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LETTERS TO THE EDITOR 

A New Algorithm for Best Subsequence Alignments 
with Application to tRNA-rRNA Comparisons 

The algorithm of Smith & Waterman for identification of maximally similar subsequences is 
extended to allow identification of all non-intersecting similar subsequences with similarity 
score at or above some preset level. The resulting alignments are found in order of score, 
with the highest scoring alignment first. In the case of single gaps or multiple gaps weighted 
linear with gap length, the algorithm is extremely efficient, taking very little time beyond 
that of the initial calculation of the matrix. The algorithm is applied to comparisons of 
tRNA-rRNA sequences from Escherichia coli. A statistical analysis is important for proper 
evaluation of the results, which differ substantially from the results of an earlier analysis of 
the same sequences by Bloch and colleagues. 

Algorithms for locating highly similar segments 
(contiguous subsequences) from two different 
sequences have received some attention in the last 
few years. Unexpected relationships have been 
found between viral and host DNA (for examples, 
see Weiss, 1983; Doolittle et al., 1983; Naharro et 
al., 1984). Rapid searches of databases for these 
relationships are frequently made with techniques 
using hashing (Wilbur & Lipman, 1983). These 
useful approaches do not always find optimal 
alignments and the dynamic programming methods 
developed earlier are still used. In  fact some 
analysis programs do an initial screening with 
hashing and then do dynamic programming 
for regions of possible interest. This note presents a 
new algorithm that produces alignments of interest 
by first computing the matrix of Smith & 
Waterman (1981) for the best alignment and then 
making small modifications to the matrix to  
produce non-intersecting subsequent alignments. 
The new algorithm is much simpler and more 
efficient than those currently in use. Readers who 
want a copy of our program in C should send 
magnetic media to  us a t  the above address. 

Dynamic programming methods of sequence 
comparison were introduced by Needleman & 
Wunsch (1970), while Sellers (1979, 1980) began 
work on the problem of finding well-aligned 
segments between two sequences. His initial work 
was based on distance measures and involved 
“forward” and “backward” matrix calculation and 
intersection of path graphs. Goad & Kanehisa 
(1982) introduced a dissimilarity measure and the 
concept of match density, also with forward and 
backward matrix calculations. Sellers (1984) shows 
that their criteria are equivalent to aligned 
segments with ( 1 )  a similarity score greater than, or 
equal to, some cutoff value and (2) a similarity 
score at least as large as scores of other 
intersecting alignments. Gotoh (1987) mentions 
that alignments of segments other than that with 
the largest similarity are not easily obtained with 
the Smith & Waterman (1981) method. Our new 

method easily and rapidly produces all these 
alignments. To avoid matrix recalculation as in 
Sellers’ method, Boswell & McLachlin (1984) 
introduced exponentially damped alignment 
scoring. By directly locating best subsequence 
alignments, we avoid this device. 

Take the two sequences to be a = a l a 2 .  . . a,, and 
b = blb2 .  . . b,. They can be either DNA or protein 
sequences. The similarity measure between 
sequence letters a and b is s(a, b), where s(a, b) > 0 
if a = b and s(a, b) < 0 for a t  least some cases of 
a # b. Insertions or deletions of length k receive 
weight -tuk. The observation of Smith & 
Waterman (1981) is that  negative scoring align- 
ments are of no interest. S(a,  b)  is defined to be the 
best (largest) score from aligning a and b .  Define: 

Hi,j  = max{O;S(a,a,+, . . .ai,b,b,+, . . . bj): 
1 5 z 5 i,l 5 y sj}. ( 1 )  

Hi,j is the best score of any alignment ending at  ai  
and bj or 0, whichever is larger. The similarity 
algorithm is started with: 

Hi,o = H o , j  = 0, 1 5 i 5 n, 1 g j  5 m. 

Then: 

Hi,j = max(0, Hi-l , j- l+s(ai ,  bj), Ei,,, Fi,j}, (2) 
where: 

Ei,j = maxl ,<k ,<j {Hi , j -k-w(k)} ,  (3) 

Fi, j = maxi<kSi{Hi-k, j - ~ ( k ) } .  (4) 

When wk = u + vk, Gotoh (1982) has shown that this 
O(n3) algorithm can be reduced to O(n2).  Waterman 
(1984), obtained a reduction for concave wk related 
to that obtained for linear wk. For algorithms where 
insertions and deletions are obtained by inserting or 
deleting one letter a t  a time, the algorithms are 
already O(n2).  This is the case with the algorithms 
of Sellers (1979, 1980) and Goad & Kanehisa (1982), 
for example. 

The original Smith & Waterman algorithm found 
alignments by tracing back from (ij) where 
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Hi, = max,,,H,,,. The optimal segment alignments 
must end a t  ( i j )  achieving the maximum. 
Sometimes alignments can have 0 score segments 
added on to them. We simply do not allow these, as 
is described below. It is in fact possible for related 
sequences to have many optimal alignments. For 
example, the rRNA sequences 5 S Escherichia coli 
and 5 S Mycoplasma capricolum, when compared 
with s(a,b) = + 1 if a = b and - 1 if a # b, and 
w1 = -2, have similarity 22, and there are 52,020 
difficulties, our implementation traces back one opti- 
mal alignment from ( i j )  instead of all optimal 
alignment from (i,j) instead of all optimal 
alignments. Other scientists may wish to have all 
optimal alignments; it  is easy to modify the 
algorithm given here to do that. We now describe 
how we choose our optimal alignment. 

If there are ties for maxi, jHi, j ,  we choose among 
the possible positions to begin the traceback as 
follows: 

If Hi,j =H,,, and i + j  < k + l ,  

If Hi,j =Hk,,, i+ j  = k + l ,  and i < k ,  

traceback from ( i j ) .  (5) 

traceback from (i,j). (6) 

Equation (5) is to eliminate 0 score segments a t  the 
end of an alignment, while equation (6) is to assure 
that similar alignments are output when the 
sequences are reversed. (By reversed we mean that 
the sequences are written backwards.) Equation (6) 
simply gives a rule to  determine completely the (i,j) 
value a t  which to begin the traceback. Next i t  is 
necessary to choose among the (p,q) values where 
the traceback ends. To be consistent with equation 
(5), if @,q) and (r ,s)  both end tracebacks from ( i , j )  
we choose (p,q) if r + s < p + q. To be consistent with 
equation (6), i f p + q  = r+s ,  we choose (p,q) i f p  > r .  
The result of these rules is that ,  for both the 
sequences reversed and unreversed, the alignment 
begins and ends a t  the same locations. In  between 
we always take diagonal steps (match or mismatch) 
whenever possible, but the alignments can differ, 
usually in minor ways, if a t  all, when sequences are 
reversed. 

Having refined the best alignment definition 
slightly, we turn to finding the other alignments of 
interest. Two alignments are said to intersect if 
they have a match or mismatch in common. It is 
possible to extend this definition to require a larger 
number or even a percentage of matches and/or 
mismatches in common, but we have found the 
definition given here to be very useful. This 
definition can also be extended to  include insertions 
and deletions. We want to find the next largest 
scoring alignment that does not intersect those 
already output. The simplest idea is to recompute 
the matrix, simply not allowing matches or 
mismatches that were involved in alignments 
already output. (Kruskal & Sankoff (1983) made a 
related proposal in which they recommended 
recomputation forcing any (id) involved in an 
output alignment to have the value 0.) Of course 

these procedures involve more computation. Each 
additional alignment requires on the average n2/4 
matrix entries to  be recomputed, since only 
elements below and to the right of (ij) can be 
affected by changing H i , j .  (We take (0,O) to be in 
the upper lefthand corner of the matrix.) To obtain 
1 + A  alignments takes (1  +A/4 )  times as long as 
obtaining the first or best. While this most general 
version of our method is somewhat costly in terms 
of time, i t  is extremely simple to implement; the 
intersecting path graph methods are not. We now 
turn to reducing greatly the time requirements of 
the algorithm. The reduction is based on the 
observation that only matrix elements “near” the 
output alignment change on recomputation; the 
vast majority of the recomputed matrix H* is 
identical with the original matrix H (see Fig. 1 for 
an example of H and H*). 

Hi, j= max(0, Hi- l , j - l+s(ai ,bj) ,  

This algorithm considers one-letter insertions and 
deletions a t  a time and is simpler than the general 
linear wk algorithm given in equations (2) to (4). As 
mentioned above, only matrix elements below and 
to the right of alignment entries can differ from the 
original matrix values. Take the upper leftmost 
alignment position ( i , j ) .  The computations start 
with: 

Ht j  = max(O,Hi-l,j-w, Hi,j-l -w}. 
Notice that the match with which the alignment 
ended is not allowed. Consider the column ( k , j ) ,  
where i < k. Recompute each entry ( k , j ) ,  
k = i + l , i + 2 , .  . . until the new value HZj equals 
the previous Hk,j. Then since HCj-l = Hl, j - l ,  for 
all 1, it  is clear that  H,T,. = HlZj for all k < 1. 
A similar calculation for the row ( z , k ) ,  j < k, allows 
us to stop whenever the new H?, equals Hi,,. We 
proceed by induction. Notice that in later 
calculations we must go to at least the position that 
was necessary for the preceding row or column. This 
greatly reduces the recalculation necessary. If the 
output alignments have length L and we output A 
alignments, the total computation required is 
approximately O(n2) +AO(LZ) .  If n = 1000, A = 10, 
and L =  20, then the complexity is 
lo6 + 10 x 20’ = lo6 + 4 x lo3. Notice that the align- 
ments are produced with much less computation 
than the original matrix. A = 2500 alignments of 
length 20 must be processed to have the alignment 
calculations balance that of the original matrix 
calculation. 

Next we turn to  obtaining similar efficiencies for 
the linear gap functions, w(k)  = u+wk, where k is 
gap length. Gotoh (1982) showed that the time for 
the multiple gap algorithm of Waterman et al. 
(1976) could be reduced to O(n2) for linear gap 
functions by altering the last two recursions, 
equations (3) and (4), to: 

Suppose we have an algorithm with wk = wk: 

H i - l , j - ~ ,  Hi , j - l -~} .  (7)  

= max(Hi, j-r - (u + w), Ei, j - l  -u}, 
Pi,  = max{Hi-,, j -  ( u +  w),Pi- l ,  j-w}. 
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Figure 1. The maximum segments matrix H for computing a = CCAATCTACTACTGCTTGCAGTAC with 
b = AGTCCGAGGGCTACTCTACTGAAC appears in (a) while H* appears in (b). The entries H *  that required 
recalculation are indicated by an asterisk on the right. Paths for the alignments can be followed by tracing the boxed 
entries. 

To implement our algorithm for these recursions, 
the same procedure is followed as for the single gap 
case, except that here we stop along a row or 
column when all three quantities H i , j ,  EiVj and Fi , j  
are equal to H t j ,  E t j  and F f j ,  respectively. 
Therefore for general linear gap functions we have 
achieved the same efficiencies as for the single gap 
case. 

In Figure 1 ,  the sequence a = CCAATCTACTAC- 
TGCTTGCAGTAC is compared to b = AGTCCG- 
AGGGCTACTCTACTGAAC with s(a,a) = 1, 
s(a,b) = -0.9 if a # b, and deletions of length k 
have weight wk = -2k. Figure l(a) shows the 
matrix with entries multiplied by 10 (so that 
integer arithmetic can be used). The maximum 
entry has a score of 6.2, associated with the 
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alignment: 
CCAATCTACT 
CTAC T C  TAC T. 

The matrix is processed again to  produce H *, The 
entries where recomputation has been performed 
are marked on the right by an asterisk. Only 63 of 
the 576 entries were recomputed. The maximum 
entry in H * is 6.1 with the resulting alignment: 

CTACTACTGCT 
CTACT-CTACT. 

Much attention has been given to comparisons of 
rRNA sequence and structure across a diverse set of 
organisms. The powerful concept of the 
conservation of structure has been used to derive 
the secondary structure of 5 S rRNA (Fox & Woese, 
1975; Nishikawa & Takemura, 1974); 165  rRNA 
(Noller & Woese, 1981) and of 23 S rRNA (Noller et 
al . ,  1980). These studies are based on conservation 
of sequence and structure over evolutionary time. 
There are also studies that consider the possibility 
of ancestral RNA sequences from which other RNA 
sequences, if not all nucleic acid sequences, have 
evolved. Eigen & Winkler-Oswatitsch (1981) argue 
that tRNA was an early self-replicating gene. Bloch 
et al. (1983) carry the arguments further and 
suggest that  matchings between tRNA and rRNA 
sequences are evidence of common evolutionary 
origins and are therefore homologies. Any such 
argument should be based on good computer search 
algorithms and on careful statistical considerations. 
We illustrate the power of our new algorighm with 
a study of tRNA-rRNA comparisons of E.coli 
sequences. It is necessary to evaluate the 
comparisons statistically. 

The parameters used for the algorithm remain 1 
for a match, -0.9 for a mismatch, and wk = -2k 
for insertions or deletions. The source of the 
sequences is GenBank and we compare 33tRNA 
sequences with 1 6 s  rRNA, all from E .  coli. The 
results are shown in Table 1 .  Before we discuss the 
results, it  is necessary to describe the method used 
to obtain statistical significance. 

Recently the statistical nature of matchings 
between random sequences has been studied and a 
new probability distribution derived. This work 
began with the empirical study of Smith et al. 
(1985) and has been continued by Arratia et al. 
(1986) and by Waterman et al. (1987). The 
mathematical results, from the last paper cited, 
state that  for a wide range of penalties, H is 
proportional to the logarithm of the product of the 
lengths of the sequences being compared. The 
sequence lengths should not be too disparate. The 
variance is constant and does not depend on the 
sequence lengths. In  the paper by Smith et al. 
(1985), over 20,000 scores from sequence 
comparisons of unrelated DNA sequences of a great 
many organisms, with the same algorithm 
parameters used above, gave the following fit for 
the average score A ,  

A = 2.55 log(nm) - 8.99, 

Table 1 
The summary of comparisons of tRNA and 

16 S sequences from E. coli 

Reference 

Position in Sprinzl & GenBank 
E. coli Gauss accession 
tRNA tRNA 165 Score # e  (1982) number 

Ala-la 
Ala-lb 
CYS 
Asp-1 

Glu-2 
Glu-l 

Phe 
Gly-1 
Gly-2 
Gly-3 
His-1 
Ile-1 
Ile-2 

Leu-1 
Leu-2 
Leud 
Met-f 
Met-m 
Asn 
Gln-1 
Gln-2 
Arg-1 
Arg-2 
Ser-1 
Ser-3 
Thr-ggt 
Val-1 
Val-2a 
Val-2b 

Tyr-1 
Tyr-2 

LYS 

TrP 

~~ 

50 591 12.2 -0.2 
50 591 12.2 -0.1 
74 1328 21.0 6.2 
56 1424 10.8 -1.1 
73 280 10.9 -0.8 
73 280 12.8 0.6 
47 685 13.0 0.6 
62 797 9.4 -1.4 
54 590 9.5 -1.2 
62 295 14.4 1.5 
65 1367 13.2 1.1 
68 967 13.6 0.9 
66 1317 14.0 1.3 
34 1090 10.7 -0.5 
87 1412 13.8 0.7 
72 385 11.7 -0.7 
59 812 13.4 0.4 
76 1112 12.0 -0.3 
75 807 11.4 -0.2 
52 480 15.3 2.4 
32 956 11.8 0.1 
39 961 12.1 0.2 
76 355 13.3 0.7 
39 728 12.8 0.3 
45 135 11.1 -1.3 
69 347 13.8 0.3 
18 31 10.1 -1.3 
69 1541 11.9 -0.2 
34 1540 11.3 -0.7 
34 1540 11.3 -0.4 
37 728 11.0 -0.7 
56 484 11.7 -0.4 
69 1188 10.9 -0.9 

0010 KO0139 
001 1 KO0 140 
0410 KO0179 
0310 KO0169 
0610 KO0188 
0620 KO0189 
1410 KO1552 
0710,0711 KO0196 
0720,0721 KO0198 
0730 KO1549 
0810 KO021 1 
0910 KO02 17 
0911 KO02 18 
1110 KO0282 
1010 KO1 550 
1011 KO1551 
1012 KO0225 
1310 KO0305 
1210 KO0296 
0210 KO0164 
0510 KO0181 
0520 KO0182 
01 10 KO0152 
0111 KO0153 
1610 KO1 555 
1620 KO1556 
1710 KO0275 
2010 KO1559 
2020 KO1560 
2021 KO1561 
1810,181 1,1814 KO0260 
1910,1911 KO0266 
1910 KO0267 

(Position in tRNA, Position in 16 S) = (i,j); 
Score = maxi,,Hi,j; #s  = (score-average)/s, where 5 is 
estimated standard deviation. 

where the base of the logarithm is l/p, p = the 
probability of random bases from the sequences 
matching, and n and m are sequence lengths. The 
standard deviation is s = 1.55. This distribution is 
not normal, and the normal distribution will lead to 
the assignment of significance where unwarranted. 
This approach is very useful in screening out 
matches that might otherwise seem significant. 

The above formula could not be used directly in 
our examples because the length of the tRNAs 
varies from 74 to  88 in our case while 1 6 s  is of 
length 1542. A simulation performing 1 0 0  
comparisons of random sequence pairs for each 
n = 74, 76, .  . ., 88 was made and the following fit 
resulted for the average score A: 

A = 5-04 log( 1542n) - 30-95, 

and the estimate of standard deviation is s = 1.49. In 
each comparison of Table 1 the matching 
probability was calculated and the average score 
was found by the above formula. From this #s = 
(score - average)/s was found. Clearly a t  most two 
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of the comparisons warrant attention. In the case of length; its more interesting feature is that  it is 
a normal distribution there is about 2.5% essentially contained in the region of Cys tRNA 
probability of being more than two units of given in the first alignment. If the second alignment 
standard deviation above the average; in the is assumed to  be independent of the first, we can 
distribution here there is about 4% likelihood of roughly estimate significance as follows: say the 
being more than two units of standard deviation score would be as large as it is with probability 1/2. 
above the average. So, in about 20 independent The second alignment of 40 bases can be located 
comparisons, we expect about one to be 2s above along the tRNA in about 40 ways, while i t  can be 
the average. located within the region of first alignment in about 

The most significant match is that  between ten ways, giving a probability of 114 of the 
cysteine tRNA and 16 S. It has a score of 21.0 and alignment overlapping in the observed fashion, The 
has 40 matches, ten mismatches, and five bases in product of these numbers is 1/8, probably not as 
insertion/deletions. The alignment is: small as might have been expected. Still the 

5‘ AGC GGA- -TTGC AAA-TC CGTC -TAGTC C GG-TTC GAC TCCGGAAC GC GCC TCC A tRNA 
5’ AGC GGACC TC ATAAAGTGCGTCGTAGTC C GGATTGGAGTCTGC AAC TC GACTC C A 16 S 

To evaluate this alignment we did two simulations likelihood of finding both these alignments in 
of size 1O00, where random sequences with the same random sequences is now estimated to be about 
base frequencies and lengths were generated and 
the similarity score calculated. The score 21.0 has The same comparisons were done for the tRNAs 
an approximate significance of When we find with 16 S reversed, 5 S, 5 S reversed, 23 S and 23 S 
the second best matching between these two reversed, as well as all the reversed sequences 
sequences, we obtain a score of 11.7, with a match complemented. The only statistically significant 
ending at 62 in tRNA and 721 in 16 S: alignment obtained was between isoleucine tRNA 

. 

5‘ TGTAGC GGATTGC AAATCC GTCTAG-TCCGGTTC GACT -C C GG tRNA 
5’ TGTAGC GG- -TG- AAATGC GT AGAGATCTGG- AGGAATACC GG 16 S 

This second alignment has a score slightly above 
the average for random sequences of the same 

and 5 6  reversed. The score was 15, which is 
significant a t  about 0.003. The alignment, ending at 

Table 2 
The results of a simulation of ten pairs of random sequences, one sequence in each 

pair with length and base composition that of Ala-tRNA and the second of 16 S 
rRNA 

Alignment Score Matches Mismatches Indels 

I ’  

C T AC TGGGG - AAC C 
CTAATGGGGCAACC 
TCGAAGTGACTCGTCGTGTGTGCAT 

GTAATGGCTGCCTGGGCACGCCTCA 

AI: GC TC GT AC ACC G 

TCGAAGT-AC-GGTAGAGTGAGCAT 

GTTATGGTTGCC-GGGGGTGCCTCA 

AC GCTC -TTC ACCG 
AAGCGGCGCGGT -GAGCC A 
AAGCGGCGTGATCGACCCA 
GGTAGATAT 
GGTAGAT AT 
C GAGTC C T 
CGAGTC CT 

GACCC AC CGGCGC ATC T 
CTCCGACGGCTTGTGTGGGG 

GACGC ACCGTC -C ATCT 

CTCCG-CCACTTGTGTGGGG 
GGATG-ACCCAC 
GGATGTACCCAC 

8.2 

8.6 

9.6 

8.2 

8.4 

9.0 

8.0 

8.8 

11.8 

8.6 

12 

19 

19 

12 

15 

9 

8 

14 

17 

11 

1 

4 

5 

1 

3 

0 

0 

2 

2 

0 

1 

2 

1 

1 

1 

0 

0 

1 

1 

1 

The algorithm parameters were 1 for matches, -1.4 for mismatches, and -2.4 for 
insertion/deletions. The best subsequence alignment for each pair of sequences is given. 
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position 72 in 5 S and 54 in Ile-tRNA, is: 

5’ TC AGGTGGTTAGAGC GC AC CC CTGATAAGGGTGAGGTCGGTGG Ile-tRNA 
3’ TC AAGGGATGAGAGCGTACCCCT -CT -GGGGTGTGAT -GGTAG 5 S rev 

300 
280 
260 
240 
220 
200 

8 180- 
5 160- 
2 u. 140- 

120 
100 
80 
60- 

320 r 
- 
- 
- 
- 
- 
- 

- 
- 
- 

- 

..... 
Expected from random sequences 

0.2 0.3 0-4 0.5 0.6 0.7 0-8 0.9 I 
Estimated significance 

Figure 2. The results of a simulation comparing 1000 
pairs of sequences, one sequence in each pair of length 
and base composition is that of Ala-tRNA and the second 
is that of 16s rRNA. The algorithm parameters were 1 
for matches, - 1  for mismatches, and -2  for 
insertion/deletions. The significance was estimated by the 
method of Bloch et al. (1983). These results should be 
compared with a horizontal line at height 100, which is 
expected for significance estimates from random 
sequences. While no significance larger than 1.0 should 
appear, of the 100 comparisons, 208 were in this range: 
108 were larger than 2.5; 49 larger than 5.0; 23 larger 
than 10.0. The largest value was 76.7. 

The above analysis finds two statistically 
significant matches between E .  coli tRNA and 
rRNA. In sharp contrast, the work of Bloch et al. 
(1983) finds so many significant matches that the 
authors conclude that “matches are too frequent 
and extensive to be attributed to coincidence”. The 
difference between the results lies in the methods of 
finding matches and assigning significance (Goad & 
Kanehisa, 1982). We estimate the significance of the 
Cys tRNA-16 S match to be approximately 
while Bloch et al. estimate i t  to be 3 x In  
simulations, we find that their method assigns 
significance of less than 10% to over 30% of the 
pairs of random sequences, with the significances 
generally being biased to small values (see Fig. 2). 
In  Table 2, we show the best segment alignments 
from ten pairs of simulated sequences to illustrate 
how impressive the results of aligning random 
sequences can be. 
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