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ABSTRACT Analyses of phase transitions in biopolymers 
have previously been restricted to studies of average behavior 
along macromolecules. Extremal properties, such as longest 
helical region, can now be studied with a new family of 
probability distributions [Arratia, R., Gordon, L. & Water- 

extremal behavior analyzed with great precision, but new 
phase transitions are determined. One phase transition occurs 
when behavior of the free energy of the longest helical region 
abruptly changes from proportional to logarithm of the se- 
quence length to proportional to sequence length. The anneal- 
ing of two single-stranded molecules and the melting of a double 
helix are both considered. These results, initially suggested by 
studies of optimal matching of random DNA sequences [Smith, 
T. F., Waterman, M. S. & Burks, C. (1985) Nucleic Acids Res. 
13, 645-6561, also have importance for significance tests in 
comparison of nucleic acid or protein sequences. 

IIMII, M. s. (1986) Ann. Stat. 14, 971-9931. Not only is Such 
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A great deal of effort has been devoted to the study of 
helix-coil transitions in biopolymers, especially in nucleic 
acids (1). Analogy to the Ising model is often made. Recently, 
some new results have been obtained in the theory of 
probability that generalize a 1970 theorem of Erdos and Renyi 
(2) on the length of the longest run of successes in coin- 
tossing and that apply in a novel way to these biomolecular 
problems. The key difference is that earlier work on 
biopolymers dealt with the average behavior along a long, 
linear molecule. These new ideas allow us to study with great 
precision extremal properties, such as longest base-paired 
region, occurring somewhere along the linear sequence. The 
results apply to situations where two linear sequences can 
slide or shift along each other to achieve minimal free energy, 
as well as to the case of a double helix where the bases are 
initially base-paired. In addition, natural extensions to higher 
dimensional situations have been obtained (3) and describe a 
variety of other phenomena such as interactions between 
surfaces, the probability distribution of galactic clusters in 
space (3), and clumping of plants in a field. 

Our original motivation was to give the probability distri- 
bution of the longest exact or approximate matching between 
two random DNA or protein sequences. The first result, here 
referred to as an example of the “log(n) law”, was inferred 
from a data analysis of sequences from GenBank (4) with a 
dynamic programming algorithm (5). Since then extensions 
and generalizations have been obtained by ourselves and 
others (6, 7). Many of the results cited here have not been 
reported elsewhere. 

We will first present probability results that have wide 
applicability. Then we will turn to two analogous problems: 
(i)  helix-coil formation between two random single-stranded 
DNA chains and (ii) comparison of two random DNA 
sequences for sequence similarity. Both the cases of fixed 
positions and of possible shifts are treated and the phase 
transitions are described. 

The publication costs of this article were defrayed in part by page charge 
payment. This article must therefore be hereby marked “advertisement” 
in accordance with 18 U.S.C. 91734 solely to indicate this fact. 

The celebrated Erdos-Renyi law (2) gave order-of-magni- 
tude behavior for the longest run of heads in a sequence of n 
coin tosses. Their results actually include behavior of the 
longest head run containing (1 - a) x 100% tails, where a > 
P(H) = p. For length R, of pure head runs (a = 1.0) their 
result is 

R,/logl/,(n) -+ 1 with probability one, 

while for general a > p their result is 

R,/[log(n)/H(a, p ) ]  -+ 1 with probability one, 

where H(a,  p )  = a log(a/p) + (1 - a) log[(l - a)/(l - p ) ]  is 
relative entropy. For a = 1, H ( a , p )  = log(l/p) and the results 
are consistent. 

The log(n) law suggests that in 512 = 29 tosses of a fair coin 
(p = 1/2) the longest run of pure heads should be approxi- 
mately logz(24 = 9. Other work (8) has derived precise results 
for this law and gives 

and 
2 1 
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variance R, = - + - + rz(n), 

where 0.577 . . . is the Euler-Mascheroni constant, 0 = 
ln(l/p), and rl(n) and rz(n) are negligible for large n. For the 
512 fair coin tosses, the mean = 9.33 and the standard 
deviation = 1.93. 

The formulas above give useful results for longest base- 
paired region in a double helix or for longest match between 
two sequences with fixed alignment. At temperature T,  the 
ensemble average of base pairs in a helix is p = p ( T )  where 
0 < p < 1. For any a > p ,  the longest region with at least a! 
x 100% base pairs is given by R,. 

Two random DNAs in solution, however, are not already 
in a double helix and they will form the structure that has 
minimal free energy. Analogously in sequence matching, the 
two regions of sequence with best matching are often the 
object of search. In these cases there are usually unpaired or 
mismatched bases. An extension of the log(n) law to se- 
quence matching is now given that incorporates mismatches. 
A corresponding statement for longest base-paired region 
interrupted by unpaired bases differs only in language. 

Two sequences of length n are assumed to have bases 
chosen independently and identically with p = P (two bases 
match) = p i  + p $  + p &  + p ; .  The mean length of the longest 
match with k mismatches becomes (6) 

log(qn2) + k loglog(qn2) + k log(q/p) - log(k!) + k 

where q = 1 - p and all logarithms are taken to base l/p. The 
variance remains 
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FIG. 1. (Upper) The values of A(A) as a function of A for 10 pairs of random DNAs of length 64. The expected value of A(m) is 5.71 . . . . 
The approximate value of A,, from this simulation is 0.75 5 A,, 5 0.86. The function A(A), for each A, is the maximum of over 1040 linear functions, 
each of which results from a distinct alignment. A(A) is found by a dynamic programming algorithm (5).  (Lower) For the two length 64 sequences 

CGTTGGTGTGAAAATATGGTGACATTCCATCAGGTCGCTGTTCTTGATGACATTCAAATCGAAT 
and 

CTCCCGAGTAACTGGAAGATCGTGGTACGGCCCGATACCCAAGCCCTAGAGTTAGTGAGGCCCT, 
the graph shows -A’@) = dA(A)/d(A). Each constant portion of the graph corresponds to a collection of alignments or structures that remain 
optimal as A varies. 
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a CGTT--G-GTG--TG-AA-ATA-TGGTGACATT-CC--AT-C--A-GGTCGCTGTTCTTGATGACATTCAAATCGAA----T 
I I I I I  I I  I I  I I I I I I  I I  I I  I1 I I I I I I 1  I I 1  I I  1 ’ 1  I1 I 
C-TCCCGAGTAACTGGAAGA-TCGTGGT-AC--GGCCCGATACCCAAG--C-C----CT--A-GA-GTT-A-GT-GAGGCCCT 

b CGTT--G-GTG--TG-AA-ATA-TGGTGACATT-CC--AT-C--A-GGTCGCTGTTCTTGATGACATTCAAATCGA 

C-TCCCGAGTAACTGGAAGA-TCGTGGT-AC--GGCCCGATACCCAAG--C-C----CT--A-GA-GTT-A-GT-GA 
I I I I I  I I  I I  I I I l l 1  I I  I I  I I  I I I I I I I  I I I  I I  I I I I  

C TGTGAAAATA-TGGTGACATT-CC--AT-C--A-GGTCGCTGTTCTTGATGACATTCAAATCGA 
I I  I l l  I I  I I I I  I I  I I  I I  I I I I I I I  I I I  I I  I I I I  
TG-GAAGATCGTGGT-AC--GGCCCGATACCCAAG--C-C----CT--A-GA-GTT-A-GT-GA 

d TGTGAA-AATA-TGGTGACATT-CC--AT-C--A-GGTCGC-T-G--TTCTTGA-TGA 
I I  I l l  I I I I I I  I I  I I  I I  I I I I I I I I I  I I l l  
TG-GAAGA-TCGTGGT-AC--GGCCCGATACCCAAG--C-CCTAGAGTT----AGTGA 

e TGTGAA-AATA-TGGTGAC 
I I  I l l  I I I I I I  I I  
TG-GAAGA-TCGTGGT-AC 

f AA-ATCG 

AAGATCG 
I1 I l l 1  

g ATCG 
I I I I  
ATCG 

FIG. 2. For the sequences of Fig. 1 Lower, seven representative alignments are shown for the constant values of -A’(A). Alignment a, for 
example, is an alignment that is maintained from A = 0 to A = 0.166; b, from A = 0.166 to A = 0.400; c,  from A = 0.400 to A = 0.500; d, from 
A = 0.500 to A = 0.739; e ,  from A = 0.739 to A = 1.66; f, from A = 1.66 to A = 2.000; and g, from A = 2.000 to A = m. 

The Erdos-Renyi law for the length R, of the longest 100% 
head run of n coin tosses then extends to a law for the length 
M, of the longest match between two sequences (9). We have 
recently shown that the length of the longest run of matches 
containing (1 - a) X 100% mismatches satisfies 

M,/[log(n’)/H(a, p) ]  + 1 with probability one, 

which is the Erdos-Renyi law with n replaced by n2.  This last 
theorem has been obtained by use of the theory of large 
deviations. 

Considering these results, it is not surprising that log(n) 
laws hold far beyond the longest exact head run or match. To 
quantify this for random sequences X = xlr x2 . . . x, and Y 
= yl, y2 . . . y,, we study 

A(A) = max{(no. of matched bases between Z and J) 
I C X  
.ICY 

- A (no. of unmatched bases between Z and J)}, 

where Z(J) range over all contiguous regions of X(Y). For A = 
m, mismatches are not allowed and the log(n) law holds. 
What about the other extreme, A = 0, where nonmatched 
bases receive no penalty? Here A(0) = the length of longest 
subsequence common to both sequences. The distribution 
A(0) has been much studied, beginning with Chvatal and 
Sankoff (10). It is known that A(0) = a-n, where a is a con- 
stant that has not yet been precisely determined. Except 
forA(0) andA(m) this function has not been studied. Our most 
important new result about A(A) concerns a phase transi- 
tion that A(A) undergoes. This phase transition is described 
next. 

The functionA(A) can easily be shown to be continuous and 
decreasing. In Fig. 1 Upper, A(A) is plotted for 10 pairs of 
random DNAs of length 64. With some additional effort A’@) 
= dA(A)/dA can be seen to be increasing, nonpositive, and 

piecewise constant with jump discontinuities. In Fig. 1 
Lower, an example of A’(A) is shown for one of the sequence 
pairs from Fig. 1 Upper. The locations of these jump 
discontinuities for random sequences of length n tend to 
cluster as n becomes large. This behavior can be described as 
phase transitions. In particular, there is a value of A, A,,, 
where behavior of A(A) abruptly changes from linear to 
logarithmic. This can be seen in Fig. 1 Upper where the curve 
changes from its sharp decline to almost horizontal. For n 
large enough, 

0 S A Acr: A(A) = aA-n 
A,, < A 5 w A(A) = bA*lOg(n). 

The above discussion gives b, = 2 if the logarithm is to the 
base l / p ,  and it is known that 0.45 < a. < 0.77 for the case 
of an equally probable four-letter alphabet. Examples of 
alignments from the sequences of Fig. 1 Lower are given in 
Fig. 2. In Fig. 3, the second sequence of Fig. 2 is comple- 
mented and the matches are converted to base pairs. 

More detailed information can be obtained about these 
rates of growth. For Acr < A, the function A(A) = bA log(n) + 
CA loglog(n). If only mismatches are allowed (no insertions or 
deletions), then bA can be found: 

bA = 2/H(a, p ) ,  

Essentially this is the A that gives a x 100% matches. 
The expected behavior of A(A) is of importance in evalu- 

ating sequence comparisons. Ifa located match is at or below 
that expected from random sequences of similar composi- 
tion, then the match should not be further considered without 
additional biological information. Since these distributions 
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CGTT--G-GTG--TG-AA-AATA-TGGTGACATT-CC--AT-C--A-GGTCGCTGTTCTTGATGACATTCAAATCGAA----T 
I I I I I  I I  I I  I I I l l 1  I I  I I  I I  I I I I I I I  I I I  I 1  I I I I  I 
G-AGGGCTCATTGACCTTCT-AGCACCA-TG--CCGGGCTATGGGTTC--G-G----GA--T-CT-CAA-T-CA-CTCCGGGA 

CGTT--G-GTG--TG-AA-AATA-TGGTGACATT-CC--AT-C--A-GGTCGCTGTTCTTGATGACATTCAAATCGAAT 
I I I I1 I1 I 1  I I I l l 1  I I  I I  I I  I I I I I I1 I I I  I I  I I I I  
G-AGGGCTCATTGACCTTCT-AGCACCA-TG--CCGGGCTATGGGTTC--G-G----GA--T-CT-CAA-T-CA-CTCCGGGA 

CGTTGGTGTGAAAATA-TGGTGACATT-CC--AT-C--A-GGTCGCTGTTCTTGATGACATTCAAATCGAAT 
I I  I l l  I I  I I I I  I I  I I  I I  I I I I I I I  I I I  I I  I I I I  

GAGGGCTCATTGAC-CTTCTAGCACCA-TG--CCGGGCTATGGGTTC--G-G----GA--T-CT-C~-T-CA-CTCCGGGA 

CGTTGGTGTGAA-AATA-TGGTGACATT-CC--AT-C--A-GGTCGC-T-G--TTCTTGA-TGACATTCAAATCGAAT 
I I  I l l  I I I I I I  I I  I I  I I  I I I I I I I I I  I I l l  

GAGGGCTCATTGAC-CTTCT-AGCACCA-TG--CCGGGCTATGGGTTC--G-GGATCTCAA----TCACTCCGGGA 

CGTTGGTGTGAA-AATA-TGGTGACATTCCATCAGGTCGCTGTTCTTGATGACATTCAAATCGAAT 
I I  I l l  I I I I I I  I 1  

GAGGGCTCATTGAC-CTTCT-AGCACCA-TGCCGGGCTATGGGTTCGGGATCTCAATCACTCCGGGA 

CGTTGGTGTGAAAATATGGTGACATTCCATCAGGTCGCTGTTCTTGATGACATTCAA-ATCGAAT 
I I  I I I I  

GAGGGCTCATTGACCTTCTAGCACCATGCCGGGCTATGGGTTCGGGATCTCAATCACTCCGGGA 

a 

b 

C 

f 

CGTTGGTGTGAAAATATGGTGACATTCCATCAGGTCGCTGTTCTTGATGACATTCAAATCGAAT 9 
I l l 1  

GAGGGCTCATTGACCTTCTAGCACCATGCCGGGCTATGGGTTCGGGATCTC~TCACTCCGGGA 

FIG. 3. In this figure, the second sequence of Fig. 2 is complemented, converting matches to base pairs. The sequences become 
CGTTGGTGTGAAAATATGGTGACATTCCATCAGGTCGCTGTTCTTGATGACATTC~ATCGAAT 

GAGGGCTCATTGACCTTCTAGCACCATGCCGGGCTATGGGTTCGGGATCTCAATCACTCCGGGA. 
and 

The resulting structures appear in alignments a-g. 

have been shown to fit biological sequences quite well (4), 
highly significant matching regions might merit additional 
study. Until now this paper has given only the simplest 
matching function. One in common use (5)  extends A(X) to 

B ( ~ ,  8) = max{(no. of matches) -p(no. of mismatches) 
ICX 
ICY 

-&no. of deletions)}, 

where p is the mismatch penalty and S the deletion penalty. 
We have also proven that B(p, 8) undergoes a phase transi- 
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FIG. 4. The phase diagram for B(p, 6). The line p = 26 
corresponds to 6 = A, so that B(26,S) = A(S). Notice that for p > 26, 
B(p,  6) = B(26, 6). The constant a is the Chvatal-Sankoff constant 
discussed in the text. 

tion. The log(n) and linear regions of this two-dimensional 
parameter space have been determined numerically in a 
Monte Carlo study to be published elsewhere. In Fig. 4 the 
log and linear regions are shown on a phase diagram. These 
results help those analyzing macromolecular sequences to 
proceed in a much less ad hoc manner. 

As pointed out earlier, A(X) for sequence matching is 
analogous to the minimum free energy of the base-paired 
regions for helices (see Fig. 3). A simple thermodynamic 
measure of the free energy, G(X), of a region of base pairing 
is given by -(no. of base pairs) + h(no. of unpaired bases). 
In this simple model, G(X)= -A(h) and all results about A(h) 
carry over to the function G(X). Refining G(h) to have 
differing free energies for specific base pairs and to include 
bulge and interior loop destabilizations is easy conceptually 
and practical to carry out with an extension of the existing 
algorithm for DNA sequence comparisons and RNA second- 
ary structure prediction (11). Such a numerical study has not 
yet been carried out, but the mathematical results described 
above can be extended to show the same array of phase 
transitions with change from linear to logarithmic behavior. 
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