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SEQUENCE ALIGNMENTS WITH MATCHED SECTIONS* 

JERROLD R. GRIGGSt. PHILIP J. HANLONS AND MICHAEL S. WATERMANY 

Abstnet. In molecular biology, two finite sequences are compared by displaying one sequence written 
over another in an alignment. The number of alignments of two sequences is related to the Stanton-Cowan 
numbers. This paper gives asymptotics for the number of alignments of two sequences of length n with 
matching sections of size at least b. 
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Mathematics has played an important role in modern molecular biology in the 
area of sequence comparison. When nucleic acid (DNA or RNA) or protein sequences 
are determined, the question of relationships between sequences arises. Frequently 
two (or more) sequences are compared by dynamic programming or other methods to 
produce one or more sequence alignments which display one sequence written over 
another. When one letter (nucleotide in DNA) is written above another, they are 
presumed to have a common evolutionary ancestor. When a gap appears above or 
below a letter, the evolutionary event of insertion or deletion is assumed to have taken 
place. A review of methods to perform this analysis appears in Waterman [7]. 

An example of two different alignments of two sequences appears in Fig. l(a) 
and l(b) (Fitch and Smith [2]). The upper sequence is chicken @-hemoglobin messenger 
RNA (mRNA), nucleotides 115-171, and the lower sequence is chicken a-hemoglobin 
mRNA, nucleotides 118-156. These mRNA sequences are transcribed into hemoglobin 
protein molecules and are well known to have arisen from a common ancestor. In fact 
so many hemoglobin sequences are known that the alignment is presumed known, and 
the paper of Fitch and Smith is a study of the ability of various alignment algorithms 
to produce correct results. 

As is easy to imagine, many ad hoc methods have arisen to align sequences. The 
most naive simply look at the sequences and perform the alignment visually. In order 

(a)UUUGCGUCCUUUGGAAC CUCUCCAGCCCCA CUG C CAUCCUUGGCAA CC C CAUGG UC 
uuu c cc CACU UC G AUCUGUCACA C GGC UCCGCUCA AAUC 

(b) UUUGCGUCCUUUGGAACCUCUCCAGCCCCAGUGCCAUCCUUGGCAACCCCAU~UC 
UUUCCCCACUUCG AUCU GUCACACGGCUCCGCU CAAAUC 

(c) 11111111111111111011111111111110111010111111111111011010111110011 
11101001 1OOOOOOO1111011001oooo111111111101o0O1110011111111o0o1111 

(d) 11 11 11 11 11 111 11 11 111 11 1111 11111111 11 11 1111 11 111 11111 11 11 
111 11 111 11 11 100111 1OOOOO1111111111111111o0O1110000000111 

FIG. 1. (a) and (b) are two alignments ofnucleotides 115-171 ofchicken B-hemoglobin mRNA (upper) 
and nucleotides 118-156 ofchicken a-hemoglobin mRNA (lower). (c) and (d) are 0-1 representations of (a) 
and (b), respectively. 
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to estimate the complexity of this task it is of interest to count the number of alignments 
for two sequences of two given lengths. There are previous results on this problem. 
H. T. Laquer [4] solves a more general recursion equation and relates the number of 
sequence alignments to the Stanton-Cowan numbers. 

Frequently biologists find an alignment more believable when the matches occur 
in larger blocks. We will represent alignments as rows of 0’s and 1’s where a 1 indicates 
presence of a letter or nucleotide and a 0 indicates a gap. Figure l(c) and l(d) convert 
the alignments of Fig. l(a) and l(b) into these 0-1 rows. In this paper we count the 
alignments where the matching 1’s must occur in blocks of b or more. In Fig. l(a) 
and l(c), b = 1 while in Fig. l(b) and l(d), b 6 3 .  

Let g (  by n )  denote the number of alignments of two sequences of size n in which 
matching sections have size at least b. Equivalently, g (  b, n )  is the number of ( 0 , l ) -  
matrices with 2 rows and an unspecified number of columns such that both rows 
contain precisely n l’s, each column contains at least one 1, and columns with two 
1’s occur in adjacent sections of size b or more. We are interested in the asymptotic 
behavior of g (  b, n )  for fixed b as n +coy as a function of b. 

Observe that alignments where no column sum equals 2 are simply permutations 
of n columns with a single 1 in row 1 and n columns with a single 1 in row 2. Those 
are satisfactory for any b. Thus for all b and n, 

Applying Stirling’s formula as n + 00 with b fixed, 
(2) g(b, n)2((.rm)-”2)(4”+o(l)) as n+m. 

generating function approach is successful for the general problem of b 2 1. 
Further, note that g(1, n )  counts the total number of 2-sequence alignments. A 

THEOREM 1. Let b 2 1. Dejne 
h(x) = (1 - x)’ -4x(xb -x+ 1)’ 

and let p be the smallest positive real root of h(x) = 0. Then 

as n + 00, g (  by n) - ( ’ybn-”2)DE 

where Db = p-’ and 

‘yb =(pb -p+  l)(-rph’(p))-l’’. 

ProoJ: Assume that b is fixed, b 2 1. Let G(x) = C,,, g (  b, n)x” denote the ordinary 
generating function for the numbers g(b, n ) .  In order to obtain G(x) we first form the 
generating function +,,,(x) for the numbers of 2-sequence alignments in which there 
are precisely m columns each of the forms A and and in which the columns come 
in sections of at least b. As noted above, there are (2) ways to order the 2m columns 
with sum 1 .  This contributes a factor of (2)~”’ to +,,,(x) since each row gets m 1’s 
from these 2m columns. Next observe that there are 2m + 1 slots into which may be 
inserted either no i columns or at least b i columns. These slots precede, go between, 
and follow the 2m columns with one 1. So each such slot contributes a factor, call it 
Y=Y(x),  to bm(x), where 

y=y(x)=1+xb+xb+’+. * - 
= l+ (xb) / ( l -x )  

* y = (Xb  - x +  1)/( 1 - x). 
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Hence, 

(3) 

We obtain (3) since each alignment coded by 4,,,(x) is determined completely by the 
permutation of its columns with sum 1 and by the number s of columns inserted into 
each slot. Such an alignment of size n contributes a term X” to the sum &(x). 

The set of all 2-sequence alignments with columns in groups of size at least 6 
is the union over m 20 of the alignments enumerated by the series &(x). Hence we 
obtain: 

G(x)= C 
mZ0 

Applying the Binomial theorem, 

G(x) = y (  1 - ~XY’)-’/~. 

Plugging in for y, we obtain 

G(x) = (xb - x + 1)( h(x))-’l2, 

where 

h(x) = (1 - X)2-4X(Xb - x+  1)2 

or 

h(x) = 1 - 6~ + 9x2 - 4x3 - 8xb+’ + 8 ~ ~ + ~  - 4xZb+’. 

Observe that h(0)=1  and l ~ ( i ) = ( $ ) ~ - ( ( f ) ~ + $ ) ~ < O ,  so that h has a real root in ( 0 , i ) .  
Let p be the smallest such root of h. The radius of convergence of G(x) is determined 
by the roots of h(x), so the following lemma implies that G(x) has radius of convergence 
P. 

LEMMA. n e  unique root of h(x) with the smallest modulus is p ,  and p is a single 
root of h(x). 

Proof of Lemma. Let z E C, IzI S p, be a root of h ( z ) .  We first show that in fact 
IzJ = p must hold. We have that 

= 0. 

Since 0 < z < f , it follows that 

1 
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so that 

Next we observe that because p is a root of h, 
2 -=(1+8), 1 

4P 1-P 
which implies that the inequalities above are all equalities. It follows that IzI = p. (This 
could have been deduced instead from the well-known fact that a seriesf(z) = Cz=o a,z" 
with real coefficients a, L 0 and with radius of convergence p > 0 has a singular point 
at z = p  ( [ 5 ] ;  confer, e.g., [3]).) 

We next observe that 

where 121 = p E (0, $) forces 

Z b  lzlb 
1-z 1-121' 

1+-=1+- 

so that 1/42 = 1 + (zb/( l  - z)) is real and positive. Hence z itself is real and positive, 
which implies that z must be p. Thus p is the unique root with the smallest modulus. 

One can then calculate that 

h ' ( p )  = (1 -p)(-l  - p - l  -4bp(2b-1)/2+4p1/2). 

It follows easily from pe(O,$ )  that h'(p)<O.  Therefore p is only a single root of 
h ( z ) .  This completes the proof of the lemma. 

Returning to the theorem, we define functions s(x), A(%), B ( x )  by: 

h(x) = ( P  --x)s(x), 

B ( x )  = ( p  - x)-? 

A(x)  = ( x b  - x +  l)(~(x))-"*,  

Then we have that 

G(x) = A(x)B(x). 

Here A(x) has radius of covergence > p  since it follows from the lemma that s(x) has 
not root z with IzI 5 p. Also, B ( x )  has radius of convergence p. Again by the binomial 
theorem, 

so that 

B(x)= b,x" 
n 1 0  
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b, = p-ll2( :)(4p)-“. 

It remains to observe that (b , - ’ /b , )+p  as n+co to apply a theorem of Bender [ l ,  
Thm. 21 to G ( x )  = A ( x ) B ( x )  to deduce that 

g(b, n ) - A ( p ) b , ,  as n+m. 

Of course, to calculate A ( p ) ,  we are taking s ( p )  = limx+p ( h ( x ) / ( p  - x ) )  = -h‘ (p) .  The 
theorem now follows immediately. 

Table 1 lists some values of 4 and yb to 4 or more places. These were computed 
on a hand computer, using Newton’s method to find the root p for each b. 

g (  b, n) - ( yb?l-”2)D: as n -* 00, 

where D b  = p-’ and yb = ( p b  - p  + l)(-~ph’(p))-’/’. 
For comparison, recall that from (2), for all b, g (  b, n )  Z ($) - (.5641896)n-’/’4“ 

as n+m.  Table 1 also suggests what happens to Db and yb as b-*oo, which is 
straightforward to derive from the observation that as b + 00 the smallest root of h ( x ) ,  
p, increases and approaches a:  

TABLE 1 

b Db Y b  

1 5.8284 ,57268 
2 4.5189 .53206 
3 4.1489 S4290 
4 4.0400 26520 
5 4.0103 .56109 

10 4.oooO1 .564183 

COROLLARY. AS b -* 00, Db + 4 and yb + T-’ I2 .  
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