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A special class of interval graphs is defined and characterized, and an algorithm is given 
for their construction. These graphs are motivated by an important representation of 
DNA called restriction maps by molecular biologists. Circular restriction maps are easily 

L C  - included. 

Y The study of interval graphs has its origin in a paper of Benzer (1959) 
who was studying the structure of bacterial genes. At that time it was 
not known whether or not the collection of DNA composing a bacterial 
gene was linear. It is now well-known that such genes are linear words over 
a four-letter alphabet, and Benzer's work was basic in establishing this fact. 
Essentially, he obtained data on the overlap of fragments of the gene and 
showed the data consistent with linearity. 

Of course there is no longer active interest in Benzer's problem, but we 
take this opportunity to draw attention to a special class of interval graphs 
central to the modem practice of molecular biology. These graphs arise in 
connection with restriction maps which show the location of certain sites 
(short specific sequences) on a specific DNA. Danna et al. (1973) first 
sketched the principles of restriction mapping, which utilizes a property 
of restriction enzymes. These enzymes, found in various bacteria, cleave or 
cut the DNA at all occurrences of short specific sequences. 

To make these ideas specific, we graphically present a restriction map, 
which we will refer to as an A * B  map, with three occurrences of restriction 
site A and four occurrences of restriction site B .  
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Next we show the maps for A and B separately and refer to them as the A 
map and B map, respectively 

I 
A 

I I 
A A 

-I 1-1 I 
B B B  B 

Biologists, when constructing restriction maps, can identify individual inter- 
vals between sites, but they cannot directly observe the order of these 
intervals. Instead they establish whether or not an A interval overlaps a 
B interval and, from this overlap data, construct the map. Frequently this 
overlap data comes from determining which A and B intervals contain the 
various A * B  intervals. In fact, frequently the most difficult aspect of restric- 
tion map construction is determining the overlap data. This difficult problem 
is not pursued further here. 

Next the intervals are arbitrarily labelled: 
6 3  5 1 7  2 8 4  

-1-1- I - I- 1--1-1- 
B A  B B  A B A  

I 3 
I- 

A 
I 

4 

A 
2 1  

A 

I 
3 1  

4 5 2 
-I 1-1 

B 8 B  B 

Label the components of the A map by Al, A 2 ,  . . , and of the B map by 
B1, B2, . . . . Define the incidence matrix I(A,  B )  whose (i, j)th entry is 1 if 
At n B, # 9 and is 0 otherwise. For the above example, 

1 0 1 0 0  

I ( A , B ) = f  1 0 0 0 0  0 0 1 ) 
0 1 1 0 1  

0 0 1 0 0 1 0 0  
I(A, A O B )  = 
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0 0 0 1 0 0 0 1  

I ( B , A * B ) =  (; 0 ; 1 0 8 0 ; 0 8 0 ; ; 1 0 ;) . 
As mentioned above I(A, A O B )  and I(B, A O B )  are frequently known while 

I(A, B )  is desired. The next proposition relates these matrices. 

PROPOSITION. For the incidence matrices defined above 

I(A, B )  = I(A, A*B)I'(B, A*B),  (1) 
where I'(B, A * B )  is the transpose o f I (B ,  A OB) .  

Proof Notice that the (i ,  j )  element of this matrix product equals the 
number of A * B  intervals in both the ith A interval and the jth B interval. 
But the A *B intervals are formed by intersection of A intervals with B inter- 
vals so that the entries in the matrix product must be 0 or 1. 

Having shown that I(A, B )  is easily obtained from I(A, A O B )  and I(B, A OB) ,  
we now turn to characterizing I(A, B )  and then present an algorithm for 
constructing restriction maps from I(A, B ) .  Two equivalent characteriza- 
tions are discussed and then collected in Theorem 1. 

The matrix I(A, B )  tells us when an A interval and a B interval have an 
A * B  interval in common, or, equivalently, when the interiors of the A 
interval and B interval intersect. Thus, constructing a restriction map from 
I(A, B )  is equivalent to finding an interval representation for a certain graph 
G(A, B )  which is obtained in the following natural way: the vertex set 
V(A, B )  of G(A, B )  consists of the union of the set of A intervals and the set 
of B intervals, and the edge set E(A, B )  consists of the unordered pairs 
{Ai ,  B,} for each A intervals, At, and B-interval, B,, which overlap. 

If G(A, B )  arises from a restriction map we need only delete the endpoints 

sentation of the graph G(A, B ) .  Thus G(A, B )  is an interval graph. Since 
the interiors of the A intervals are disjoint, the interiors of the B intervals 
are disjoint, and the interior of every A interval (respectively, B interval) 
overlaps the interior of some B interval (respectively, A interval), it follows 
that G(A, B )  is bipartite with no isolated vertices. 

Conversely, one may construct a restriction map for any bipartite interval 
graph G without isolated vertices by drawing together the intervals represent- 
ing vertices in each of the two parts until the A and B intervals correspond to 
A and B maps. 

' \  

L 

i of the pieces in the A map and the B map to obtain an (open) interval repre- 

k 

Here is the graph for our example above: 
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We next observe that G(A, B )  is a connected graph unless the A and B 
restriction sites coincide. In general, if the A and B restriction sites coincide 
k times (not counting the ends), then G(A, B )  will have k + 1 connected 
components. 

To construct a restriction map from I(A, B) ,  that is, an interval representa- 
tion of G(A, B ) ,  we need only linearly order the edges of G(A, B )  in such a 
way that for every vertex v ,  all edges containing v occur consecutively. This 
is a special case of the ordering of the maximal cliques of arbitrary interval 
graphs (Gilmore and Hoffman, 1964). We shall obtain below such an order- 
ing of the edges for our example. Another property of the graphs G(A, B )  
which can arise is that G(A, B )  contains no isolated vertices, no cycles 
C,, n 2 3 (induced or not), and that no vertex has three or more vertices 
each of degree 2 2  adjacent to it. That is, G(A, B )  is a forest with no isolated 
vertices. This is a special case of a characterization of arbitrary interval 
graphs (Lekkerkerker and Boland, 1962). 

There is also a 0-1 matrix formulation characterizing interval graphs 
(Fulkerson and Gross, 1964). In our special case it can be shown that for 
the graphs G(A, B )  that can arise, the associated 0-1 matrix I(A, B )  can be 
put into a particularly nice form. Specifically, if the rows and columns of 
I(A, B )  are permuted in accordance with an ordering of the edges of G(A, B )  
which corresponds to a restriction map (interval representation), then the 
1s in I(A, B )  will belong to one of a collection of k + 1 staircase shapes going 
from top left to lower right, where k is the number of components of 
G(A, B ) .  Each row or column has its 1s consecutive and meets precisely one 
of the staircases. There can be no two by two all ones submatrix. Here is 
such a permutation for our example. 

B 
4 5 2 3 1  Ai(" ; ; y ;) 

3 0 0 0 0 1  

These characterizations of restriction maps are now collected in the 
following theorem. 
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THEOREM 1. The following statements are equivalent: 
(i) The bipartite graph G(A, B )  is the graph constructed from some restric- 

(ii) G(A, B )  is a bipartite interval graph with no isolated vertices. 
(iii) I(A, B )  can be transformed by row and column permutations into 

staircase form with each row or column having 1 s  in precisely one 
o f  these staircases. 

When G(A, B )  arises from a restriction map, that is, when G(A, B )  is a 

tion mapping. 

.- 

bipartite graph without isolated points, 

31 V(A, B)l G lE(A, B)I G I V A ,  B)I - 1. 
The lower bound on (E(A ,  B )  I follows since there are no isolated points, so 
that every vertex is on some edge. The upper bound follows by considering 
an interval representation of such a G(A, B )  and noting that in going from 
left to right, every new vertex encountered, except the first one, accounts 
for at most one new edge. Here we are ordering the intervals according to 
their left endpoints and breaking ties arbitrarily. Thus IE(A, B)I and 
I V(A, B )  I are of the same order. For more information on interval graphs in 

Interval graphs in general can be recognized and their representations can 
be found in time which is linear in the size of the graph, by an algorithm due 
to Booth and Leuker (1976). For the class of graphs considered here we can 
provide a recognition and representation algorithm which is particularly 
simple. Like the algorithm for the general problem, it requires only linear 
time and storage. 

To save storage, we work with the edges rather than I(A, B ) .  Let E be the 
set of all edges e and V the set of all vertices v.  

\ general, see Golumbic (1980). 

Algorithm 

1. For all v E I/ find deg(v). 
2. Set Lo = L = {v: deg(v) > 2}, 

L(v)  = {u:  {u, v }  € E  and u EL}. 
3. Find v E Lo with exactly one neighbor 

If no v exists, go to 5 .  
Set v1 = v and v 2  = u .  

where v f  € Lo and vi # vf+l. 
Delete vl, v2, . . . , v,from Lo.  
Go to 3. 

4 

h 

satisfying u E LO.  

4. Find the maximal list {vl , v2} {v2, VQ} . . . {v,-1, v,} 
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5 .  For v E L  - Lo and u E Lc insert {v, u }  between {vi, v} and {v, vf+z }. 
6. Add, to the lists already obtained, {v, ul} {v ,  u2} . . , {v, u,} 

where v E L o ,  uf E Lc.  
7. Add {u, v} where u, v E L c .  
8. Output all lists. Stop. 

It is easy to see that the algorithm runs in linear time. The key is step 4 
which depends on the fact noted earlier that each vertex has at most two 
neighbors in L.  The algorithm can be modified to provide recognition of 
these graphs. 

Consider the graph from our example. Suppose the vertices are listed 
A I ,  -42, AB, A4, BI, B2, B3, B4, B5, and edges are listed {AI, B1}7 {AI, B31, 
{AZY B4)Y U 2 Y  B5)Y {A3Y Bl), L44, BdY {A4, 8317 u 4 ,  B5). The algorithm 
steps 1 and 2 give 

vertex v A1 A2 A3 A4 B1 B2 B3 B4 B5 2. 

degree deg(v) 2 2 1  3 2 1  2 1 2 

L(v)  Bl,B3 B5 B 1  B 3 ~ B 5  A l  A4 AlyA4 A2 A2yA4. 
In steps 3 and 4, we encounter the end A2 which leads to long vertices 
B5, A4, B3, Al, B1.  No other ends are to be found, So far this gives this edge 
ordering: 

(42, B5)Y {B5, A4)Y U4Y B3)Y w 3 7  A 1 h  {A 1YB1). 

Now we go through the edge list and insert each edge which contains a 
short vertex and one of the long vertices previously involved in the ordering. 
The new edge must be adjacent to a previous edge involving the long vertex. 
We insert it between previous ones, if there is a choice, or else on the left or 
right if the long vertex was a left or right end, respectively. It happens that 
in our example we now obtain a complete ordering: 

{Az, B417 
The Booth-Leuker algorithm for general interval graphs as described in 

Golumbic (1980) uses an appropriate data structure. It also describes there 
how to obtain all possible edge orderings, although we can describe it simply 
for our restricted problem: the order of the components can be permuted, 
the order of the edges involving a fixed long vertex and any short vertices 
can be permuted, and components containing an end can have the order of 
their edges reversed (but not arbitrarily permuted). 

In conclusion we note that Jungck et al. (1982) discuss the connections 
between interval graphs and protein sequencing. They give a historical 
account and credit Fox with the problem of determining linear order by 

Bd7 {A49 Bs}, {A47 Bz}, {A49 B317 {Ai, B31, {Ai, Bd, {A3, Bd, 
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means of overlap data. In addition, Fitch et al. (1983) discuss mapping DNA 
and give a brief description of determining linear order. This paper is 
concerned with graph theoretical structures and not with practical methods 
for mapping DNA. Finally, we note that DNA is in many cases circular and 
that minor modifications of our results suffice for the circular case. To begin 
the algorithm simply chose any v such that deg(v) 3 2. 

THEOREM 2 .  (i) A bipartite graph G(A, B )  is consistent with a circular 
restriction map if and only if the graph obtained by removal of any vertex 
of degree 2 is a bipartite interval graph with no isolated vertices. (ii) A graph 
G(A,  B )  satisfying (i) must be mapped as circular if and only if all vo E L  = 
{v :  deg(v) 2 2 )  have card {u : {u, vo}  E E and u E L }  2 2. 

We close by mentioning two problems. The first is to devise algorithms 
and to characterize these graphs for higher dimensional sets, rectangles say, 
in Euclidean space. The second is to devise algorithms for the minimum 
number of edge removals to convert G(A, B )  into a restriction map when it 
is not intially one. 

The first author (M.S.W.) wishes to thank G. C. Rota and W. M. Fitch for 
valuable discussions. The algorithms were programmed in C by Mark Eggert. 
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