with 2 mm.

It is possible 10 analyze the sequences with the sequences written in the
RY, or any other alphabet. There are no patterns found in the RY alphabet
which are not found in the usual four-letter alphabet.

Finally, similar ideas can be used 10 find consensus palindromes in a set
of sequences. Since ptoxem-bxndmg sites sometimes are palindromes, this
is a useful tool.

% D. K. Hawley and W. R. McClure, Nucleic Acids Res. 11, 2237 (1983).
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Secondary Structure

The first tIRNA sequence by Holley er al.** in 1965 was published with a
secondary structure inferred from the sequence. Since that time many
other secondary structures have been presented and the problem of how to
estimate structure by experimental as well as theoretical techniques has
frequently been addressed. The current structures of 16S and 23S RNA
were found by a combination of both approaches.”!® Here of course I
restrict discussion of computer methods for prediction of secondary struc-
ture.

Two major approaches have emerged for the computer analysis. The
first employs dynamic programming, in an algorithm closely related to the
sequence comparison algorithms presented above. Tinoco et al* pre-
sented a base pair matnx [with (i,j) entry = | if base / will pair base j]
which led them to consideration of minimum energy structures. Dynamic
programming algorithms came later and are the current method of choice
for a single sequence. The second class of methods employs consensus
ideas, tracing back to early deduction of a common tRNA structure.?’
Woese, Noller, and colleagues have advanced and refined these methods,
and I discuss 2 mathematical version of this consensus analysis below.

If the data consist of a single sequence then the dynamic programming
approach is recommended. On the other hand, if the data are a set of
sequences suspected to have common structural elements, then the con-
sensus method can succeed in cases when dynamic programming cannot.

Folding by Dynamic Programming

- The application of dynamic programming to secondary structure pre-
diction was begun by two groups. The approach of one group had the
advantage of incorporating general loop, bulge, and base pairing free en-’
ergy functions; the disadvantage was the building up of complex structures
from simpler ones.?* The other group did optimization in one pass but
only found structures with maximum base pairing.>

Since the presentation of the first algorithms, Zuker has be¢ome the

3 R. W, Holley, J. Apgar, G. A, Everett, J. T. Madison, M. Marquisee, S. H. Mermill, J. R,
Penswick, and A. Zamir, Science 147, 1462 (1965).

1. Tinoco. O. C. Uhlenbeck, and M. D. Levine, Nature (London) 230, 362 {197)).

37 M. Levitt, Nature (London) 224, 759 (1969).

3 M. S. Waterman, Adv. Math. Suppl. Studies 1, 167 (1978).

3 M. S. Waterman and T. F. Smith, Math. Biosci. 42, 257 (1978).

» R, Nussinov, G. Pieczenik, J. R. Griggs, and D. J. Kleitman, S/43 J. Appl. Math. 35, 68

(1978).
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leading figure with his useful dynamic programming codes (sce Zuker and
Sankoff for a review).}! He has combined realistic energy functions into a
single pass algonthm that is quite efficient. His program runs in time
proportional to n*, where n = sequence length, and it requires storage n?
Fully rigorous prediction takes exponential time (which is unacceptable)
and »? storage. Recently it was shown?? that, by increasing storage 10 1%, thé
exponential time can be reduced to n*. None of this should deeply concern
someone with a sequence to fold. Zuker's efficient and useful code is
recommended.

To understand why complicated programs are needed 1o study- RNA
folding, 1 briefly consider the number of candidate structures.® If F(n) is
the number of secondary structures for a sequence of length n, it is r=quired
that F(Q) = F(1) == F(2) = F(3) = 1; that is, there must be at least 2 bases
in an end loop. Since secondary structures do not include knotted struc-
tures, a recursion is obtained:

Fn+1)=Fm)+ > F(—-1F(n-j), n=z3
' 18jsa~=2
This formula counts all possible structures, forcing pairs between base
and base n'+ 1. The recursion can be shown?*: for large n 1o behave like

Fn)=[(1 + J2)/a)'2n33(1 + 2y

For n= 150, F(n) = 1.2 X 10*, Even with all allowances for the overcount
as compared 10 real sequences, these large numbers show that an algorithm
is needed. :

Surprisingly, the dynamic programming algorithms are based on logic
similar to that for the counting. The maximum number of base pairs
algorithm goes like this: let A/, = maximum number of base pairs in the
sequence segment from base i to base j. Take M, known for0</,j=n,
Then add base 7 + 1. If, in the optimal structure base n + 1 is unpaired,
M, a4y = M, ,. Otherwise, base n+ 1 is paired t0 j, where 1| s jsn—2.
Then

M, pay "-uu-l +1 +M+|..

Here the 1 counts the new base pair between j and n + |, while the other
two terms are optimal for the other two pieces of sequence. To collect this
into a recursion, let &, = 1 if bases i and j can pair and 0 otherwise. Then

M= max(M,,; max,gjua-2{Miymy + 1 + M1 2})
3 M. Zuker and D; Sankoff, Bull. Math. Biol. 46, 591 (1984).

2 M, S. Waterman and T. F. Smith, Adv. Appl. Maih., 7, 455 (1986).
3 P, R. Stein and M. S. Waterman, Discrete Maih. 26, 261 (1978).
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FIG. 4. A secondary structure for E. coli 5S RNA.

All the complication of algorithms, coding, and running times comes in
converting this simple, elegant idea to handle the various free energy
functions associated with base pairs, bulges, interior loops, and multi-
branch loops. This is a difficult task! '

Folding by Consensus

The consensus methods of folding are sometimes referred to as compar-
ative methods. Levitt?” in 1969 gave an analysis of the known tRNA
sequences by this approach. In contrast with his impressive results, the
dynamic programming codes currently fold about 50% of tRNAs into a
cloverleaf. More recently, comparative methods were used by Woese,
Noller, and colleagues®' 1o solve 16S and 23S structures. I now describe
programs and mathematics 10 fold a set of RNAs. The ideas are based on
the insights of Woese and Noller but differ from their methods by being
able to perform systematic, complete, and explicitly defined searches.

The algorithms will be illustrated by 34 5S sequences from E. coli and
related sequences that were obtained from a collection of Olsen and Pace
and which can be found in GenBank. A 5S model for E. coli is taken from
the literature® and is shown in Fig. 4 for reference.

3 B, Lewin, “Genes,™ 3rd Ed. Wiley, New York, 1987.
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This analysis is very different from dynamic programming: here it is
desired 10 find many “common” helices of a centain size and quality. No
‘minimum energy calculations are made. The base pairs A U, G » C, and
G = U are allowed. These helices are allowed 1o shift in location with
reference 10 the sequences in some fixed alignment. Two windows are
placed on the sequences and it is these windows which determine the
shifting. For example with

WINDOW | WINDOW 2
”.AUGG-...‘. .........CCGU

the 4-base pair helix 3288 is formed and the patierns could appear any-
where in their windows. Window positions determine approximate helix
position while window widih determines the amount of shifting allowed. It
is not required that the helices in the various sequences be composed of the
same base pairs. These features will be illustrated with the 5S sequence set.

The sequences must be aligned initially. Obvious features to align on
are the right and left ends of the sequences. This can be done in three ways:
(1) align on Jeft ends, (2) align on right ends, and (3) align on both ends,
leaving gaps in the center of the shorter sequences. Other features to align
on include known biological features or highly significant long patterns
common 10 all the sequences. In our sequences such a paitern (cgaac) will
prove useful. These various alignments are explored for common patterns
of folding. !

In Fig. §, the longest common pattern is seen to be cga, shown in
lowercase letters in the figure. The pattern cgaac is in 32 of 34 sequence
while ccgaac is in 31 of 34. Notice the small amount of shifting to achieve
the alignment. The expected length £ common to 32 of 34 random se-
quences' is given by

Em 103(34 ; 3. 1zo==) + log(-i-) +0.577 log(e) — % =277

and o = 0.29 with all logs to the base 4.3 Therefore cgaac occurs almost 8
os above expected.

The first analysis of secondary structure now takes place. There are
many ways to place two windows on the sequences. To organize the
analysis, first fix the separation of the windows. First with no (0) separa-
tion, i.e., adjacent windows, move the two windows across the sequence
set. Then increase the separation, moving across the set at each fixed
separation until the windows are at the maximum separation. In each
position the number of helices found is plotted. Mispairs are allowed. Thus
each separation produces a graph. All these graphs are superimposed so
that interesting peaks, representing a larger number of helices, can be
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located. As is seen below, this is an overwhelming amount of information.
To handle these data, then, it is possible 10 move between graphs and the
sequences 10 observe which sequence patterns produced the peaks.

With the 34 sequences in the alignment of Fig. 5. the algorithm is run
with a window of 8, a helix size of 4. and no mispairings (mm = 0). The
supennmposed graphs are shown in Fig. 6a and several interesting peaks
show up. The lefimost of these peaks is the result of helix 111 (see Fig. 4),
and one of the graphs with separation 9 is shown in Fig. 6b. A sequence
pattern or set of helices producing the highest peak in this graph has score
31. so that all but three of the sequences have this pattern.

By allowing two mispairings, the alignment shown in Fig. 7 is pro-
duced. This method of representing helices in secondary structure by

Window Position

.———-J
L Window Position
F16. 6. Graphs of folding scores with window sizes 8, helix size 4, and no mispairing
allowed. In 8, all separations are plotted; in b, one of these graphs with separation 9 is shown.
Sequence patterns causing these scores can be viewed.

Score

Scwe
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parentheses is unambiguous: for example,
5 A «C )) «( ) ) ¥

represents the 5S structure of Fig. 4. The highest peak of Fig. 6a corre-
sponds 10 helix 11 and this helix is added 10 the alignment in Fig. 8.
Actually a helix of 6 base pairs fits best and mm = 1 is allowed. Three of
the sequences do not obtain a helix according 10 these criteria and conse-
quently do not have parentheses inserted.

The peaks of Fig. 6a which are the third highest group. those at the
rightmost of the plot, correspond to helix I, while the fourth highest group
corresponds to helix 1V, Helix 1V has 8 base pairs and all but one sequence
has a helix with three or less mispairs. The final folding is shown in Fig. 9.
The folding is achieved in an iterative manner: longest common pattern,
helix 111, helix 11, helix 1V, and finally helix 1. Frequently finding one
pattern assists in finding another.

It must be emphasized that the main concern here has been consensus
helices and not simultaneous folding and alignment. These activities
should properly be done together or iteratively as Woese and Noller do.
Whenever there were multiple choices for a folding pattern the choice here
is that giving the “"best™ consensus alignment. Clearly, additional work is
needed 10 make the criteria more explicit.

\What about additional folding patterns? This can be approached using
the folded sequences. For a brief look, set 1# = 10 and helix size 4 with no
mispairs allowed. The major helices I-1V already discussed are labeled in
Fig. 10 and some other interesting patterns are labeled A, B, and C. These*

Window Poritior

Fic. 10. Graphs of folding scores vetms window position on the sequences aligned as in
Fig. 9, with window size 10, helix Jength 4, and no mispairs. Peaks 1-1V correspond 1o the
found helices while A, B, and C were not observed carlier in this analysis.
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three peaks are all produced from interactions with the 5’ part of helix |
(see Figs. 11-13). While I do not take the space 1o do so, an extremely
detailed study of tertiary structure is possible.

Conclusions

I have by no means discussed all the topics that are important to
computer analysis of sequences. Several others come to mind: statistical
approaches to significance, consensus repeats for Jarge patterns, and align-
ment of many sequences. I will give some thoughts on these topics in this
section,

The issue of biological versus statistical significance frequently comes
up. Biological significance is the goal here; all that statistics can do is
provide hints about what might be taken seriously. Sequences can be
viewed as satisfving some model of randomness, such as uniform and
independent bases, and the analyst might ask whether some observed
pattern is the result of sequence conservation or simply is to be expected
from sequences satisfying the model of randomness. Since each person
doing the analysis might view randomness differently, there is a prolifera-
tion of different simulation techniques. 1 prefer simple assumptions of
randomness, since for maximum segments problems they have been
shown 10 model the matching of unrelated real sequences.?? There are two
theoretical approaches that are useful. The first is the theory of large
deviations, which is extensively discussed by Galas er al.? This theory is
appropriate when there are a large number of short sequences. When long
sequences are matched, the recently developed extreme value theory pro-
vides excellent information about longest matchings between the se-
quences. This so-called log(n) theory is discussed in Waterman.'s While
these theoretical approaches can be very useful, simulation is ofien resorted
to because of sequence complications. For example, the £. coli promoter
sequences have varying sequence composition and this complicates the
large deviation theory. Fortunately, the distributions of the quantities of
interest, such as highest peak or maximum segment score, do not have
large variation, and a few simulations can give a good picture of the
maximum expected from random sequences.

The algorithms that produce the consensus repeats analysis reported in

. this article depend on storing all patterns of interest. The methods do not

generalize, for example, to finding 72-base pair repeats. What I can suggest
is along the lines of a study in progress with 1. Wool, J. McNally, and
R. Jones that is concerned with 15- to 25-letter repeats in a large set of
ribosomal protein sequences. We use each pattern of appropniate length
actually occurring in the sequence set. Then we find the most often repeat-
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ing sequence word. We use the found occurrences to modify the pattern
and iterate. While this can hardly be said to be a highly efficient search, it is
effective and much more informative than the usual approaches that try to
analyze many pairwise comparisons.

Finally, I bring up the old problem of the alignment of many sequences.
In the realm of dynamic programming, the usual combinatorial explosion
sets in, and even three sequences are almost beyond reach. A solution can
be based on the consensus word between many sequences, and an algo-
rithm can be constructed to give the maximum sum of scores of consensus
words. This practical algorithm?® is very useful for multiple sequence
alignment. _

The computer analysis of nucleic acid sequences has produced some
interesting mathematics, and some algorithms and programs useful for
sequence analysis. As biology continues to gather sequence data at increas-
ing rates and to find new, fundamental questions of interest, the mathe-
matics and computer science 10 solve related questions will also progress.
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35 M. S. Waterman, Nucleic Acids Res. 14, 9095 (1986).

{53} Phylogenetic Analysis Using Ribosomal RNA
By GARY J. OLSEN

The inference of phylogenetic relationships from molecular data (i.e.,
the field of molecular evolution)' is contributing greatly to our under-
- standing of the evolution of life on Earth. Although the discussion that
follows is directed toward analyses based on rRNA sequences, nearly ail of
the concepts, and many of the details, are equally applicable to the other
DNA, RNA, or protein sequences. The rRNAs will be identified by their
typical prokaryotic sedimentation values: 5S, 16S, and 23S. No issue will
be ‘made of the fragmentations of these RNAs in some organisms (giving
rise to the 5.8S, 4.5S, 28, etc. rRNAs) or of the absence of 55 rRNA in
some mitochondria.
The merits of rRNA for phylogenetic inference have been extensively

' E. Zuckerkandl and L. Pauling. J. Theor. Biol. 8. 357 (1965).
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