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The multiple digest mapping problem arising in molecular biology can be stated 
roughly as follows. A linear or circular segment of DNA is cut at all Occurrences of 
a specific short pattern by restriction enzymes. By using restriction enzymes singly 
and in combination it is required to construct a map showing the location of 
cleavage sites. In this paper we first consider the efficacy of a simulated annealing 
algorithm towards the solution to the multiple digest problem. Second, the double 
digest problem, the simplest version of the multiple digest problem with only two 
restriction enzymes used, is shown to admit an exponentially increasing number of 
solutions as a function of the length of the segment under a particular probability 
model. Next, the double digest problem is shown to lie in the class of NP complete 
problems which are conjectured to have no polynomial time solution. Last, the 
construction of circular maps is considered and the problem of measurement error is 
discussed. 0 1987 Academic Press. Inc. 

1. INTRODUCTION 

The multiple digest mapping problem arising in molecular biology can be 
stated roughly as follows. A linear or circular segment of DNA is cut or 
cleaved at all occurrences of a specific short pattern by restriction enzymes. 
DNA sequences can be viewed as finite sequences over the four letter 
alphabet {A,  C, G, T}. Each restriction enzyme cuts the double stranded 
DNA at a short pattern specific to that enzyme; the restriction enzyme 
HhaI, for example, cuts at GCGC. Restriction enzymes can be used singly 
or in combination and the resulting fragment lengths recorded. It is 
required to construct a map using the fragment length data to show the 
location of cleavage sites. 

Site specific restriction enzymes were discovered in 1970 and soon 
biologists were making restriction maps. (See the review [14].) These maps 
are fundamental to molecular biology. The first computer algorithm seems 
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to be that of Stefik [19] who applied concepts from artificial intelligence. 
Pearson [16] then proposed solving the two single-one double digest 
problem, referred to as problem DDP, by considering all permutations of 
the two single digests. Fitch, Smith, and Ralph [5] present an algorithm for 
problem DDP which is based on the additive relationship between the 
double and single digests. Nolan, Mairna, and Szalay [15] also approach 
automatic mapping via these relationships. Durand and Bregerere [4] mod- 
ify Stefik's approach to a branch and bound algorithm. Wulkan and Llott 
[22] allow the biologist to supply information about the map and thereby 
reduce the number of permutations. 

In [21], the graph theoretic nature of restriction maps is studied. Ques- 
tions about the statistical distribution of Occurrences and restrictions sites 
are studied in [2], [18] and [20]. The distributional questions are com- 
plicated by the fact that nonoverlapping Occurrences are the feature of 
biological interest. 

In this paper we first describe a simulated annealing solution to the 
multiple digest problem and present results of a study of its efficacy. 
Second, an analytic result of the nonuniqueness of solutions is presented; 
more specifically, we demonstrate that under a certain probability model 
there are an exponentially increasing number of solutions as a function of 
the length of the segment with probability one. Then we demonstrate the 
multiple digest problem to lie in the class of NP complete problems 
conjectured to have no polynomial time solution. Last, we point out that a 
simple modification of the algorithm handles mapping circular DNA, but 
that no effective algorithm has been devised for fragments with realistic 
measurement errors. 

Currently there is a great deal of discussion about mapping and sequenc- 
ing the human genome [ll]. Technology has developed to the point that 
such a project may soon be started. The two largest genomes sequences to 
date are of approximate sizes 5 X lo4 and 2 x lo5 bases of DNA. The 
human genome is approximately 3 X lo9 bases of DNA. While this paper 
is concerned with the usual, small mapping problems of molecular biology, 
it is relevant to large mapping projects. The suitability of annealing, the 
multiplicity of solutions (only one of which is correct) and the computa- 
tional intractability of the multiple digest problem are all important consid- 
erations. 

- 

* 

2. SIMULATED ANNEALING SOLUTIONS TO THE MULTIPLE 
DIGEST PROBLEM 

' We begin with a description of the simulated annealing algorithm. Let V 
be a finite set of elements, and f a function that assigns a real number to 
each element of V. Suppose we wish to find an element u* E V that 
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corresponds to the global minimum value of f; that is, find u* E V such 
that f( u *) = min E vf( u) .  For any T > 0, let rTy be the Gibbs distribution 
over V given by 

r r (u )  = ~ X P {  -f(u)/T)/Z, 

where 2, the partition function, is chosen such that E, E yrT( u )  = 1. Note 
that for large values of T the distribution tends to be uniform over V, while 
for small values of T the favorable elements of V, that is, those elements of 
V for which f( u )  is small, are weighted with large probability. Therefore, a 
probabilistic solution to the problem of locating an element u E V for 
which f(u) is minimized is given by sampling from the distribution r r  for 
small T > 0. 

One way this may be achieved is to simulate a Markov chain { X f l } n 2 0  
with state space V that has r r  as its stationary distribution and let it 
approach equilibrium. First, this requires that one determine for each u E V 
a set of neighbors N, c V where transitions from u are allowed in such a 
way that the resulting Markov chain is irreducible. Let the collection { N u }  
also satisfy for all u, u E Nu, w E V, 

u E N, if and only if w E Nu 

.) 

and 

INUI = INWL 

and now define transition probabilities p r ( u ,  w )  = Pr(Xn+l  = ulX, = w )  
by 

Pj-( u ,  w ) = 0 

P r ( U ,  w )  = ~ X P {  - ( I ( u )  - ~ ( w ) ) + / T } / I N , I  if E N,, + W ,  

if u is not in N,, 

and P T ( w ,  w )  fixed by the requirement 

C P r ( U ,  W )  = 1. 
U€N,  

An easy calculation now shows that r T  satisfies the balance equation 

P r ( U ,  w ) r r ( w )  = P T ( w ,  u)r r (u ) ,  

which is sufficient to guarantee that VT is the unique stationary distribution 
of the chain X,,. 

In practice, as the function f may be expensive computationally, the 
Markov chain is simulated in the following way: when at w a neighbor of w 
is selected from N, uniformly, say u, and f ( u )  is computed. The move to u 
is then accepted with probability 

' 

- 

P = "XP{ - ( f W  - f ( w ) ) + / T }  
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and the new state of the chain is u, else the move is rejected and the state of 
the chain remains w .  

This method was proposed by Metropolis et al. [13] and has the following 
statistical mechanical interpretation. The set V can be thought of as the set 
of all possible configurations of some physical system; the quantity f ( u )  is 
the energy of the system when in configuration u with T playing the role of 
temperature. The Gibbs distribution then gives the probability of finding 
the system in a particular configuration at some given temperature. At high 
temperature, the system can be found in any of its states with approxi- 
mately equal probabilities while at low temperature it is more likely that the 
system will be in a low energy configuration. 

Kirkpatrick et af. [lo] introduced the idea of cooling the system in the 
hope that in the limit the distribution ro = limTLorT will be obtained; ro is 
that distribution that distributes mass one uniformly over the states of 
minimum energy. In this way the algorithm resembles the physical process 
of annealing, or cooling, a physical system. As in the physical analog, the 
system may be cooled too rapidly and become trapped in a state corre- 
sponding to a local energy minimum; Geman and Geman [7] showed, in a 
simulated annealing algorithm pertaining to image reconstruction, that if at 
stage n in the algorithm one uses the transition probabilities given above 
with temperature T,, where T,, 40 and T, 2 c/log(n) with c a constant that 
depends on f, then the state of the Markov chain converges in distribution 
to ro. See also work of Hajek [8]. 

The algorithm yields a general, that is, problem non-specific, way to 
attack many difficult combinatorial optimization problems. It should be 
noted that in order to implement the simulated annealing algorithm the 
user has control over the energy function and the neighborhood structure 
on V. The success or failure of the algorithm may depend on these choices. 

Bonomi and Lutton [l] applied a version of the simulated annealing 
algorithm that they called the extended Metropolis method to the travelling 
salesman problem and for large problems reported their method to be 
competitive with Lin's 2-opt algorithm and the convex hull algorithm 
coupled to the 2-opt procedure. 

In the travelling salesman problem, known to belong to the class of NP 
complete problems conjectured to have no polynomial time solution, one 
wishes to find a path, or tour, of minimal length to be taken by a salesman 
required to visit each of n cities, labeled 1,2,. . . , n, and then return home. 
The set V in this case may be taken to be S,,, the set of all permutations of 
{ 1,2, . . . , n } where to each permutation u E S, we identify the correspond- 
ing configuration given by the tour taken in the order dictated by u. The 
energy may be taken to be the total length of the tour although we note that 
any monotone transformation of this quantity may also serve. 

In [l], Bonomi and Lutton choose a neighborhood structure for S,, 
motivated by Lin's 2-opt [12] deterministic algorithm for the travelling 
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salesman problem. If, for a given tour u we imagine links connecting 
neighboring cities in the tour, we say that the tour u is k-opt, 1 5 k 5 n, if 
for all tours that can be obtained from u by breaking at most k links, the 
tour given by a is the shortest. Thus, every tour is 1-opt and only the true 
best tours are n-opt. 

It is easily seen that a tour a = (il, i , ,  . . . , i n )  is 2-opt if and only if it 
yields the shortest tour of all tours which are elements of N ( u )  = { T E S,: 
T = ( i l ,  i,, . . . , i J - l ,  i k ,  i k - 1 ,  .. ., i ,+ l ,  iJ, ik+l,. . ., i n )  for some 1 5 j 5 k 
I - n}. It is not hard to see that given any initial tour uo and any final tour 
a,, = ( j l ,  j,, ..., j,) we may obtain a,, from uo through a sequence of 
permutations ul, u,, . . . , u, , -~  such that b k  E N(ak+l) for k = 0,1, .  . . , n - 
1 as follows. Given 

. .  

such that 

ak = ( j l ,  j , , .  . . , j k ,  l k + l , .  . . , I,,,, I m + l , .  . 
where j k+ l  = I,, say, invert Ik+l through 1, to obtain 

1,)  

U k + l  = ( j , ,  j , , .  . . , jk, jk+l, I m - l r  - - 9 ( k + i ,  I m + l , .  - 9 I n ) *  
Thus we see that this notion of neighborhood yields an irreducible Markov 
chain in the algorithm described above. The three other requirements 
desired of a neighborhood structure listed above are satisfied trivially. 

The problem we consider, the multiple digest problem, is as follows. We 
discuss the simplest case involving linear DNA, two digests, and no 
measurement error. We will refer to this problem as the double digest 
problem, or problem DDP. A restriction enzyme cuts a piece of DNA of 
length L at all Occurrences of a short specific pattern and the lengths of the 
resulting fragments are recorded. In the double digest problem we have as 
data the list of fragment lengths when each enzyme is used singly, say, 

A = { a, : 1 5 i 5 n } 
B = { b, : 1 5 i s m } 

from the first digest 
from the second digest, 

as well as a list of double digest fragment lengths when the restriction 
enzymes are used in combination and the DNA cut at all Occurrences 
specific to both patterns, say 

C =  { ~ , : 1 5 i 5 n ~ , ~ } ;  
only length information is retained. In general A, B, and C will be 
multisets; that is, there may be values of fragment lengths that occur more 
than once. We adopt the convention that the sets A, B, and C are ordered, 
that is, a, s aJ for i 5 j, and likewise for the sets B and C. Of course 

a , =  b , =  c l = L ,  
l s r s n  l s l s m  lsrsnl.2 

since we are assuming that fragment lengths are measured in number of 
letters with no errors. 
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Given the above data the problem is to find orderings for the sets A and 
B such that the double digest implied by these orderings is, in a sense made 
precise below, C. This is a mathematical statement of the problem consid- 
ered by Pearson, who solved it by exhaustive search. 

We may express the double digest problem more precisely as follows. For 
a E S,, p E S,,, call (a, p )  a configuration. By ordering A and B according 
to a and p ,  respectively, we obtain the set of locations of cut sites 

* 

* 

Since we want to record only the location of cut sites, the set S is not 
allowed repetitions, that is, S is not a multiset. Now label the elements of S 
such that 

S = { s j :  0 r j  4 n,,,} with si 4 sj for i s j .  

The double digest implied by the configuration (a, p )  can now be defined 

~ ( a ,  p )  = { ci(a,  p ) :  ci(a, p )  = si - s j - l  for some 1 s j  6 n,,,}, 

where we assume as usual that the set is ordered in the index i. The 
problem then is to find a configuration (a, p )  such that C = C(a, p).  As 
discussed in Section 3, this problem lies in the class of NP complete 
problems conjectured to have no polynomial time solution. 

In order to implement the simulated annealing algorithm as described 
above, an energy function and a neighborhood structure are required. We 
take as our energy function the chi-squared like criterion 

by 

f ( a ,  E l )  = c ( C i ( 0 ,  p )  - ciI2/ci; 
1si5n1.2 

note that if all measurements are error free then f attains its global 
minimum value of zero for at least one choice (a, p) .  

Following Lutton and Bonomi, we define the set of neighbors of a 
configuration (a, p )  by 

p )  = { ( 7 , p ) :  7 E N a ) }  u {(a, 4: v E N ( p ) } ,  

a where N ( p )  are the neighbors used in the discussion of the travelling 
salesman problem above. 

With these ingredients, the algorithm was tested on exact, known data 
from the bacteriophage lambda with restriction enzymes BamHI and EcoRI, 
yielding a problem size of lAl!lBl! = 6!6! = 518,400. See Daniels et al. [3] 
for the complete sequence and map information about lambda. Tempera- 

& 
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ture was not lowered at the rate c/log(n) as suggested by the theorem in 
Geman and Geman [7], but for reasons of practicality was instead lowered 
exponentially. On three separate trials using various annealing schedules 
the solution was located after 29,702, 6895, and 3670 iterations from 
random initial configurations. 

The algorithm was tested further on simulated data constructed by the 
following model. On a segment of length n with sites one unit apart labeled 
1,2,. . . , n, assume the restriction enzyme used in the first and second single 
digest makes a cut at site i independently with probability p l ,  p 2 ,  respec- 
tively. This model can be justified on the grounds that a segment of DNA 
can be approximated as a string of independent, identically distributed 
random variables with values in a four letter alphabet, although a first order 
Markov chain frequently fits real data better [MI. In addition, although in a 
real segment sites cut by different restriction enzymes never exactly coin- 
cide, our model allows this to occur. This feature of our model is justified 
by the fact that DNA segments lengths can seldom be measured precisely 
and that two different enzymes can cut at sites very close together. On data 
generated by this model the algorithm was able to locate solutions to large 
problems in a small number of iterations. For example, on a problem of 
size (16!16!)/(2!)7(3!)2(4!) = 3.96 X lo2' a solution was located in only 
1635 iterations. It must be mentioned, however, that any study of the 
algorithms efficacy under the above probability model is confounded by the 
presence of multiple solutions to the exact problem in many instances. For 
example, a simulated problem of size 4320 was found to have 208 distinct 
exact solutions. This problem instance, as well as a rigorous account of the 
phenomenon of multiple solutions, appears in the next section. The same 
feature of many exact solutions must also be a property of the problem of 
size 3.96 X 1021 mentioned above. 

' 

' 

3. MULTIPLICITY OF SOLUTIONS IN THE DOUBLE DIGEST PROBLEM 

In many instances, the solution to the double digest problem is not 
unique. For example, with 

A = {1,3,3,12}, 

B = {1,2,3,3,4,6}, 

and 
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. 
two distinct solutions are given by 

1 3  12 3 
A I I  1 I 

I I I 
2 4  6 3 3 1  

B I  1 1 1 I I I I I 1 I 

1 1  2 2 6 3 1 2 1  
c 1 ; ;  I I 1 1 I 1  I 1 1  I 

and 

1 3  12 3 
A I I  I I 

I I I 
3 3  6 1 2  4 

B I  I I I I 1 1  I I  I I I 
1 2 1 2  6 1 2 1  3 

c 1 ;  I 1  I I 1  1 1  
I 1  1 I I  I I  

In fact, the first diagx'am was generated as a simulated problem according to 
the probability model given in Section 2; the second diagram indicates the 
simulated annealing algorithm's output in this instance. Further investiga- 
tion revealed that the problem depicted above, of size 4!6!/2!2! = 4320, 
admits 208 distinct solutions. We now demonstrate that this phenomenon is 
far from isolated. 

Below, we use the Kingman subadditive ergodic theorem to prove that 
the number of solutions to the double digest problem as formulated in 
Section 1 increases exponentially as a function of length under the probabil- 
ity model stated above. 

For reference, we state a version of subadditive ergodic theorem here [9]. 
For s, t nonnegative integers with 0 s 4 t let Xs,, be a collection of 
random variables which satisfy 

(i) Whenever s < t < u, XS+ 
(ii) The joint distribution of { Xs,,} is the same as that of { Xs+l,,+l}, 

(iii) The expectation g, = E[ Xo, ,] exists and satisfies g, 2 - Kt for 

Then the finite lim, Xo, Jt = X exists with probability one and in the 
mean. 

For the probability model given above, sites labeled 1,2,3,. . . , are cut by 
two restriction enzymes independently with probability p l ,  p z ,  respectively 
with pi E (0,l). 

Xs,, + X,,", 

some constant K and all t > 1. 
* 
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Let a coincidence be defined to be the event that a site is cut by both 
restriction enzymes; such an event occurs at each site independently with 
probability p 1 p 2  > 0, and at site 0 by definition. On the sites 1,2,3,. . . , 
there will be an infinite number of such events. For s, u = 0,1,2,. . . , with 
0 5 s 5 u we may consider the double digest problem for only that 
segment located between the s th and uth coincidence. Let Y,, denote the 
number of solutions to the double digest problem for this segment; that is, 
with As ,u ,  Bs,u the sets of fragment lengths given by the first and second 
single digests, respectively, for only that part of the segment between the 
s th and t th coincidence, and Cs, the set of fragment lengths produced 
when both enzymes are used in combination for this same subsegment, Y,, 
is the number of orderings of the sets As ,u ,  Bs,u that produce CS+. 

It is clear that wherever s < t < u, given a solution for the segment 
between the sth and tth coincidence and a solution for the segment 
between the tth and uth coincidence one has a solution for the seg- 
ment between the s th and u th coincidence. Hence 

’ 

We note that the inequality may be strict as K, counts solutions given by 
orderings where fragments initially between, say, the sth and tth coinci- 
dence now appear in the solution between the tth and uth coincidence. 
Letting 

x s , t  = -loi3Y,,t 

we have s 5 t 5 u implies Xs, 5 Xs,, + X,, u. 
The assumption that the cuts occur independently and with equidistribu- 

tion in each digest imply condition (ii) in the hypotheses of the theorem. 
Last, to show condition (iii) of Kingman’s theorem is satisfied, let ni, 

i = 1,2,. . . , be the length of the segment between the (i - 1)st and ith 
coincidence; note that ni  are independent and identically distributed with 
E [ n i ]  = 1/(p1p2). The length of the segment from the start until the tth 
coincidence is given by m ( t )  = n1 + n 2  + +n,. There are 2(m(r)-1) 
ways for either the first or second restriction enzyme to cut the remaining 
m ( t )  - 1 sites between 0 and m(t ) ,  and so the total number of pairs of 
orderings of Ao, ,, Bo, , is bounded above by 4m(r). Note that not all of these 
orderings need be solutions. Therefore 

or 

so 

E I X o , , ]  2 - K t ,  whereK= log(4)/p1p,. 
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We may now conclude Yo,Jt + X with probability one. By the usual 

In addition, we may show that X > 0 by the following argument. Iterat- 
ergodic argument [9], we have X = E [ h ]  with probability one. 

ing 

Y . u  h Y , I T , U  

we obtain 

and so 

E[log(Yo,,)l/t 2 E[log(Yo,1)1. 

Since the example with multiple solutions depicted above has positive 
probability of occumng under the probability model considered, 

p(yo,, L 2) ’ 0. 
This fact, together with the observation that by construction Yo,l 2 1, 
yields E[log(Y0,,)] = p > 0. Taking limits X 2 p > 0. 

Letting now Z,,,(,) be the number of solutions for the segment of length 
m( t )  beginning at 0, we have by definition Z,,,(,) = Yo, ,. Therefore 

lim, -. ,log( Zm(,) ) / d d  = lim, -. ,log( yo, , > / t  * t / m  ( t ) ,  

which, by the above and strong law of large numbers is equal to p l p z h  with 
probability one. Therefore, for a segment of length m we have the ap- 
proximation 

Z,,, = exp(ym), where y = p l p z X ;  

that is, the number of solutions to the double digest problem increases 
exponentially fast as a function of the length of the segment. 

4. COMPUTATIONAL COMPLEXITY OF THE DOUBLE DIGEST PROBLEM 

We demonstrate below that the double digest problem is NP complete. It 
is clear that the double digest problem DDP as described above is in the 
class NP, as a nondeterministic algorithm need only guess a configuration 
(a, p )  and check in polynomial time if C(a, p )  = C. The number of steps 
to check this is in fact linear. To show that DDP is NP complete we 
transform the partition problem to D D P .  

In the partition problem, known to be NP complete [a], we are given a 
finite set A, say ]AI = n, and a positive integer s(a)  for each a E A and 

. 

. 
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wish to determine whether there exists a subset A’ C A such that 

c 44 = c 44- 
,EA’ , E A - A ’  

If C,  EA^( a )  = J is not divisible by two, there can be no such subset A’; 
else, consider as input to problem DDP the data 

A = { s ( a k ) :  1 k n }  
B = { J / 2 , 5 / 2 }  and set C = A. 

It is clear that any solution to problem DDP with this data yields a solution 
to the partition problem through the order of the implied digest C. 

5. CIRCULAR MAPS 

As DNA occurs in circular as well as linear conformations, it is im- 
portant to construct algorithms that can infer a map showing the location 
of restriction sites from sets of unordred fragment lengths when circular 
DNA is digested by restriction enzymes used singly and in combination. 
We now show how a simple modification of the algorithm described above 
can handle problems involving circular DNA. 

We consider, as before, the double digest problem where the DNA is 
digested by two distinct restriction enzymes used singly and in combina- 
tion; we will use the same notation as in Section 2. Here L will be 
circumference of the DNA in base pairs. As in the linear case we are given 
as data three sets of unordered fragment lengths each summing to L, one 
for each time a restriction enzyme is used singly and one set of lengths 
when both enzymes are used together. Here, however, we are required to 
find circular arrangements of the single digest fragment lengths that imply 
the double. 

As circular arrangements of fragment lengths of the two single digests 
may rotate relative to each other it is not enough to specify only a pair of 
permutations (a, p )  in which the fragment lengths occur in some specifled 
direction, counterclockwise from above, say. Distinguish then a fragment in 
each single digest and consider the points in the circular arrangement of 
each digest where these fragments are first encountered when moving 
counterclockwise. If p measures the counterclockwise distance along the 
circumference of the DNA from the point in the A digest to the point in the 
B digest, then a configuration is specified by (a, p ,  p), where without loss of 
generality we may assume that a(1) and ~( (1 )  correspond to the dis- 
tinguished fragment in the A and B digest, respectively. 

The implied double digest is obtained from this configuration by a 
reduction to the linear case as follows. We consider the digest A fragments 
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laid out in the order dictated by u with the distinguished fragment as the 
left end. Now travel a distance L - p counterclockwise from the piece that 
corresponds to p(1) in the B digest where we encounter the pieces in the 
order dictated by p. Introduce a cut at this point and using this cut as the 
left end of the B digest align this cut with the left end of the A digest pieces. 
The remaining fragments in the B digest can now be laid out in the order 
dictated by p, and the double digest computed as before. 

As remarked earlier, in order to implement the simulated annealing 
algorithm one need only specify a cost function and a neighborhood 
structure. We adopt the same cost function as in the linear case. Also, our 
notion of neighborhood here is a direct extension of that notion in the 
linear case; we say that two configurations are neighbors if one can be 
obtained from the other by reversing the order of any sequence of frag- 
ments in either digest. 

As in the linear case we must consider whether any final configuration 
may be obtained from an initial configuration by moving through a 
succession of neighborhoods as those just defined. Consider first any 
circular arrangement of pieces of one of the single digest. Any point e 
between two adjoining fragments may be considered momentarily as an end 
and the fragments may then be ordered from point e in any desired 
permutation as described in Section 2. 

To consider rotations fix point e relative to the circular arrangement 
above. We show that the arrangement may be rotated in either direction 
through a distance a, along the circumference relative to the fixed point e. 
First, reverse the order of fragments between point e and the fragment of 
length a,; we include the fragment of length a, as well as the fragment with 
one end aligned on e in the reversal so that one end of the fragment of 
length a, is now aligned on point e. Let point f be the point at the end of 
the segment of length a, not on point e. Now we may let point f play the 
role of left end and order the fragments in any desired permutation as in 
the linear case described in Section 2; in fact, the rotation through length a, 
can always be achieved in no more than four reversals. It is clear that this 
procedure may be used to rotate any arrangement through a distance a, in 
either direction. 

The above process may be repeated to yield rotations through distances 
k,a,  along the circumference for any integer k,, and may be applied to any 
fragment. Rotations of size C k p ,  for any integers k,  are therefore possible, 
and hence, rotations of any multiple of g, = gcd( a,, u 2 , .  . . , a,) are - achievable. 

By analogous reasoning rotations of arrangements of digest B through 
multiples of g, = gcd(b,, b,, . . . , b,) are attainable. Relative to each other 
then, the two circular arrangements may rotate through a distance k,g, + 
k,g2 for any integers k,, k,, and hence, through multiples of g = 
gcd(g,, g2) = gcd(a,, u 2 , .  . ., a,, b,, b2, .  . ., b,). Therefore any final con- 

' 

' 
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figuration is reachable from any initial configuration through a succession 
of neighborhoods when g = 1, and this neighborhood structure leads to an 
irreducible Markov chain in this case. In the (unlikely) event that g # 1 an 
irreducible Markov chain may be obtained by the introduction of random 
rotations; that is, we would say two configurations are neighbors if one can 
be obtained from the other by reversing the order of any sequence of 
fragments in one digest and then rotating either digest through any dis- 
tance. 

’ 

6. MEASUREMENT ERROR 

Last, we consider the problem of measurement error. In real data the 
length of fragments are not measured precisely. In fact, measurement error 
is distributed (approximately) proportional to fragment length. See Schaffer 
[17] for discussion. Thus we are given sets of unordered fragment lengths 
where the sum of fragment lengths from set to set may no longer even 
agree. 

An attempt was made to deal with this problem in the linear, double 
digest case again using as data the restriction map from the bacteriophage 
lambda with restriction enzymes BamHI and EcoRI. First, in order to 
simulate real measurement error as closely as possible, errors were intro- 
duced in the data by multiplying all fragment lengths by a factor of 
exp( oZ), where Z denotes a standard normal random variable independent 
from fragment to fragment. The fragments were then scaled so that the sum 
of fragment lengths in all three sets of digests were the same, just as in the 
case of perfect measurement. The cost function used was the same as given 
above. In selecting a neighbor of a given configuration first a single digest 
was selected, each with equal probability, and a sequence of fragments from 
this digest was chosen to be inverted as before. Here, however, for each 
fragment inverted, its length was altered randomly in the same manner that 
the initial measurement error was artificially introduced in the simulated 
problem. The algorithm would then proceed as in the case of perfect 
measurement as described above. This method was not successful for 
problems with realistic error sizes with a (I of 0.05, say. The magnitude of 
success of the algorithm in the error free case, however, leads us to 
conjecture that the algorithm will perform well on problems with realistic 
error sizes if the proper notion of neighborhood were used. 
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