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The genetic code is examined in a new and systematic fashion: we consider the 
code as mapping of one finite set (the 64 codons) to another (the 20 amino acids). 
Given a class of mappings simpler than the actual code, we ask which mappings 
best approximate it. This leads to an analysis of the effects of ambiguities (codon 
degeneracy) in one or two positions. With the 0-1 metric (counting the amino acids 
as equal or not equal), the codon third base degeneracy is apparent, but the first and 
second positions are indistinguishable; with the integrated amino acid “distance” 
metric compiled by Sneath ( J .  Theoret. Biol. 12 (1966), 157-195), the analysis ranks 
the information content of the three codon positions as follows: 2nd > 1st > 3rd. 
We discuss possible further applications of this approach to patterns in the genetic 
code and other codes. 0 1988 Academic Press. Inc. 

1. INTRODUCTION 

There has been interest in characterizing patterns in the genetic code 
since it was first elucidated: the grouping of codons that code for the same 
amino acid is an obvious example [3]; a second example is the grouping of 
codons that code for similar (but not identical) amino acids. Here, similar- 
ity is usually defined in terms of one or more chemical characteristics of the 
amino acids (e.g., hydrophobicity). Several methods, some more formal 
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than others, for analyzing these patterns have appeared in the literature. 
For representative examples, see Alff-Steinberger [l], Crick [4], Goldberg 
and Wittes [6], Jungck [9], McKay [12], Pelc and Welton [13], Swanson [16], 
Volkenstein [17], and Woese [18]; several of these papers are reprinted in 
Jungck [lo]. From early on (see [4, 71) up to the present (see the collection 
of papers in [lo] and the recent review by Jukes [8]), proposed patterns in 
the genetic code have been a cornerstone for many of the arguments 
concerning evolution of the code. This work has taken on a new dimension 
with the recent discovery that mitochondria employ genetic codes that 
differ from the “universal” code (see the review by Cedergren [20]). 

In this paper we examine the genetic code in a new and systematic way. 
The genetic code is formally viewed as mapping of the 64 codons (triplets 
of RNA bases) to the 20 amino acids and the termination operator (Table 
I) illustrates the “universal” genetic code). There are 2164 = 4 X loa4 
possible mappings. Though it is impossible to examine all of these maps, we 
do select a subset relevant to current questions concerning the genetic code 
and analyze them in detail. 

In particular, our view of the genetic code as a mapping of one finite set 
to another enables us to ask which mappings, selected from a set of 
mappings that are simpler than the actual genetic code, best approximate 
the genetic code. Development of these classes of mappings is motivated by 
the fact that codons are base triplets, and it formalizes the observation that 
certain bases in various codon positions are equivalent (or almost equiv- 
alent) for the amino acid specified. An unbiased assessment of wobble [3] 
results from this analysis. 

Our first analysis, counting amino acids as equal or not equal, shows the 
3rd base degeneracy but does not distinguish between the first two bases. 
Biological “folklore” ranks codon position importance as follows: 2nd > 
1st > 3rd. Our analysis using an amino acid distance metric gives this same 
ranking. This is the first analytical derivation of the ranking. Beyond this 
application to the genetic code itself, the analysis provides a generalized 
approach for finding patterns in mappings of finite sets. 

2. ANALYSIS OF THE GENETIC CODE 

2.1. Patterns in the Genetic Code 

Viewed abstractly, the genetic code is a language in which 64 possible 
combinations of the four bases-uracil (U), cytosine (C), adenine (A), and 
guanine (G)-taken three at a time specify either a single amino acid or 
peptide chain termination. With 64 possible “words” and 21 possible 
“meanings,” there is clearly the potential for different codons coding for 
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TABLE I 
Genetic Code, Consisting of 64 Triplets and 
Their Corresponding Amino Acid, Is Shown 

in Its Most Common Representation 

2nd U C A G 3rd 

1st Phe 
Phe 

U Leu 
Leu 

Leu 
Leu 

C Leu 
Leu 

Ile 
Ile 

A Ile 
Met 

Val 
Val 

G Val 
Val 

Ser TYr 
Ser TYr 
Ser TC 
Ser TC 

Pro His 
Pro His 
Pro Gln 
Pro Gln 

Thr Asn 
Thr Asn 
Thr LYS 
Thr LYS 

Ala ASP 
Ala ASP 
Ala Glu 
Ala Glu 

U 
C 
A 
G 

U 
C 
A 
G 

U 
C 
A 
G 

U 
C 
A 
G 

Note. The three codons marked TC are termination signals of the poly- 
peptide chain. The codes are 

Ala = alanine 
Arg = arginine 
Asp = aspartic acid 
Asn = asparginine 
Cys = cysteine 
Glu = glutamic acid 
Gln = glutamine 
Gly = glycine 
His = histidine 
Ile = isoleucine 

Leu = 

Lys = 
Met = 

Phe = 
Pro = 

Ser = 

Thr= 
Try = 
Tyr = 
Val = 

leucine 
lysine 
methionine 
phenylalanine 
proline 
serine 
threonine 
tryptophan 
tyrosine 
valine 

identical amino acids. This is in fact the case: many pairs of codons that 
differ only in the third position base code for the same amino acid. On the 
other hand, a pair of codons differing only in the first or second position 
most often code for different amino acids. 

Crick [3] proposed a unified model, called the “wobble hypothesis,” for 
all codon-amino acid ambiguities, based on ambivalent interactions be- 
tween codons and anticodons (the RNA unit that mediates the transfer of 
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information from the codon to the ribosome that polymerizes the amino 
acids). In this model, codon-anticodon interactions for the first and second 
positions are based on the normal Watson-Crick base pairing. However, 
codon-anticodon interactions for the third codon position, although involv- 
ing base-pairing, are such that the anticodon base can alternatively pair 
with more than one base. For example, G can pair with U as well as C. By 
invoking a class of these atypical base pairs, the model accounts for the 
observed degeneracies in the genetic code. The model is supported by the 
observed specificities of trinucleotides binding to tRNA’s (Sol1 e? al. [15]). 

While the wobble hypothesis is a well-accepted explanation of the 
third-position degeneracy, other aspects of the patterns apparent in the 
genetic code have not been as amenable to analysis. There have been many 
proposed groupings of codons based on various chemical characteristics of 
the amino acids they code for; for instance, a correlation between amino 
acid chemical structure (hydrophobicity) and the base in the second posi- 
tion of the codon has been proposed by several groups [18, 13,171. 

Alff-Steinberger [ l ]  analyzed the code from the point of view of determin- 
ing whether or not it was an error minimizing code. He compared the error 
transmitting property of the universal code with that of computer-generated 
random codes, considering amino acids properties such as molecular weight, 
polar requirement [19], and number of dissociating groups. He concluded 
that for the universal genetic code, single-base substitution in the first 
position of the codon tends to result in the substitution of an amino acid 
more similar to the original amino acid than would be expected from a 
random code; the second position plays the largest role in determining the 
properties of the amino acid. 

Alff-Steinberger’s work is the closest in the literature to our own. He 
compares the effects of single base substitutions in the first or second codon 
position on the resulting amino acid. These computations are performed for 
the “universal” code and a number of random codes. Our own work quite 
simply looks for position-dependent patterns in the “universal” code. This 
basic analysis has not been previously performed, perhaps due to difficulties 
in definition and computation. See also Ehrenfeucht et al. [5] for some 
related mathematical work on pattern recognition for functions of several 
variables. Other more sophisticated analyses have, interestingly enough, 
been performed. Some of these rest on coding theory [16] and on group 
theory [2]. 

~ 

i 
~ 

I 

2.2. The Genetic Code as a Mapping 

The biological context of protein synthesis suggests consideration of the 
genetic code as a mapping which relates two specific sets, the set of 
trinucleotides (codons) and the set of amino acids (and the termination 
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signal). This formalism should provide a useful basis for answering ques- 
tions about correlations between patterns in the code and the 
structural/functional properties of both the cellular machinery for synthe- 
sizing proteins and the proteins themselves. We seek to define sets of 
mappings that account for patterns in the genetic code. Mappings can be 
defined that allow evaluation of ambiguities in one or more positions. Here 
we analyze the effects of ambiguities in one or two positions; the results are 
compared with known effects of single base substitution. 

2.3. General Description and Notation 

Let N = {A, C, G, U }  be the set of nucleic acids, C = {(x1x2x3): 
x,, x 2 ,  x3 E N} be the set of 64 codons and A be the set of the 20 amino 
acids and the termination codon TC. 

Let the mapping g: C + A be such that it assigns to each triplet in C an 
amino acid in A exactly as shown in Table I. That is, g is the usual genetic 
code. For example, g(ACG) = Thr while g(UGG) = Try. g is simply a 
function with domain C and range B. 

As can be seen in Table I, any two triplets having the first two bases in 
common and whose third base is either U or C, code for the same amino 
acid. This leads to consideration of a collection of 16 disjoint subsets of C: 

x, = { u u u , u u c } ,  x, = { u c u , u c c } ,  
X ,  = { UAU, UAC} - XI, = { GGU, GGC}. 

To describe this behavior of the genetic code in mathematical terms, we 
notice that for all i ,  g(x) = g(y) for x, y E Xi, i = 1, .  . . ,16. 

Our interest is in finding this and similar patterns in a systematic and 
quantitative manner. Not all of these patterns hold universally so we 
introduce a measure which expresses the agreement between a pattern and 
the genetic code. First, however, we give a general definition of a pattern, 
which includes the example just discussed. 

DEFINITION 1. Let { X,, X , ,  . . . , X , }  be a collection of disjoint subsets 
of C. For this collection, we define a pattern to be a mapping f satisfying 

f(x) = f(y) 

f ( x )  = g(x)  

Notice that in the above example 

if x, y E x; 
i fx  E UX,.  

i 

16 

UX,=NXNX {u,c}. 
i - 1  
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For example, X, collects the two triplets UAU and UAC that have the first 
position U, the second position A, and a U or C in the third. A short way to 
denote this collection of sets is {UC}, indicating that the two first bases of 
the triplets are any fixed elements of the set N but the third base is either U 
or C.  The associated pattern will be f(u,c),, for convenience. 

In another example, let Xi = {(x1xzx3): x, E {A,C} or x3 E {U,G}} 
for each x2 E N. Then UiX, = {A,C} X N X N U N X N X {U,G} and 
the collection will be denoted {A, C}, U {U, G}3. 

* 

* 

2.4. Pattern Comparison 

Next, we define the notion of distance between patterns. This is im- 
portant because we want to find patterns that are “close” to the genetic 
code. 

DEFINITION 2. Let d be a metric on the set A. A distance d between 
two patterns f and h will be given by 

xcc 

Remark. We remark that d is a metric on the set of patterns. For 
example, take 

d = c (1 - &,,(x)), 
xcc 

where 

1 if f ( x )  = h ( x )  
0 otherwise. &,,(x) = 

This distance is referred to as “0-1” distance. 

Obviously, the smaller the value of d, the greater the agreement between 
the patterns f and h being considered. Our interest is in patterns f with 
d( f, g )  small. The criteria will be based on the amino acids assigned to the 
triplets in each particular Xi under the pattern f. Before stating the criteria, 
we give the following definition. 

DEFINITION 3. The cardinality of the domain of a pattern f is defined 
to be the number of Xi’s plus the number of elements in the set C - UiXi. 

The wobble hypothesis of Crick motivates this definition. We will denote 
the domain of f by D(f) and the cardinality of the domain by lD( f ) l .  

It is also useful to consider the amino acids that it is possible to express 
under a pattern f. 
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DEFINITION 4. The range of a pattern f ,  R( f), is defined to be the set 

The cardinality of the range is equal to the number of elements in R ( f )  
of amino acids in the image of f. 

and will be denoted by ( R (  f )I. 

’ 2.5. Criteria for Goodness of Fit of a Pattern 

When assigning amino acids to the triplets of a particular X, we must 
make choices for the amino acids. This is done in a way that minimizes the 
value of d( f ,  g) and at the same time maximizes the range of the pattern. 
When both conditions cannot be satisfied simultaneously, then the condi- 
tion on the distance prevails. Mathematically it means that we find the 
pattern f satisfying 

R ( f )  = m a  R ( h ) :  h E (4: d(q, g )  = min{d(p, g ) } } ) .  ( P 

EXAMPLES. (1) AUU codes for isoleucine; AUG codes for methionine. 
Let the collection be { U , G } , ;  then f ( A U U )  = f (AUG).  Therefore the 
amino acid assigned is either isoleucine or methionine. If we take d as the 
0-1 distance, for either of the two choices, the assignment of amino acids 
contributes one unit to the value of d(f, g), but the second choice maxi- 
mizes the range of f .  

(2) Take Example 1 above but with { U , G , A } , ;  then f ( A U U )  = 
f (AUA)  = f (AUG).  Since AUA codes isoleucine in the “universal” genetic 
code, in order to minimize the distance between f and g, the choice is to 
assign isoleucine to each of the triplets. 

2.6. Pattern Enumeration 

Our interest is in those patterns defined by restricting the alphabet in one 
or two positions of the codon. By this we mean that the triplets in X ,  have 
two bases in common in the first case and one in the second case. Notice 
that if the triplets of each Xi have two bases in common, we will have 16 
such X,’s and, if the triplets in each Xi have one base in common, we will 

To determine the number of patterns defined by single positions we 
consider all possible subsets of N with cardinality 2, 3, and 4. Let M be one 
such subset and Xi = {(x1x2x3): x k  E M} with x i  E N with i # k. 

If M has two elements, there are ( i )  = 6 possible subsets. These 6 subsets 
will determine 6 patterns for each position in the codon. Thus, the total 
number of these patterns is 18. If M has three elements, there are (:)= 4 
possible subsets of N with three elements each, determining 12 patterns. 

, 

. have four such X,’s. 
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Finally, if M has four elements (Le., M = N), we have three patterns. 
Therefore, the total number of patterns defined by single positions is 33. 

To count the number of patterns defined by double positions, consider 
two subsets L and M of the set N and let 4 = {(x1x2x3}: xi E L  or 
x k  E M} for each x i  E N with distinct i ,  j, and k. 

If both L and M have one element each, there are (:)( :) = 16 possible 
ways to combine two such subsets and there are three ways to choose two 
positions in a triplet, determining 48 patterns. If L has one element and M 
has two, we have 2( ;)( l) = 48 combinations of L and M and therefore 144 
patterns are determined. If L has one element and M has three, there are 2( ;) 
(;)= 32 ways to choose L and M and 96 patterns result. Following the 
same reasoning we get 108 patterns when L and M have two elements each; 
144 patterns when L has two elements and M has three; 48 patterns when L 
and M have three elements each. Notice that all patterns with the same 
combination of positions, where one of the sets has four elements, are 
identical. Therefore, we have 3 patterns when L has one, two, three, or four 
elements and M has four. 

Thus, the total number of distinct patterns defined by two positions in 
the triplets is 591. 

- 

* 

2.1. Examples 

(1) Let us construct one of the patterns defined by single positions and 
take the criteria for goodness of fit of a pattern determined by the “0-1” 
distance as in the example following Definition 2. 

Let X, = { ( x 1 x 2 x 3 ) :  x 3  E {A, G}} for each pair x, ,  x 2  E N. Then the 
collection is { AG} according to the notation established above. 

(a) X, = {UUA, UUG}, X, = {UCA, UCG}, 
X, = {UAA,UAG}, X, = {UGA, UGG}, 
X, = { CUA, CUG}, X, = {CCA, CCG}, 
X, = { CAA, CAG}, X, = { CGA, CGG}, 
X, = {AUA, AUG}, X,, = {ACA, ACG}, 
XI, = {AAA,AAG}, X12 = {AUA,AUG}, 
XI, = {GUA, GUG}, XI, = {GCA, GCG}, 
X I ,  = {GAA,GAG}, XI, = {GGA,GGG}. 

(b) By definition of a pattern, f(x) =f(y) if x ,  y E X ,  for all i .  Table 
I1 shows the amino acid assignment that meets the conditions of the 
criteria. 

(c) Since g(UGA) = TC, f(UGA) = Try, and g(AUA) = Ile, 
f(AUA) = Met, d(f, g )  = 2. That is, Tables I and I1 differ in two positions. 
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TABLE I1 
Amino Acid Assignment Corresponding to 

the Best Pattern f{AGJ, 

2nd U C A G 3rd 

1st Phe 
Phe 

U Leu 
Leu 

Leu 
Leu 

C Leu 
Leu 

Ile 
Ile 

A Met 
Met 

Val 
Val 

G Val 
Val 

Ser 
Ser 
Ser 
Ser 

Pro 
Pro 
Pro 
Pro 

Thr 
Thr 
Thr 
Thr 

Ala 
Ala 
Ala 
Ala 

U 
C 
A 
G 

U 
C 
A 
G 

U 
C 
A 
G 

U 
C 
A 
G 

(d) Recall that the cardinality of the domain of a pattern was defined 
to be the number of elements in Xi plus the number of elements in the set 
C - UiXi. According to this definition we have: 16 elements in 
{XI, X,, . . . , XI,} and 32 elements in UiXi, so that the cardinality of the 
domain of f{A,GJ3 is 16 + (64 - 32) = 48. 

(2) Now, let us construct a pattern defined by double positions. Let 
x. , = {( x1x2x3): x 2  E {A, G} or x 3  E {U, C}} for i = 1,2,3,4; the collec- 
tion will be denoted by {A, G}, U {U, C}3. 

(a) XI = { UUU, UUC, UCU, UCC, UAU, UAC, UAA, UAG, 
UGU, UGC, UGA, UGG} 

CGU, CGC, CGA, CGG} 

AGU, AGC, AGA, AGG} 

GGU, GGC, GGA, GGG} . 

X2 = { CUU, CUC, CCU, CCC, CAU, CAC, CAA, CAG, 

X3 = { AUU, AUC, ACU, ACC, AAU, AAC, AAA, AAG, 

X, = { GUU, GUC, GCU, GCC, GAU, GAC, GAA, GAG, 

(b) Table I11 lists the amino acid assignments. 
(c) d(f, g) = 35 because, as shown in Table 111, there are 35 cases 

where the amino acid assignment under f differs from the genetic code. 
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TABLE I11 
Amino Acid Assignment Corresponding to 

the Best Pattern f (A ,G) ,”  (U,C), 

(d) Since we have 4 Xi’s with 12 elements each, the cardinality of the 
domain is 4 + (64 - 48) = 20. 

3. NUMERICAL RESULTS 

3.1. As stated before, all patterns we constructed here are defined by 
restricting the alphabet in one or two positions of the codons. Since the 
distance between two patterns, by Definition 2, depends on the metric we 
choose for the set of amino acids, we will first consider the “0-1” distance 
determined by the metric 6 of the example following Definition 2 (i.e., 
d ( f ( x ) ,  h ( x ) )  = Z x E C ( l  - 6,,,(x)). Second we choose as the metric for 
the amino acid that given by Sneath [14] and we will refer to the corre- 
sponding distance as the “Sneath distance.” 

3.2. Patterns Dejined by Single Positions 

The 33 patterns constructed here are those that identify two, three or four 

patterns to reflect the effects already known about single-base substitution. 
I 

I 
nucleotides in one position of the codons. For this reason we expect the 
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TABLE IV 
Distances d( f, g) between the Universal Genetic Code and 

the Maps “f ” when Using the “0-1” Distance 

{U?C), 48 14 21 16 21 
(U,  A}, 48 16 21 16 21 
F J 9  GI, 48 16 21 16 21 
{C,A), 48 14 21 16 21 
{C,G), 48 16 21 16 21 
(A7 GI, 46 16 21 15 21 
(U, c, A), 32 28 17 32 20 
FJ, C, GI, 32 30 20 32 21 
{U, A, GI, 32 32 19 31 20 
{C, A, GI, 34 30 19 31 20 
{U, C, A, G } ,  16 44 14 47 16 

0 21 
7 21 
8 21 
7 21 
8 21 
2 21 
I 21 
8 19 
9 19 
9 20 

15 15 
~~ ____ 

Note. The size of the domains and ranges are also given. 

3.2.1 The “0-1” Distance 

The main features of the numerical results summarized in Table IV are 
discussed below: 

(1) When identifying the pair of pyrimidines (U and C) in the third 
position, the corresponding pattern f(u,cl, is exactly the genetic code. 
Therefore we get d(f(u,c13: g) = 0 and the assignment is unique which 
means that there is no possible loss of amino acids in the range. 

(2) When identifying the pair of purines (A and G) in the third 
position, the corresponding patterns differ from the genetic code by two 
assignments. Thus d(f{A,G13, g) = 2 and the best of these patterns has the 
same amino acids as the universal genetic code. 

The two features above are frequenctly noted by other authors and are 
cited and discussed by Crick (1968). 

(3) The third position of a codon is less relevant in identifying the 
amino acid. Indeed the fL, is always much smaller for position i = 3 for 
every subset L of N. This is shown by the above facts and the following: the 
best of the patterns f{u,C,A,G),  differs from the genetic code by 15 assign- 
ments. This is the largest distance from the genetic code among all patterns 
defined by the third position while the smallest distance between patterns 
defined by the second position and the genetic code is 15 and the smallest 

c 

L 
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distance between patterns defined by the first position and the genetic code 
is 14. 

To formalize the relative importance of position over all the patterns, we 
apply the Friedman test. The Friedman test is a nonparametric test which 
ranks, for each pattern, the position by relative size (see [ l l ,  p. 2621). For 
example, in Table IV for f{u,c),, the distances for the first row are 14, 16, 0 
for i = 1,2,3. We replace this row by the ranks 2,3,1. Then each column is 
totaled with R j  = sum of column i .  We have k = 3 columns and n = 11 
rows. In Table IV, R, = 25.5, R ,  = 29.5, and R ,  = 11. To perform a 
multi le com arisons test, compare the Ri - R j  with fzo ,  where (I 

= ,/* = 6.6332 and z is chosen from the normal table. With an 
overall level of significance equal to 0.06, each of the 6 comparisons has 
probability 0.01 and we declare Ri > R j  if Ri - R j  2 (2.326)(6.6332) = 

15.43. In this way, R, > R, and R, > R, but no decision is made 
regarding R, and R,. 

It is important to notice that in this analysis the termination codons 
“TC” are included in the range of each mapping or pattern. 

b 

3.2.2. The “Sneath” Distance 

Before we discuss the numerical results which are summarized in Table V 
we need to make some important remarks: 

(1) Since the “Sneath table” of distances between amino acids (Sneath, 
1966) does not include the termination codons, we arbitrarily assign 0 to the 
distance between any amino acid and the termination signals TC. 

TABLE V 
Distances between the Universal Genetic Code 

and the Maps “f ’’ when Using 
the “Sneath” Distance 

~~ 

f i = l  r = 2  i = 3  

288 
235 
283 
299 
368 
328 
487 
576 
529 
553 
779 

324 
332 
408 
430 
369 
3 74 
648 
634 
662 
679 
965 

0 
116 
176 
117 
176 
22 

117 
176 
176 
176 
294 
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(2) Because of the nature of the Sneath metric, the resulting minimum 
distance between the genetic code and the corresponding patterns leads, in 
most cases, to a unique pattern. 

Next we discss the numerical results: 

(1) When identifying the pair of pyrimidines (U and C) in the third 
position, the corresponding pattern f{u,c), is exactly the genetic code, 
therefore d( f {u , c )3 ,  g) = 0. 

(2) The third position is the least relevant among the three. Again, the 
i = 3 column is always much smaller than i = 1 or i = 2 for each pattern. 
Also notice the fact that the largest distance between a pattern and the 
genetic code when restricting the alphabet in the third position is 
d(  f(U,C,A,G)3r g) = 294, while the smallest distance between the genetic 
code and patterns defined by restricting the alphabet in the second position 
is 324 and the smallest distance between patterns defined by the first 
position and the genetic code is 235. 

(3) The second position is the most sensitive to substitutions and this is 
reflected by the fact that all the distances between the patterns defined by 
this position and the genetic code are larger than the corresponding ones 
defined by the first or third position. 

The Friedman test is again applied to analyze the relative importance of 
i = 1,2,3. R ,  = 22, R, = 33, and R, = 11. At what cy can we declare 
R, > R, > R,? Now again o = 6.6332 so note that R, - R ,  = R ,  - R ,  = 
11 so that 11 = 1 . 6 6 ~ .  Thus 4 6  = 0.05 and OL = 0.30 is necessary to 
declare R ,  > R, > R,. The evidence for this ranking is fairly good but not 
entirely compelling. A more detailed analysis with double positions in 
Section 3.3 lends more weight to this ranking. 

3.3. Patterns DeJned by Double Positions 

The 591 patterns considered here are those that identify one or more 
nucleotides in each of two positions of the codon, as illustrated by 
f{p,G)2U{U,C)3 in Section 2.6. The extensive data produced for the “0-1” 
distance and the Sneath distance is available on request but, in the interest 
of space, not reproduced here. Instead, the predominant features of the 
data are studied by the Friedman test. The three columns of the tables 
correspond to position pairs ( i  = 1, j = 2); (i = 
We have three columns with 197 rows, so that u = 
Let R ,  correspond to positions 1 and 2; R, correspond to positions 1 and 
3; R, correspond to positions 2 and 3. 



20 PERLWITZ, BURKS, AND WATERMAN 

For the “0-1” distance, R ,  = 590.5; R ,  = 238; R, = 353.5. (Here ties 
are resolved by splitting ranks.) The smallest difference is R, - R, = 5 . 8 ~  
which is a significant difference with a = 2 X lop8. The differences are 
even more highly significant with the Sneath distance, giving a ranking of 
R ,  > R,  > R,. Translating into position pairs, we write 

’ 

{1,2} > {2,3} > {1 ,3} .  

Thus we conclude that positions { 1,2} are the most important in determin- 
ing amino acids. In fact the ranking of position 2 > position 1 > position 3 
is suggested by these results. 

4. SUMMARY 

The genetic code is formally viewed as a mapping of one finite set (the 64 
codons) to another (the 20 amino acids and termination operator). There 
are 2164 = 4.19 X possible mappings from a set of 64 to a set of 21 
objects. By taking into account the biological setting of our problem, we 
selected a subset of mappings that are simpler than the universal genetic 
code. Such a selection is motivated by the fact that the codons are base 
triplets and that certain bases in various codon positions are equivalent 
(specify the same amino acid) or almost equivalent (specify amino acids 
with very similar properties). 

To formalize the comparison between the genetic code and any of the 
mappings chosen, a distance between any two mappings is defined. The 
resulting distance of course will depend on the metric over the set of amino 
acids that we choose. In this analysis, only two metrics were considered, the 
0-1 metric (counting amino acids as equal or unequal), and the Sneath 
metric (integrated amino acid distance, compiled by Sneath in 1966). With 
the 0-1 metric the codon third base degeneracy is significant but the effects 
of the first and second position are indistinguishable. The Sneath metric 
shows a significant difference in the effects over each of the three positions, 
taking them as 2nd > 1st > 3rd, agreeing with the biochemical results. 

This study can be extended to consider, individually, various amino acid 
properties such as water structure former, water structure breaker, mobile 
electrons, heat and age stability. It will be of interest whether or not the 
patterns obtained for the Sneath metric hold up for these individual 
properties. Other obvious areas of interest concern the new mitochondrial 
codes which have small changes from the “universal” code [20]. These 
changes in the mitochondrial codes do not seem to fit the general patterns 
we have deduced for the universal code. 

, 

. 
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