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Prediction of RNA secondary structure from the linear RNA sequence is an 
important mathematical problem in molecular biology. Dynamic programming 
methods are currently the most useful computer technique but are frequently very 
expensive in running time. In this paper new dynamic programming algorithms are 
presented which reduce the required computation. The first polynomial time al- 
gorithm is given for predicting general secondary structure. I 19% Academic P r w .  Inc 

1. INTRODUCTION 

In biology, structure and function are closely related. The shape of 
macromolecules (RNA, DNA, and proteins) and of complexes of macro- 
molecules determines the interactions allowed and hence the processes of 
life. Some associated mathematical problems are easy to describe: given a 
linear sequence of a macromolecule, find its minimum free energy con- 
figuration. For proteins, this important problem has been much studied and 
little definitive progress made. See Have1 and Wuthrich (1984) [2] for a nice 
description of the problem. For nucleic acids, the major problem receiving 
attention is that of predicting secondary structure of single-stranded RNA. 
The 3-dimensional structure of double-stranded DNA is also of interest but 
is not discussed here. The single-stranded RNA is viewed as a linear 
sequence a l a 2  . . a, of ribonucleotides. Each a, is identified with one of 
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four bases or nucleotides: A (adenine), C (cytosine), G (guanine), and U 
(uracil). These bases can form base pairs, conventionally A pairs with U 
and C pairs with G. These are called Watson-Crick pairs. In addition, the 
pairing of G and U is frequently allowed. 

Secondary structure is a planar graph whch satisfies: If a, pairs with a, 
and a k  is paired with a, with i < k < j ,  then i < I < j also. The graph 
theory of such structures was first discussed in Waterman [8]. Combina- 
torial aspects of such graphs were introduced in Waterman [8] and con- 
tinued in Stein and Waterman [7]. These topics are also treated in a review 
by Zuker and Sankoff [ll]. 

Dynamic programming methods to predict secondary structure were first 
presented by Waterman [8] ,  Waterman and Smith [lo], and by Nussinov 
et al. [ 5 ] .  Zuker and Sankoff [ l l ]  provide an excellent review. Recently 
Sankoff [ 121 considers simultaneous alignment and secondary structure 
prediction. Dynamic programming is still the method of choice for sec- 
ondary structure prediction although computation time is a limiting factor. 
In the present paper, some new efficiencies are presented which reduce the 
theoretical and practical computational complexity of the dynamic pro- 
gramming algorithms. 

, 

2. BASIC ALGORITHMS FOR HAIRPINS 

In t h s  section basic dynamic programming procedures for secondary 
structure are presented. Throughout h,,  is the minimum free energy (single 
hairpin loop) secondary structure on a a + . +  . a, ( i  < j )  where a , and a, 
form a base pair and there is a single end loop. See Fig. 1. If a, and a, 
cannot base pair, h, ,  = + a. The free energy functions are assumed to be 
of the form 

a ( u ,  b )  = free energy of an a-b base pair, 
[(k) = destabilization free energy of an end loop of k bases, 

P(k) = destabilization free energy of bulge of k bases, 

y ( k )  = destabilization free energy of an interior loop of k bases. 

-q = stacking energy of adjacent base pairs, 

and 

It is possible to define more general energy functions. For example, 5 can 
depend on the adjacent base pair(s). The same complexity results derived 
below hold. 

There are exactly five ways to build h, ,  from the base pair and these are 
presented in Fig. 1, along with formulas which calculate their values. 
Arguments to justify the equations are well known and appear, among 
other places, for general energy functions in earlier papers of ours 
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FIG, 1. Illustration of each of the five basic minimization situations with the corresponding 
formula: (a) end loop, (b) extension of helical region, (c) bulge at “i,” (d) bulge at “J,” (e) 
interior loop. 

(Waterman [8], Waterman and Smith [lo]) which presented an iterative 
dynamic programming approach. Later work such as Kruskal and Sankoff 
[4] and Zuker and Sankoff [ll] present and survey equivalent formulas for a 
single pass method. For hairpins, there is essentially no difference between 
these methods. 

To estimate the computational complexity, each step of Fig. 1 is treated. 
Only powers of n are, in the end, of interest for the rate of growth of 
computation. 

For purposes of estimating computational complexity, the various for- 
mulas take time proportional to 

n n  

1 = c1= O ( n 2 ) ,  
l s i s j s n  1-1 J = I  

(4 ; (b) 

n n  

n ( n  - i ) ( n  - i + 1) 
= 0 ( ~ 3 ) .  = e  i = l  2 
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It is clear, then, that previous algorithms for best hairpins are basically of 
order n4. The purpose of the next section is to reduce these algorithms to 
order n 3  in general. Section 4 gives a further reduction to order n 2  for 
linear or concave destabilization functions. 

3. REDUCTION OF COMPUTATION TIME FOR HAIRPINS 

In this section some details of the computation will be discussed. In the 
course of this, it will become clear that a major reduction in computation 
can be achieved. The dynamic programming calculations are stoied in a 
matrix and, in fact, are sometimes referred to as “matrix methods.” 
Organizing these calculations in a way which allows visualization of the 
associated RNA structures is a useful device. 

As above h, ,  is the free energy of the minimum free energy hairpin on 
a , a , + ,  e a, (i < j )  satisfying a, and a, forming a base pair. If a, and a, 
cannot base pair, set h,,  = fm. Organization of the matrix (h,.,), i = 
1 ,2 , .  . . , n and j = n, n - 1, .  . . (i 5 j ) ,  with the base sequence written in 
reverse order along the columns is illustrated as 

Next take h, ,  where h,,  < +a, Le., where a, and a, can form a base 
pair and where j - i - 1 2 m (the minimum end loop size). Of course h, ,  
results from one of the situations discussed in Section 2, which will now be 
examined in greater detail. 

If the base pair is at the “bottom” of an end loop, then h,, equals 

a ( a i ,  ai )  + [ ( j  - i - 1).  

This is the only step in the minimization not indicated on the matrix in 
Fig. 2. 

If the base pair is part of a helical region, then h,,  equals 
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FIG. 2. Schematic representation of regions for minimization in the matrix 

which is indicated in the ( i  + 1, j - 1) position of the matrix in Fig. 2 by 
the letter 7. 

If h, ,  results from a bulge, then h,,  equals 

or 

where 1 5 k ~j - i - 2 - m. In the first situation, a minimization is 
performed down the ( j  - 1)th column. This vertical region is indicated by 
the symbol P as is the horizontal region in the ( i  + 1)th row. 

The remaining possibility is interior loops, where h , ,  equals 

a,) + y ( k l  + k , )  + h r + l + k , . J - l - k , ~  

where j - i - 3 - m 2 k ,  + k ,  2 2 ( k ,  2 1 and k ,  2 1). This region is 
indicated in Fig. 2 by y. 

As shown in Section 2, the computational complexity of helix and end 
loop formation is O ( n 2 ) ,  of bulge formation is O ( n 3 ) ,  and of interior loop 
formation is O(n4). The remainder of this section will show that interior 
loop calculations can in general be reduced to O ( n 3 ) .  

For calculating interior loops from an i - j  base pair, the possible 
candidate positions are ( k ,  I )  where h,,  < co and ( k ,  I )  belongs to, 

T ( i ,  j )  = { ( k ,  I): I - k - 1 2 m, k 2 i + 2, j - 2 2 I}. 

The size of the interior loop is 

s = ( j  - i - 1) - ( I  - k + 1) = ( j  - i) - ( I  - k )  - 2. 

This equation implies that, along lines with I - k = constant, the interior 
loop destabilization function y ( s )  is constant. The computation is now 
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organized to exploit this observation. Next we show that T(i - 1, j )  is 
equal to r(i, j )  plus a horizontal line segment. (See Fig. 2.) 

For 1 = m, m + 1,. . . , n - 2; h,, ;+/+ is calculated for 1 I i I n - 
I - 1. This begins calculation on the line j - i - 1 = m and proceeds line 
by line until j - i - 1 = n - 2 ( j  = n and i = 1). For each of these lines 
after the first there is a position ( i  - 1, j )  directly above a position ( i ,  j )  on 
the line below. The interior loop calculation for ( i  - 1, j )  involves 

r ( i  - 1 ,  j )  = { ( k ,  I): I - k - 1 2 m ,  k 2 i + 1, j - 2 2 I }  
= T(i ,  j )  u { ( i  + 1, I ) :  m + i + 2 5 1 ~j - 2 ) .  

That is, r(i - 1, j )  is the union of T(i, j )  and a horizontal line segment. 
As noted above, all ( k ,  I )  E r(i, j )  with 1 - k constant have the same 

interior loop destabilization, y ( j  - i - I + k - 2). For the line j - i = c, 
define a matrix G' where G: is the minimum h k , ,  with I - k constant in 
r(i, j )  with s bases in the interior loop. Formally 

GScqj= m i n ( h , , : ( k , l ) E  ~ ( j - c , j ) a n d s = c - l + k - 2 } .  

For j - i = c, 2 I S  I j - i - m - 3. 
To update (3%)' for the line j - i = c + 1, 

c;,y = h1+1,,-21 

G:,:' = min{h l+ l . J -S_ l ;G~- l , J} .  

This shows that a single matrix G can be used. To find the best interior 
loop configuration, compute 

min{y(s) + G~.,: 2 I s ~j - i - m - 3 } ,  

which can be done in time proportional to j - i. 
The above setup shows interior loops have an overall calculation time 

equivalent to that of bulges, O ( n 3 ) .  Moreover, t h s  equivalence is estab- 
lished by showing that the interior loop problem can be given a data 
structure equivalent to that of bulges. The additional storage due to G is 
n 2 / 2  while computation time due to G is bounded by O ( n 3 ) .  

4. LINEAR AND CONCAVE DESTABILIZATION FUNCTIONS 

As mentioned above, significant efficiencies can be achieved for linear 
destabilization functions. Gotoh [l] provides a clear, complete proof that 
O ( n 3 )  sequence alignment algorithms can be reduced to O ( n 2 )  for linear 
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deletion functions. For secondary structure algorithms, a similar assump- 
tion is used by Waterman [ S ,  p. 2031 to reduce computation. Also Kanehisa 
and Goad [3] prove that a reduction from 0(n3) to O ( n 2 )  can be achieved 
for linear bulge functions. They state the same result for interior loop 
calculations but do not present any indication of proof or of an algorithm 
to accomplish the reduction. Here we give a proof for both bulges and 
interior loops and frame the proof in a manner which indicates how to 
perform the computations. In addition, we show as well that 0 ( n 2 )  
computational complexity holds for concave destabilization functions, such 
as y(n) = a + b log(n). 

‘ 
Define the best bulges “down” the column by 

where P ( k )  = a + b ( k  - 1). Then 

= min{ a + h l + 2 ,  J - l ,  hdo(i + 1, j )  + b } .  

Similarly, if the bulges “over” a row are considered, 

hov(i, j )  = min { P ( k )  + h ~ + l , j - k - l }  
k 2 l  

with P ( k )  = a + b ( k  - l), we obtain 

hov(i, j )  = min{ a + hl+l*J-2 ,hov( i ,  j - 1) + b } .  

This proof is modeled after Gotoh [ l ]  and Waterman [9]. If the computa- 
tion Ps carried out on lines of j - i = c for c = m, m + 1,. . . , it is easy to 
see, that a single vector of length n suffices for each of hdo(i, j )  and 

’ . 
~ hov(i, j ) .  

Next, for interior loops and y(  k )  = c + d(  k - 2) define 
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= d + hil(i + 1, j ) .  
For 

the problem is exactly equivalent to the bulge problem handled above. 
Thus if the energy functions P ( k )  and y(k) are linear, computation of 

best hairpin can be accomplished in O(n2) time and space. Other work, 
such as Sankoff et al. [6] achieves 0(n3) for P ( k )  = y(k) linear. Of course 
that work includes higher order secondary structure as well. 

Principles of thermodynamics suggest that destabilization functions 
should grow like log( k )  instead of being linear. Fortunately recent work on 
sequence alignment algorithms by Waterman [9] provides an 0 ( n 2 )  al- 
gorithm for concave energy functions which includes log(k). A function w 
is concave if 

w ( p  + 4 + 1 )  - W ( P  + 4 )  2 w ( q  + 0 - w ( q )  

for p ,  4, 1 2 1. If the inequality is equality, then w is linear. The idea is that 
the cost P ( k  + 1) - P ( k )  of an additional base in, a bulge, for example, 
should decrease with k .  

The next consideration is that of- computational efficiency for concave 
functions. Instead of bringing in .the details of bulge and interior loop 
calculations, we simply consider the representative recursion 

hdo(i, i) = min { ~ ( k )  + h r + k + l . J - l } .  
h > l  

Recall both bulge and interior loop calculations are of this nature. 
Let 1 satisfy 

P ( [ )  + h r t / + l , ~ - l  I P ( k )  + h r + k + l . ~ - l ~  

For k I I, P ( l +  1) - P(1) I P ( k  + 1) - P ( k )  and 

P ( ' +  + h ( i - l ) + ( / + l ) + l , J - l  I + '1 + h ( f - l ) t ( k + l ) + l . J - l .  

Therefore such k need not be considered when calculating hdo(i, j )  and 

hdo(r - 1, j )  = min ~ ( k  + 1) + h f + k t l . J - I } ? P ( l )  + h f t i , J - l ) .  



RNA SECONDARY STRUCTURE 463 

Essentially the above equation states that the algorithm need only bulge to 
positions where length 1 bulges were optimal. We have not been able 
to estimate the growth of the number of such events, but the number seems 
to grow quite slowly. 

5. MULTIBRANCH LOOPS 

In this section we consider loops with more than one hairpin extending 
from them. The destabilization function y( . ) above assumes exactly one 
hairpin extends from the loop. Since so little is known about the energetic 
properties of multibranch loops, we assume that p( .) is a single destabiliza- 
tion function which holds for all multibranch loops. 

Define g( i ,  j )  to be the minimum free energy multibranch loop structure 
on a,a,+, . * a,, g ( i ,  j ;  k )  to be the minimum free energy multibranch 
loop structure on a,a,+, . . a, and there are k unpaired bases in the 
multibranch loop, and e ( i ,  j )  to be the minimum free energy structure on 
a,a, + 1  . - a, where a, and a, form a base pair. 

The structure corresponding to g( i ,  j + I; k)  either has base paired 
or not. If a,+, is not base paired, then 

g ( i ,  j + 1; k )  = p ( k )  - p ( k  - 1) + g ( i ,  j ;  k - 1). 

If a, + , is base paired, then 

g ( i , j + l ; k )  = m F { g ( i , j * ; k ) + e ( j * +  1 , j +  1)) .  
J 

Now 

g ( i ,  j )  = ming(i, j ;  k ) ,  
k 

and e ( i ,  j )  is obtained by minimizing over multibranch loops, end loops, 
interior loops, bulges and helix formation. 

Storage for the multibranch loop algorithm described here is proportional 
’ to 

I1 n 

i = l  / = I  

while time is proportional to 
n n  

2 C ( j  - i )  = o ( ~ ~ ) .  
i = l  , = I  
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Increasing storage to n 3  is not desirable but previously known rigorous 
algorithms take time O ( n 2 L )  where L = maximum number of arms helices 
from a multibranch loop. Even cloverleafs took time O(n6). 
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