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Coneider finite sequencee XI, X,, .. ., X,,, and Yl, Yz, .. . , Y, where the 
letters (X,) and (Y,] are chosen i.i.d. on a countable alphabet with p - 
P ( X l  = Y , ]  E (0,l). We study the distribution of the longest contiguous run 
of matches between the X's and Y's, allowing at most k mismatches. The 
distribution is closely approximated by that of the maximum of (1 - p)mn 
i.i.d. negative binomial random variables. The latter distribution is in turn 
shown to behave like the integer part of an extreme value distribution. The 
expectation is approximately 

log( qmn) + k log log( qmn) + k log( q / p )  - log( k!) + y log( e )  - f , 
where q - 1 - p ,  log denotes logarithm base l/p, and y is the Euler 
constant. The variance is approximated by ( w  log(e))'/6 + &. The paper 
concludes with an example in which we compare segments taken from the 
DNA sequence of the bacteriophage lambda. 

0. Introduction. DNA sequences can be represented as finite sequences over 
the four-letter alphabet {A, C, G, T). Such a sequence corresponds to successive 
appearances of the nucleotides adenine (A), cytosine (C) ,  guanine (G), and 
thymine (T). One of the impressive accomplishments of molecular biology is the 
facility with which the sequences corresponding to actual genetic material are 
determined. Much effort is currently invested in determining the DNA sequences 
belonging to the chromosomes of various organisms. See for example the book 
Nucleotide Sequences 1984 [Anderson et al. (1984)], which is an atlas of such 
representations. By mid-1985, DNA sequences with a total length of approxi- 
mately 5 X lo6 were known, and sequencing was proceeding at  an approximate 
rate of lo6 lettern per year. 

Sequences belonging to seemingly unrelated organisms have been found to 
posseas long contiguous subsequences which are practically identical. Doolittle et 
al. (1983) report an unexpected relationship of this kind between viral DNA and 
host DNA. The identification and interpretation of such shared contiguous 
subsequences are of substantial interest to biologists. See Waterman (1984) for a 
review of these methods. 

These aspects of matching between sequences lead us to ask the following 
mathematical question: for two independently generated random sequences, what 
is the distribution of the length of the longest run of contiguous matches? 
Evolution of nucleotide sequences proceeds by substitution, insertion, and dele- 
tion of nucleotides. Substitutions motivate us to study the distribution of the 
length of the longest contiguous run of matches allowing for a fixed number k of 
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I .  

mismatches. We do not obtain corresponding results for the more difficult case of 
insertions and deletions. 

In Smith et al. (1985), a data analysis shows real, unrelated DNA sequences to 
have the same distribution of matching scores as independent sequences of the 
same composition. This supports the claim that the distributional results of this 
paper have genuine biological intereat. In Section 7, the sequence of the virus 
lambda is shown to fit the distribution very well. 

The question of the longest run of consecutive matches is closely related to the 
study of runs in a single sequence. Erd6s and R6vbz (1975) consider the length of 
the longest run of heads in a sequence of heads and tails generated by fair coin 
tossing. Using a combinatorial approach, they provide almost sure upper and 
lower boundaries for the longest head run, and for runs interrupted by at most k 
tails. 

Guibas and Odlyzko (1980) use generating function methods to provide deep 
results on problems related to those of Erdiis and %vbz. They look at the 
longest run of repetitions of a specified pattern. Among many other results, they 
compute the expectation and variance of the length of the longest run of 
repetitions, and they make the intriguing remark that the length of the longest 
run of repetitions has no limiting distribution. 

Several results from Guibas and Odlyzko are generalized to the case of biased 
coin tossing, and runs with at most k interruptions, in Gordon, Schilling, and 
Waterman (1986). In that paper, a sequence of coin tosses is represented in terms 
of independent geometric random variables, and then analyzed using 
inclusion-exclusion and counting methods in a way similar to Watson (1954). 

This paper gives results for the approximate large sample distribution, mean 
and variance for the length of the longest run of consecutive matches, allowing a 
fixed number k = 0,1,2.. . of mismatches, between two sequences with all letters 
independently drawn from some given distribution. The results in their most 
useful form are collected and proved in Theorems 1 and 2 of Section 4. K a r h  et 
al. (1983) report limiting variances and expectations for pure runs of matches of a 
sequence with itself, similar to those we obtain in Theorem 2. Strong laws of large 
numbers for the length of the longest match between two or more sequences were 
given in Arratia and Waterman (1985a) and (198513). 

Define the length of the longest match starting within the first n letters of the 
sequence X,, X,, . . . and the first n letters of Y,, Y,, . . . to be 

M(m,n) = max{u: X,,, ... X,+u= Y,+l Y,+,, 
forsome0 s i < r n , ~  I j < n}. 

Throughout this paper we assume that the letters {X,} and {Y,} are all chosen 
independently from a countable alphabet S according to a nontrivial distribution 
p. Let p represent the probability that two different letters match, so that 

P = C ( p a l 2  E ( 0 7 1 ) .  

aaS 
(0.1) 

The definition of M(m, n) directly suggests an analysis according to posi- 
tion. Let A(i ,  j )  be the length of the match which begins after position (i, j), 
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so that A ( i , j ) 2  u iff X,,, X,+,= Y,,, Y,,,. Thus M ( m , n )  = 
max,,. t <  m,  O s , < n A ( i ,  j), expressing the length of the longest match as the 
maximum of mn random variables A( i, j), where each A( i, j) is geometrically 
distributed with parameter p. These random variables A(i, j )  are dependent; it 
should not be intuitively obvious that their maximum is comparable in distribu- 
tion to the maximum of rnn independent copies of A(i, j). 

Note that the distribution of the family {A( i ,  j)} is strictly stationary with 
respect to translations in each of the two parameters. A general theory of maxima 
for stationary sequences is well developed, but does not seem directly applicable 
here; see for example the book by Leadbetter, Lindgren and Rootzh (1983). 
Another situation involving the maximum of a multiple-parameter stationary 
family occurs in Darling and Waterman (1985). 

Our main result, which is stated in Theorem 2, can be loosely described as: if 
m and n + 00 with (log m)/(log n) -, 1, then M(m, n) has approximately the 
same distribution as the maximum of (1 - p)mn independent geometric(p) 
random variables. Thus M(m, n) - logl/,,((l - p)mn) has approximately an 
integerized extreme value distribution: P(M(m, n) - logI/,,((l - p)mn) < c) is 
uniformly approximated by exp(-p“), for c such that c + log1/,,((l - p)mn) is 
an integer. Theorem 2 also states results for the length of the longest match run 
with at most k mismatches, which behaves like the maximum of (1 -p)mn 
independent negative binomial random variables. 

1. Survey of the analysis. The mutual dependence of the random variables 
A( i, j )  shows up in two qualitatively different ways. First of all, for each (i, j), 
the events {A( i ,  j )  2 u }  and {A(i  + 1, j + 1) 2 u }  are positively cor- 
related. Given the event { A( i, j) 2 u }  that we observe a match of length at least 
u after (i, j), the expected number of consecutive events {A(i ,  j )  2 u} ,  
{A( i  + 1, j + 1) 2 u} , {A( i  + 2, j + 2) 2 u} ,  ... associated with that match is 
1 + p + p 2  + * = (1 - p)-’. The same phenomenon, clusters of average size 
(1 - p ) - ’, occurs in the analysis of the longest head run in a sequence of toms of 
a p-biased coin. 

We need, therefore, to compensate for this clustering when approximating the 
distribution of M(rn, n). This is achieved by introducing the random variables 
A’( i, j )  E A( i, j ) l (  Xi  # E;.), where 1( E) is the indicator function for the event 
E. In contrast to the positive correlation of analogous events defined in terms of 
the random variables A(i, j), the events {A’(i, j) 2 u} ,  {A’(i + 1, j + 1) 2 u} ,  
{A’(i + 2, j + 2) 2 u} ,  . . . are negatively correlated. The distribution of each 
A’( i, j )  is a mixture, with weights (1 - p )  and p, respectively, of the geometric( p )  
distribution and the unit mass on zero. If there were no other dependence, then 
M( rn, n) would be like the maximum of mn independent copies of A’( i, j), which 
in turn is like the maximum of (1 - p)mn independent copies of A(i,  j). 

The second type of dependence occurs whenever the distribution p of the 
letters is not the uniform distribution, pa = l/lSl for all a E S. The simplest 
aspect of this dependence is that a match at  (i, s) is positively correlated with a 
match at  (i, t) for all s # t: P ( X i  = Y, and Xi  = yt) = &Xi = Y, = Y,) = 

2 ( E a s s ( p a ) 2 ) 2  = P ( X i  = Y,)P(Xi = q), with equality if and only if 
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y is uniform. I t  requires calculation, which we carry out in Sections 2-4, to prove 
that if rn and n + 00 with (logrn)/(logn) + 1, then this second type of 
dependence does not have a significant effect on M( rn, n). In contrast, it  is shown 
in Arratia and Waterman (1985b) that there exists a critical constant 8, E [0, 1) 
depending on y, with e,, = 0 iff y is uniform, such that if rn and n + m with 
log( rn)/log( n) -+ 8 E (0, m), then 

(1.1) ~ ( m ,  n)/(log,/p(m)) + p  1 i f f a  E [ e c r , l / e c r I .  

See Section 5 for further discussion of the situation in which log(n)/log(rn) + 

We now describe, for general k, the framework that will be used to prove our 
theorems about the length of the longest k-interrupted match run between two 
sequences. The discussion above has been about the special case, k = 0. Fix an 
integer u to serve as a test level. 

We say that a k-interrupted run of length u is witnessed at (i, j )  if XI # q 
and Xi+s = q+s for all but at  most k values of s, 1 s s s u. We write 
R,(i, j ;  u )  for the indicator of this event, which involves 2(u + 1) randomly 
chosen letters. when k = 0, we also speak of a (pure) run of u matches, witnessed 
a t  (i, j ) .  We write Nk( rn, n; u )  for the total number of witnesses at  level u, and 
Mk(rn, n; u )  for the length of the longest k-interrupted match, starting within 
the first rn letters of one sequence and the first n letters of the other. Formally, 
we define, for integers 0 s k s u, the random variables 

e # 1. 

~ , ( i ,  j ;  u )  = l(xl # q)1(  k 2 c 1(xI+8 + q+s)), 
1sssu 

N, = Nk( rn, n; u )  = Rk( i, j ;  u ) ,  
(1 4 

Osr<rn,Osj<n 

and 

M ,  Mk( rn, n) E max{ u: N,(i, j ;  u )  > O } .  

In the special case of pure matching, k = 0, we omit the subscript k. Note that 
the event {Mk 2 u }  involves rn + u X’s and n + u Y’s. We show in Section 6 
that the natural alternate definition involving exactly rn X’s and n Y’s is 
negligibly different from the above definition. 

Bonferroni’s (1936) inclusion-exclusion formulae, as used in Watson (1954), are 
the basis of our calculation that P(N,  > 0) = exp(-EN,). Write B E 
B( rn, n; u )  = { b = (i, j ;  u):  0 I i < rn, 0 s j < n} for the set of indices associ- 
ated with potential witnesses to {M,(rn, n) 2 u}.  For finite C c B, write 
R k ( C )  = n b E C R k ( b )  for the indicator that for each b = (i, j ;  u )  E C, X, # 7, 
and XI+1 - XI+, matches q+l Y,+, with at most k mismatches. The r th  
term in the inclusion-exclusion series for P(N, > 0) is the expectation of the 
random variable 

~ f )  = S f ) ( r n ,  n; u )  = R k ( C ) .  
CCB: IC\-r 

(1.3) 

Truncation of the inclusion-exclusion series gives lower and upper bounds on the 
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random variable 1( N, > 0): for T = 0, 1,2,. . . 
r + l  ( r )  (-l) sk l(Nk>o) 

Furthermore, for each j = 0, 1,2, .  . . , inclusion-exclusion (using Sio) = 1) gives 
lower and upper bounds on the random variable 1( Nk = j ) :  for T = 0, 1,2,. . . 

These truncated inclusion-exclusion bounds allow us to prove, in Theorems 1 
and l', that the number NA of locations at which k-interrupted matches of length 
at  least u begin is approximately Poisson, and that the locations at  which these 
matches occur are approximately a Poisson process. To prove Theorem 1, we need 
to evaluate ESP), for all positive integers r. For r = 1, Sf)  = Nk. For fixed 
r = 2,3,. . . , and any fixed t, Lemma 5 implies that as m and n -, 00 with 
log( m)/log( n) -, 1, uniformly over integers u such that EN, s t, 

(1.6) ESi" - ( EN,)r / r!  --* 0. 

Taking expectations in (1.5) and using (1.6), we obtain the result P( N, = j )  --* 
exp(-EN,)(EN,)J/j!, uniformly in integers u such that EN, s t. Thus the 
Poisson distribution approximates the distribution of the number of witnesses to 
a match. 

For arbitrary rn and n, there is the trivial upper bound, P( Mk( rn, n) 2 u )  = 
P(N, > 0) 5 EN,, which should be used when EN, is small. Theorem 1 shows 
that, for rn and n large with log(rn)/log(n) near 1, 

P ( M , ( m , n ) 2 u ) - P ( N , > 0 ) = 1 - e x p ( - E N k )  

= EN,(1 - EN,/2 + ( EN,)2/6 - . ), 
so that the relative error in using the trivial upper bound is also small when the 
bound is small. 

At  the level of establishing a limit distribution for the number of witnesses, 
N = N(rn, n; u),  the inclusion-exclusion framework described above is equiv- 
alent to the method of moments. To see this, note that for each d, the two sets of 
random variables, {S(l), S(2), . . . , Sd)} and {N, N 2 , .  . . , N d } ,  both have the same 
d-dimensional linear span. Thus, calculating finite limits for E$'), ES(2) , . . .  is 
equivalent to calculating finite limits for the moments of N. However, 
the inclusion-exclusion framework directly gives lower and upper bounds on 
P(N = 0), and thus could be used to get rate-of-convergence estimates for the 
distribution of M(rn, n) - logI,J(l - p)mn). 
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2. Combinatorial aspects of comparisons. In this section we discuss cer- 
tain combinatorial aspects of matching with shifts. There are two levels of graphs 
to consider. At  the lower level, comparison graphs describe which comparisons 
are made between individual sites and their associated letters. At  the higher level, 
adjacency graphs describe the overlap among bundles of comparisons. 

Recall from (1.2) that a run of matches must start with a mismatch. Therefore, 
it is notationally convenient to think of the sequences as beginning with one 
additional letter, which we index by 0. We shall see in Section 6 that the 
mathematically convenient definition of maximum run of matches is distribution- 
ally equivalent to the more intuitive definition of longest run of matches. 

In the rest of the paper, we consider two sequences of characters, X,, XI, 
X ,  ,... and Yo, Yl, Yz ,..., located in the Euclidean plane at  the lattice sites 
Z +  x {1,2}. The process of comparing X, with l$ is represented as an undirected 
edge between (i, 1) and ( j ,  2). We usually call this the edge or comparison (i, j), 
instead of using the more correct but awkward notation { (i, 1),{ j, 2)). 

A set of u + 1 consecutive parallel comparisons is called a bundle, denoted by 
the triple (i, j; u )  E {(i + k ,  j + k): k = O , l , . .  . , u} .  The definition of bundle 
anticipates the study of the random variables Rk(i,  j; u )  introduced in (1.2). A 
set C of r bundles, all sharing the same value of u, is called a configuration or an 
r-configuration. Two bundles, b, = (is, j,; u )  and b, = (it, j,; u )  are said to be 
x-adjacent, denoted b, =,bt, if b, # b, and lis - i,l I u. They are said to be 
y-adjacent, denoted b, zY b,, if b, # b, and 1 j ,  - j,l I u. The bundles are said to 
be adjacent, denoted b, = b,, if either b, =.,b,, or b, zY b,, or both. Note that, by 
definition, a bundle is not adjacent to itself. The two bundles, b, and b,, are said 
to be parallel if j ,  - i, = j ,  - it. They are said to be doubly adjacent if both 
b, =, b, and b, zY b,. If two bundles are both adjacent and parallel, then they are 
doubly adjacent. 

The reader may wish to construct the following figure. The comparison of X, 
with corresponds to the lattice point (i, j )  in Z2. A bundle is then a set of 
u + 1 points lying on a 45-degree line. Parallel bundles overlap on these 45-degree 
lines. Adjacent bundles have overlapping x or y coordinates. Biologists perform 
visual analysis of matching by using such representations in what they call “dot 
matrix analysis.” See, for example, Waterman (1984). 

Associated with an r-configuration C are two graphs. The first is the compari- 
son graph, denoted U(C), because it is the union of the bundles in C. The 
comparison graph U(C) is a bipartite graph on Z+ x { 1,2} having at most 
r( u + 1) edges (comparisons). Each comparison connects an x-site in Z +  x { 1) 
with a y-site in Z+ ~ ( 2 ) .  

The second graph is the ac&aCency graph, denoted A(C), which is the 
restriction to C of the adjacency relation. Thus, the vertices of A( C) are bundles, 
and the edge {b,, b,} is in A(C) if and only if b, E C, b, E C, and b, = b,. The 
inclusion of edge (4 ,  bt} in A(C) indicates that some of the comparisons which 
constitute the bundles b, and bt share common sites. 

The comparison graph U(C) has a particularly simple structure if the adjac- 
ency graph A(C) is atomic. This case corresponds to a set of r mutually 
independent runs of matches, because none of the bundles in C overlap. The 
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comparison graph U(C) then contains exactly r(u + 1) disjoint edges, each 
corresponding to some one comparison in some one bundle. We get our lower 
bound on E S ' )  quite easily in Lemma 4, just by considering the contribution 
from configurations of this form. 

There are some configurations C of bundles whose comparison graph U(C) is 
quite complicated; see Guibas and Odlyzko's (1981) discussion of periods in 
strings for a treatment of matching a single sequence to itself. In order to put an 
upper bound on the contribution ER(C)  to ES') from such a configuration, we 
select a reduced subset C* c C, so that ER(C)  s ER(C*). The reduced con- 
figuration C* must be chosen small enough so that U(C*) is simple, but large 
enough so that ER(C*) is a useful upper bound. 

We now define the reduction operation, which reduces an r-configuration C to 
the ( r  - 1)-configuration C* = C - { b,}. A reduction removing b, from C is 
allowed if C contains two bundles b, and bt such that: 
(a) b, =x b, and b, =y b,, and 
(b) C - { b,} contains a pair of bundles which is adjacent but not parallel. 

Note that b, and bt need not be distinct. A configuration which cannot be 
reduced is called irreducible. 

Not every configuration can be obtained by reduction from a larger configura- 
tion. Neither can a particular configuration be obtained by reduction from very 
many other configurations. Them two consequences of the definition are formal- 
ized in the lemma below. 

' 

LEMMA 1. Let C* be a given r-con&uration and let t > r. The number of 
t-configurations, which yield C* after some series of t - r reduction operations, 
is less than [(2u + l ) t ]2( t -r) .  I f  none of the bundles in C* are adjacent, or if all 
bundles in C * are parallel, the number of such t-configurations is zero. 

PROOF. Consider the adjacency graph A( C) of a configuration which is about 
to be reduced by deleting the bundle b = ( i ,  i; u )  from the configuration C. From 
condition (a) in the definition of reduction, there must exist bundles b, and b, in 
C, such that b, zX b and b, zy b. Hence, at each of the t - r stages of reduction, 
there are fewer than [(2u + l)tI2 choices for ( i ,  j ) ,  these choices being de- 
termined by the remaining undeleted bundles. Reduction never produces a 
configuration of mutually nonadjacent or mutually parallel bundles because of 
condition (b) in the definition. 0 

The next proposition tells us that the comparison graph of an irreducible 
configuration has a relatively simple structure. 

LEMMA 2. Let r > 1 and C = { b,, . . . , br} be an irreducible r-configuration 
having a connected adjacency graph A(C). Exactly one of the following three 
cases must occur. 

No pair of bundles in C is doubly Mtjacent. In  this case, every 
connected component of the comparison graph U(C) is a tree haoing r or fewer 
edges, and U(C) contains exactly r(u + 1) e e s .  

Case 1. 
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Case 2. C contains a pair of bundles which are doubly adjacent but not 
parallel. In this case, C consists of r = 2 bundles, every connected subgraph of 
U( C )  is a simple path, and U(C) contains exactly 2( u + 1) e&es. 

Case 3. C contains a pair of overlapping (i.e., doubly adjacent and parallel) 
bundles. In this case, all bundles in C are parallel, every connected subgraph of 
U ( C )  consists of a single edge, and there are fewer than r( u + 1) edges in U ( C ) .  

PROOF. Case 1. Assume that no two bundles in C are doubly adjacent. It 
follows from this that for each comparison c E U(C) there is a unique bundle 
b E C such that c E b, and so U (C) has exactly r( u + 1) edges. 

Assume, in order to obtain a contradiction, that U (C) contains a cycle. Choose 
such a cycle having minimal length 7. Since U(C) c Z +  x { 1,2} is a bipartite 
graph, 7 must be even, with 7 2 4, and we can label the sites along the cycle as 
(s(l), l), (s(2), 2), (s(3), l), . . . , (s( 7), 2). Recall that ( i ,  j )  is our notation for the 
undirected edge { ( i ,  l), ( j ,  2)). The edges that form this cycle are the comparisons 

C k = ( s ( k ) , S ( k + l ) )  ifkisodd, 

= ( s ( k  + 1) , s (k ) )  if k iseven, 

for k = 1 to 7 ,  with the understanding that s(7 + 1) = s(1). For k = 1 to 7 ,  let 
b, be the unique bundle in C such that ck E b,. Now b, zX b,, b, =,, b,, and 
(b , ,  b,) is a pair of bundles which are adjacent but not parallel, so that a 
reduction removing b, is possible. This contradicts the irreducibility of C and 
proves that U (C) contains no cycles. 

Now assume, in order to obtain a contradiction, that U(C) contains a con- 
nected subgraph G having more than r edges. By the pigeonhole principle, there 
is some pair of edges in G which both belong to the same bundle in C. Since G is 
connected, there is a path of edges in G which begins with one of these two edges 
and ends with the other. Choose such a path in U(C), c,, c,,. . . , c,, to have 
minimal length 7. For k = 1 to 7 let b, E c with ck E b,, so that b, = b,. It is 
not possible that 7 = 3, for then b, and b, would be doubly adjacent. The pairs 
(b , ,  b,), (b , ,  b3), and (b, ,  b,) are alternately x-adjacent and y-adjacent. By 
hypothesis b, and b4 are not doubly adjacent, so they are not parallel. Hence a 
reduction removing b, from C is possible. This contradicts the irreducibility of C 
and proves that no connected component of U(C) has more than r edges. 

Case 3. Assume that C contains a pair of doubly adjacent, parallel bundles, 
bt and b,. Any bundle adjacent to b, must be parallel (and hence doubly 
adjacent) to b,, since otherwise C could be reduced by the reduction removing bt. 
Similarly, any bundle adjacent to bt must be parallel to bP Since A(C) is 
connected, it follows by induction that C consists of r mutually parallel bundles. 

All comparisons in U(C) are parallel, so no two distinct comparisons can 
intersect, and hence every connected subgraph of U(C) consists of a single 
comparison. There will be fewer than r( u + 1) comparisons in U (C) because b, 
and bt share some comparisons. 

Case 2. At  this point, we have disposed of any irreducible C having no 
doubly adjacent pair of bundles in the proof of Case 1. We have disposed of any 



SEQUENCE MATCHING 979 

irreducible C having a pair of adjacent and parallel bundles in the proof of Case 
3. Therefore, we may assume that C contains a pair of doubly adjacent bundles 
and that no pair of adjacent bundles in C is parallel. 

Let b, and bt be two bundles in C which are doubly adjacent but not parallel. 
C cannot contain a third bundle, adjacent to b, (and hence not parallel to b,), 
since otherwise C could be reduced by the reduction removing bp Similarly, C 
cannot contain a third bundle, adjacent to bp Since A(C)  is connected, it follows 
that r = 2 and C = {bs, bt}. 

No comparison can belong to two nonparallel bundles, so U(C) contains 
exactly 2( u + 1) comparisons. Label the two bundles in C as ( i ,  i + k; u )  and 
(i', i' + k'; u). A site (si 1) in U(C) can only share an edge with sites of the form 
(s + k, 2) or (s + k',2), and a site (s, 2) in U(C) can only share an edge with sites 
of the form (s - k, 1) or (s - k', 1). From this it follows that the only connected 
subgraphs of U(C) are simple paths. 0 

3. Estimates using Jensen's inequality. Recall that the letters 
Xo,  X,,. . . , Yo, Y, , .  . . E S are assumed to be i.i.d. ( p ) ,  for some nontrivial distri- 
bution p. Let p, be the probability that r different letters match, for r = 1,2,. . . , 
SO 

and p = p2. Jensen's inequality [Hardy, Littlewood and Pblya (1934), formula 
2.10.31 says that for 0 < r < s, (p,)l/' ( pr)'Ir. Thus for s = 3,4,. . . , p, < pSI2. 
Let S = S ( p )  be defined by (p3)lI3 = so that p 2  = [C,(p,)2]2 = 
[E(pX)l2 I E[(pX) ' ]  = C,(P,)~ = p 3  <p3 /2  implies that 0 < S I i. Thus 
Jensen's inequality, p, I (p3)"I3 for s = 3,4,. . . , yields 

(3.2) p, I ps/2p8s for s = 3,4, .  . . . 
LEMMA 3. Given a nontrivial distribution p on a countable alphabet S ,  let 

p E (0,l) and 6 E (0, +] be defined as in the discussion preceding (3.2). For 
r 2 2, let C be an irreducible r-con&uration having connected adjacency graph 
A( C). The fobwing estimates hold, for k = 0, 1,2,. . . . 

Case 1. If no two bundles in C are doubly adjacent, then 
E{R,(c)} I p-rkurkpNr+1)/2)u P '  6~ 

Case 2. 
parallel then 

I f  C consists of r = 2 bundles which are doubly adjacent but not 

E{ R k (  c ) }  -< p-2kU2kpupsu. 

Case 3. I f  all bundles in C are parallel, and C = {(i  + a,, j + a,; u):  s = 1 
to r } ,  with 0 = a ,  a2  < . < a,  = a, then 

E{Rk(C)}  I p-2kU2kp2u i/ a > U ,  

E { R k ( C ) }  = 0 i f a  s uandr  > k + 1, 
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E { R k ( C ) )  - < ukPr+'  U P  u + a - 2 k  

For any bipartite graph G c 2' X {1,2}, define the event E,  = 
{ X ,  = Y, whenever the sites (i, 1) and ( j, 2) are connected in G}. Let t denote a 
connected component of G, and write It1 for the number of vertices in that 
component. Since all letters are i.i.d. ( p ) ,  

if a u andr 5 k + 1. 

PROOF. 

P ( E G )  = n ( P l t l ) *  
t 

(3.3) 

Cases 1 and 2. Lemma 2 says that U(C) has exactly r( u + 1) edges, and each 
connected subgraph of U(C) is a tree. 

Choose and fix, in each of the r bundles, some k comparisons after the first 
comparison. There are ( l ) r  I urk ways to do this. Delete these edges, together 
with the first comparison from each of the r bundles in C, from the graph U(C), 
to form a subgraph G which has exactly r(u - k) edges. In order for the 
indicator Rk(C) to be 1, there must be some such choice of G, with X ,  = Y, 
whenever the sites (i, 1) and ( j, 2) are connected in G, hence 

E { R , ( C ) }  I CP(E,)  I urkmaxP(EG). 
G G 

(3.4) 

It1 - 1 edges. Let 
Let t be a connected component of G, so that t is a tree with It1 vertices and 

7 =  1 and 8 =  ( I t l -  l),  

so that 7 is the number of connected components which have 2 or more edges, 
and 8 is the total number of edges contained in these 7 trees. Since G has 
r( u - k )  edges, G has exactly r( u - k) - 8 components t having (tl = 2. From 
(3.2) and (3.3), 

p(&) = nPlt, I p r ( u - k ) - 8  P (8+7) /2  P ( 8 + 7 ) 6 .  

The first factor above comes from trees consisting of a single comparison. The 
last two terms come from inequality (3.2), applied to the 7 trees consisting two or 
more comparisons, with a total of 8 edges connecting 8 + 7 sites. 

In Case 1, every connected component of U(C) has at most r edges. Thus 
every component t of G has at most r edges, so 7 2 8/r.  Substitute this into 
(3.5) to get the first of the two inequalities below: 

t:  It123 t:  It123 

t 
(3.5) 

r( u - k ) -8 (8+  (U/ r ) ) /2  ( 8 +  ( 8 / r ) ) 6  
P ( E G )  S P  P P 

(3.6) 
rk ((r+1)/2+6)uS IP- P 

The second inequality is valid because 8 E [0, ru]. To check this inequality, take 
logarithms to get an inequality which is linear in 8, and thus only needs to be 
checked at the endpoints. At  the endpoint 8 = 0, we use 6 I i, and at  the 
endpoint 8 = ru, we use 6 2 0. Combining (3.4) and (3.6) establishes Case 1. 
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In Case 2,  substitute r = 2 and T 2 0 into (3.5) to get the first of the 
inequalities below: 

(3.7) 

As in Case 1, the last inequality is valid because 8 E [0,2u]; it checks at  8 = 0 
using 6 I 1, and it checks at 6 = 2u using 6 2 0. Combining (3.4) and (3.7) 
establishes Case 2. 

Case 3. If a > u, then the bundles b, and b, are not adjacent, so R k ( $ )  
and Rk(b,) are independent. Hence ERk(c )  I ERk({bl, b,}) = [ERk(bl)] I 
[ u kp 

If r > k + 1 and a I u, then Rk(C)  is identically zero, because to have 
R k ( C )  = 1 requires that there are nonmatches at  ( i  + a,, j + a,) for s = 2 to r, 
which forces r - 1 2 k + 1 nonmatches between Xi+ * * Xi+, and y/+ , * * 

k ]  and the bound is established. 

T+,: 
Finally, consider the case r I k + 1 and a I u. To have k-runs witnessed at 

bundles b,, . . . , b,, there must be nonmatches at comparisons ( i  + s, j + s) for 
s E { a 2 , .  . . , a,}. Thus to have a k-run at  b,, there can be at most k - ( r  - 1) 
nonmatches at  comparisons ( i  + s, j + s) for s E {1,2,. . . , u} - { a 2 , .  . . , a,}. To 
have a k-run at  b,, there can be at most k nonmatches at  comparisons ( i  + s, 
j + s) for s E {u + 1, .. . , u + a}. Choose a subset of size k - r + 1 from 
{ l , 2 , .  . . , u} - { a 2 , . .  ., a,}, and a subset of size k from {u + 1,. . . , u + a}, 
and require matches at ( i  + s, j + s) for the u + a - 2k values s in 
{ 1,2, .  . . , u + a }  - { a 2 , .  . . , a,} and the two chosen subsets. The two subsets can 
be chosen in I ( u  - r + l)k-r+lak I uk-,+‘ a ways. Thus 

4. Approximate distribution of the longest match run. In this section 
we compute the approximate distribution of the longest k-interrupted run of 
matches. We combine the combinatorial work on reduction of Section 2 and the 
probability bounds of Section 3 with Watson’s (1954) formulation of the inclu- 
sion-exclusion principle to obtain our main result, Theorem 1. Using (1.4) and 
(1.6), we need only show, in an appropriate sense, that E{Sf ) ( rn ,  n; u)} con- 
verges to [E{Sf)(rn, n; u)}]‘/r!.  We obtain the uniform lower and upper bounds 
for this in Lemmas 4 and 5, respectively. 

Throughout this section, we adopt the convention that rn I n. We write 
q = 1 - p, where p, the probability of a match on a given comparison, is defined 
in (1.1). Let Gk(u)  = E{R,((O,O; u ) ) } / q  = the probability that there are no 
more than k nonmatches among the u comparisons (1, l), (2 ,2) ,  . . . , (u ,  u). Since 
Gk( u )  is the probability of at  least u - k “failures” (matches, each with probabil- 
ity p,) before the (k + 1)th “succe88” (nonmatches, each with probability q), 
Gk( u) is the upper tail probability of a negative binomial distribution. It is easily 
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seen that 

(4.1) G , ( u )  = (:)p'*g'+' = Q ( d /@)"PU/(1 -P)}/k! 

for integers u 2 k. We use the final expression above to define G,(u) for all real 
u,  and note that 

(4.2) G,(u)  - ( q u / p ) , p U / k !  as u + 00. 

LZ U 

LEMMA 4. If 2u > r and n 2 m > 4ru, then 

E { S r ' ( m ,  n; u ) }  > [l - 2ru(m + n)/(mn)]'[qmnG,(u)]'/r!. 
PROOF. S r ) ( m ,  n; u )  was defined in (1.3). We can bound E{SC)(m, n; u ) }  

below by only summing over those configurations C consisting of r mutually 
nonadjacent bundles in B(m, n; u) ,  the set of bundles whose initial comparison 
connects one of the first rn x-sites with one of the first n y-sites. For these C, 
Rk( C) is the product of r-independent indicator random variables, each 
with expectation qG,(u), so ER,(C) = (qG,(u))'. In choosing such a configu- 
ration C one bundle at a time, the added bundle can start  at any site at least 
u sites away from any of the previously chosen bundles, allowing at least 
[rn - ( r  - 1)(2u + l)][n - ( r  - 1)(2u + l)] > mn - 2ur(m + n) choices for the 
additional bundle. Hence there are at  least [mn - 2ur(m + n)Ir/r! such r- 
configurations C. 0 

LEMMA 5. Choose and fix k 2 0, r 2 1, and E > 0. Let m, n -, 00 in such a 
manner that log(m)/log(n) -, 1. Let 

(4.3) U( mn) = { u: mnukpu E [ E ,  E - ,  I}. 
Then 

sup I{(qmnG,(u))'/r!}-'E{S,(m, n; r, u ) }  - 11 + 0. 
u e l l ( r n n )  

PROOF. The crucial observation is that the random variable Rk(C)  is a 
product of mutually independent indicators which correspond to connected 
components in the adjacency graph A(C). Further, the reduction operations let 
us study components whose graphs in U(C) are of particularly simple form. 

We assume that n s n and that u > 1. We write q, qo, ... for constants 
which depend on p, k, E,  and r, but not on m, n, or u, and whose exact value is 
not of interest. 

Consider a particular r-configuration C. If C is reducible, then it may be 
reduced to some irreducible configuration C* c C; if C is irreducible, we take 
C* = C. Let C,, . . . , C, be the connected components of A(C*), so that the 
adjacency graphs A(CJ are individually connected, but no pair of comparison 
graphs U(C,) and U(C,) share any sites. Hence the indicators Rk(Cs), s = 1 to T, 
are functions of disjoint sets of independent random variables, and so are 
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independent. Thus 

EB, (c )  2 E R k ( c * )  = n ER,(c,) .  
l S 8 S T  

Since C* is irreducible, so is each C,. To make use of Lemma 1, let 8(C*)  = 1 if 
IC*l = r and 8(C*) = quZr, with q = (4r)" if IC*l < r. Write S, for 
SF)(rn, n; u).  We have t 

Esk 5 e(c*) n E { R k ( C 8 ) } .  
(C* irreducible) 8 5 7  

(4.4) 

The sum is taken over all irreducible configurations C* which are r-configura- 
tions, or which can be obtained by reduction from an r-configuration. The 
product is taken over the 7 subsets C, of C* which correspond to connected 
components in the adjacency graph A(C*). 

Note that if O(C*) > 1, then C* was obtained from an r-configuration by 
reduction, so there exists some pair of bundles in C* which are adjacent but not 
parallel, and hence at least one of the C, belongs to Cases 1 or 2 in Lemma 2. For 
j = 1,2,3 let ai be the sum of E R k ( c * )  over all p-configurations C* belonging to 
Case j of Lemma 2, with C* irreducible, A(C*) connected, and 2 s p I r. 
Proceeding from (4.4), and assuming u E U in (4.3), we have 

(4.5) 
From (4.2) and (4.3), qmnGk(u) is bounded away from zero and infinity. The 
factor q ,  appears in i4.5) with each ai to compensate for possibly spurious 
multiplication by factors qmnGk(u) when taking the r th  power. Because 
u E U( mn), io < E - ~ .  The multiplication within braces by r! cancels the effect of 
division by the final r!. I t  is used to count r-configurations in which no two 
bundles are adjacent. The factor vuzr which multiplies ul and u, corresponds to 
those C* with O(C*) > 1, and is obtained from Lemma 1. 

We now analyze the contributions to (4.5) of the sums uI, a,, and u3. 
Case 1. Because we have assumed that rn 5 n, there are at most 

p ! m n ( [ r n  + n][2u + 11)P-l 5 qlmnPuP p-configurations C,, with p s r, in which 
no two bundles are doubly adjacent, but A(C,) is connected. Using Lemma 3 for 
the first inequality and (4.3) for the second inequality, we get 

qu2rul q z m n ~ U 2 r U ~ + p k p u ( ( ~ + 1 ) / 2 + 8 )  

Psr 

< i3mnpU3r+kr( m n ) - ( ( P + 1 ) / 2 + 8 )  

Psr  

= q3( n / r n ) ( p - 1 ) / 2 (  m) - 6 u 3 r + k r .  

P S r  

Since log(n)/log(rn) + 1, it follows that (n/rn)(P-1)/2n-8/2 + 0. Further, (4.3) 
implies that u - log,/,(mn), hence u3r+kr(mn)-8/2 + 0, and so uZru, + 0, uni- 
formly over u E U. 

configurations consisting of two 
bundles which are doubly adjacent but not parallel. Using this and Lemma 3, 

Case 2. There are fewer than mn (2u + 
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u2 e q4mnu2u2kpu+u8. We now employ (4.3) to obtain u2'u2 e q75u2+2'+2k P + 

0, uniformly over u E U(mn). 
Case 3. Let C* = {(i + a,, j + a,; u): s = 1 , 2 , .  . . , p }  with 2 I p I r and 

0 = a, < a2 < e < up = a. Assume also that A(C*) is connected. Because 
A ( C * )  is connected, there are fewer than mn[min(a, u)Ip-' such p-configura- 
tions. Use Lemma 3 for the first line below, where the first sum corresponds in 
Lemma 3 to the sub-case r > k + 1 or a > u, and the second term corresponds to 
the sub-case r I k + 1 and a 5 u, and then use (4.3), 

+ 

2 1 p s r  

C Uk+p- lpu  + C a p - l + k U - p + l  a 

[ 
2 s p s r  2 s p s r  l s a  . I  < q r [  

'3 q 6  

< qe[uk+r-lpu+ u-'1 + 0. 

Combining the results for Cases 1, 2,  and 3, it follows that the upper bound 
(4.5) is of form {qmnGk(u) + o ( l ) y / r ! ,  uniformly over the set U in (4.3). This 
upper bound, together with the lower bound from Lemma 4, establish Lemma 5. 

0 

It is now an easy matter to prove our main theorem about large sample 
approximations to the distribution of Mk( m, n). We write 

uk(n)  = {logl/p(n) + logl/plogl/p(n) 

+ k  lOg,/p(q/P) - logl/p(k9} * 
(4.6) 

The solution of the equation nGk(u) = 1 is almost uk(n). Because of (4.2), 
nGk(IIk(n)) + 1 as n + 00. We write 1. J for the greatest integer function, and 
B i ( x )  = x - 1.J. 

THEOREM 1. Let m, n -, 00 in such a way that log(m)/log(n) + 1. Write 
X X(k, m, n; u) = qnmGk(u). Then 

supIP{Mk(m,n) 2 u} - (1 - exp(-X)}I + 0. 
ucz 

(4.7) 

(4.8) 

In addition, for every f i e d  t, and j = 0,1,2,. . . , 
SUP lP(ivk(m, n; u) = j >  - exp(-x)(X)'/j!l+ 0. 

{I4 €2: Iu - Oh( mn)l s t )  

PROOF. First fix t ,  and note that {mnukpu: Iu - uk(mn)( I t }  is bounded 
away from zero and infinity. Thus for each 7 = 0, 1,  . . . , the expectations of (1.4) 
and (1.5) can be evaluated in the limit as rn, n + oc), uniformly over integers u 
such that lu - uk(mn)l I t ,  by means of Lemma 5. By taking 7 sufficiently large, 
(4.8) is proved. For the special case j = 0 of (4.8), both P{Mk(m, n) 2 u} and 
(1 - exp[-A]} tend to 0 [or 13 as u - Z ) k ( m )  tends to +GO [or -GO]. This 
establishes (4.7). 0 
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The next theorem says that the locations ( i ,  j )  along the two sequences, at 
which long matches occur, are distributed approximately independently and 
uniformly throughout their possible range [ l ,  m] X [ l ,  n] .  Formally, we define 
the random measures 5 = &( rn, n; u )  on [o, 112 by 

5 Gi/m,;/nRk(m, n; u ) ,  
i < m ,  j < n  

where denotes unit mass at the point ( x ,  y). The total mass of 5 is 
( ( [ O ,  1 1 2 )  Nk( m, n; u) ,  which by Theorem 1 is approximately Poisson in distri- 
bution, with parameter A. Theorem 1’ says that the point processes 5 are 
uniformly close to the corresponding constant intensity Poisson processes on 
10, 112. 

THEOREM 1‘. Let B,,  . . . , Bd be disjoint rectangles in [0, 112. Let a ,  be the 
area of B, and let X = qnmGk( u). Fix t and let j l ,  . . . , jd be nonnegatiue integers. 
If m and n + 00 with log( m)/log( n )  -, 1,  then 

sup 
u: (u-o*(mn)l<t 

( P ( [ ( B i )  = j i  fori = 1 t od )  - nexp(-Xai)(Aai)’i/ji!I + 0. 

PROOF. For each i, a formula like (1.5) gives upper and lower bounds on the 
indicator function 1( E( Bi)  = ji) in terms of sums of indicators Rk(C) with index 
sets C of size IC( I 27. After multiplying out, this gives upper and lower bounds 
on l ( ( ( B , )  =J, for i = 1 to d )  in terms of sums of indicators Rk(C) with index 
sets C of size IC1 I 2rd. For the expectations of these bounds, Lemma 5 and the 
proof of Lemma 4, applied with r = 1,.  . . ,2rd, show that the combined contribu- 
tion from those C corresponding to dependent events is uniformly negligible, and 
that the expectations for these bounds are uniformly close to what they would be 
if all the indicators Rk(i,  j; u )  were mutually independent. By taking r suffi- 
ciently large, the theorem is proved. 0 

In Theorem 2, we establish the most useful results about the approximate 
distribution of hfk( m, n).  Although the main result is a consequence of Theorem 
1 of Ferguson (1984), we have chosen to follow the constructive approach of 
Gordon, Schilling and Waterman (1986) for three reasons. First, that approach 
makes clear the choice of centering constant O k ( .  ). Second, the representation of 
assertion (c) makes clear the relationship of the various limiting distributions 
along the appropriate subsequences. Third, the representation (c) and its use of 
& ( x )  = x 1x1 suggests the Fourier methods which enable us to compute the 
expectations in assertion (e). 

Before stating Theorem 2, we note as in Gordon, Schilling and Waterman 
(1986) that (d/alu)G,(u) is the product of p’ times a polynomial in u whose 
leading coefficient is negative. Hence, for fixed p, there exists some constant uo 
such that Gk( u )  is continuous and strictly decreasing for all real u > uo. 

We denote by Z, ,  Z2, ... an i.i.d. sequence of absolutely continuous random 
variables such that P{Zj > u }  = 1 - Gk(u) for all real u 2 uo. We denote by W 
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a standard extreme value random variable having cumulative distribution func- 
tion exp(-e-'). Recall that W has expectation y ,  the Euler-Mascheroni con- 
stant 0.577.. . and has variance s 2 / 6 .  We write 1 = log(l/p). The bunds on the 
remainder terms of assertions (e) and ( f )  are very similar to those obtained in 
Boyd (1972). 

THEOREM 2. Let my n + 00 in such a manner that log(n)/log(m) --* 1. We 
m y  conclude that: 

(a) P{M,(m, n )  > u }  - P{ Imax{Z,: s < q m } J  > u }  -+ 0, uniformly in u, 
for all real u. 

(b) P{M,( my n )  > u }  - p( I W / l  + u,( qnm)J > u} + 0, uniformly in u, for 
aU real u. 

> u }  + 0, uniformly in u, for all real u. 
(d) The random uariubles { M,( m, n )  - u,( qnm)}2 are uniformly integrable. 
(e) E{M,(rn, n ) }  = u , ( q m )  + y/l - + rl(my n )  + o(l), where e = a2/1 

and lrl(s)l 5 ( 2 ~ ) - W ~ e - ~ ( 1  - e-e) -2 .  
(f) Var{M,(m, n ) }  = a2/(612)  + & + r2(m, n )  + o( l ) ,  where lr2(s)1 s 

2(1.1 + 0 . 7 ~ ) W ~ e - ~ ( i  - 

(c) P{M,(m, n )  > u + u,(qm)I - P{ IW/ l+  Bi (udqm))J  - Bi(v , (qm))  

PROOF. Assertion (a) follows as an immediate consequence of Watson (1954). 
The random variables Zj are independent, and sG,( u,( s + u) )  + p' for all real u 
as s + 00. Let L, = max{Zj: j s s}. We conclude from Watson (1954) that 
L, - u,(s) convergea in distribution to W/1 and that P{Lgnm 2 t} is approxi- 
mated by exp( - qmG,(  t)) uniformly for all integers t. 

Fix 7 > 0. Let { u,} be any sequence of integers for which luqnm - uk( qnm)l < 7. 

Theorem 1 tells us that P{M,(m, n )  2 uqnm} is approxlmated by 1 - 
exp(-qnrnG,(u,, )), uniformly over such sequences {us}.  For any integer t ,  
P{Lqn, 2 t }  = P{lL,,,] 2 t } .  Hence, P{M,(m, n )  2 t }  - P{ [L,.,\z t} -+ 0 
uniformly in integers t for which It1 < 7. Becawe both Mk(m, n) and L,] have 
as support the integers, it follows that P{M,(m, n )  2 u} - P{ lLgqm] 2 u }  -+ 0 
uniformly over all real u. 

Assertions (b) and (c) follow from (a) because L, - uk(s) converges in distri- 
bution to W / l .  

We next prove (d) which asserts the uniform integrability of the random 
variables M,(m, n)2.  In order to simplify notation, we write 9, vi,  q2 , .  . . for 
constants whose exact values are not material to the proof. We also write u for 
Uk(  qm). 

Because the function s kps is bounded, we obtain as a consequence of (4.2) that 

(4.9) 

Chouee 3 to be a constant between 0 and 1, which we will specify later. We now 
use Chebyshev's inequality to bound P(M,(m, n )  < u - t }  for 1 < t < ( 1  - J)u. 
Note that P{M,(m, n )  < u - t }  = P(Sf)(m, n; u - t )  = 0) and that the latter 
probability involves a sum of indicator random variables most pairs of which are 

P{Mk(m,  n )  2 u + t }  s nmG,(u + t )  I vt'p' for any t > 1. 
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independent. We assume without loss of generality that m I n. An argument 
identical to that in the proof of Lemma 5 shows that 

Var{Sj')(m, n; u - t ) }  I nmGk(u - t )  + g(mn2ual + nmua, + nmu3), 
where the first term is attributable to the variances of nm Bernoulli random 
variables, and the terms ul, a,, and a, are contributions of products of indicators. 
These products correapond to Cases 1,  2 ,  3 of Lemmas 2 and 3, as applied to 
2-configurations which are, respedively, singly adjacent, doubly adjacent but not 
parallel, and both parallel and doubly adjacent. 

From Lemma 3, thew terms may be bounded: 
2k ( 3 / 2 + 8 M u - t )  

01 s TJlU P 
- ( 3 / 2 + 8 )  - ( 3 / 2  + 8 ) t  s ?J2uk'2( mn) P Y 

I T J 4 u k ( 4  P Y 

a3 s T J s u - 2 ( m ) - 1 .  

2k ( l + b ) ( u - t )  
0 2  5 TJ3b - t )  P 

- ( I + & )  - ( l + 8 ) t  

and 

By hypothesis, E { S f ) ( m ,  n; u - t ) ]  = nmGk(u - t )  2 T J P - ~ .  Hence, because 
6 5  :Y 
(4.10) 

Now break the sets {XJ and {q] into m / ( [ u )  disjoint pieces to obtain: 

So} < ( 1  - G,([u))"/('"' 

P{Mk(m, n) < u - t }  s qptl4 for 1 < t < ( 1  - [ ) u .  

P{Mk(m,  n) 
(4.11) < exP( - mGk(So)/r sol)  

< exp( -mu-l(nm)-'/q) < exp( -m1-31/77). 

The final inequality follows because log(n)/log(m) + 1. Now choose and fix 
[ = $. Combining (4.9), (4.10), and (4.11) gives 

E(IM,(m,n)  - Ul2l(IMk(m,n) - u1 > 7 ) )  < u2pm"'/v + TJt2pt14 
(t'7) 

and so we have established the uniform integrability of IMk(m, n )  - uk(qnm)I2. 
Assertion (e) follows exactly as in Gordon, Schilling and Waterman (1986), 

because assertion (d) lets us approximate the mean and variance of Mk( my n) by 
the corresponding moments of TJ + W/Z - TJ]  . 0 

5. The relative growth of the two sequence lengths must be con- 
strained. Here is a calculation that shows why the hypothesis "log(m)/log(n) 
--* 1" is needed to state Theorems 1 and 2 in a form with minimal conditions on 
p. This calculation shows that if (log m)/(log n) does not converge to 1,  then a 
suitable choice of p makes the second moment of N 1 No(m, n; u )  blow up. 
No(m, n; u),  the count of witnesses to matches having length at least u, was 
defined in (1.2). 
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Fix 8 E (0,l) and take m, n + 00 with log(m)/log(n) + 8. Consider only 
configurations C of the form {(i, r; u ) , ( i ,  s; u ) }  with r # s, i I m, and r,  s I n. 
The number of these configurations is ( l ) m .  Denote by 1.1 the least integer 
function. Take u = [log,/,((l - p ) m n ) ]  so that c = u - logllp((l - p)mn) E 

[0, 1) and EN = p‘ E (p, 13. Note that logl/,(( :)m) - log,/,(mn2) - 
(log,/,(mn))(2 + 8)/(i + 8 )  - u(2 + 8)/(1 + 8 ) .  We have R ( C )  = 
I(X, z Y,.)l(X, z x)l(X,+t = Y,,, = Yk+t for t = 1 to u), and ER(C)  = 

(E,P,(~ - P , ) ~ ) ( P ~ ) ’ ‘  where p3  = E,(p,)3. Thus log(ER(C)) - u 10g(p3). The 
combined contribution to E S 2 )  from these (5)m configurations is (:)mER(C) 
with logl/,(( :)mER(C)) - u[(2 + 8)/(l + 8) - log,(p,)]. Jensen’s inequality 
says that p3 2 p3l2. 

Given any 8 < 1, if log,(p,) is sufficiently close to $, then the coefficient of u 
in the expression for logl/,(( :)mER(C)) is positive. In that case 

For fixed p E (0, l), there are examples of p having C,,,(pa)2 = p and 
log,( p 3 )  arbitrarily close to Jensen’s bound, g ,  although the alphabet S may also 
have to be large. However, for any particular p,  the condition “(log m)/(log n) + 

1” might not be necessary for the conclusion of Theorems 1 and 2 to hold. 
Consider the above argument in more detail. Let 8, 5 [2 - 

logp( p,)]/[log,( p 3 )  - 13. Elementary manipulation shows that 8, 2 0, with 
equality iff p is uniform. In the case p is nonuniform, and m and n 00 with 
(logm)/(logn) + 8 < e,, the above argument shows that the number N of 
witnesses to a match of length at least c + logl(,((l - p ) m )  is bounded in L’ 
and unbounded in L2; however, this argument fads to resolve whether the family 
of random variable {M(m,  n) - log,/,(mn)} is tight. We conjecture that for 
each p there exist centering constants u(m, n), namely u(m,n) = E(M(m,n)), 
such that the family {M(m, n) - u(m, n): m, n E Z + }  is tight. 

In this paper, we have analyzed M(m, n) by the position at which 
the match appears. In contrast, an analysis of M(m, n) by the pattern 
which is matched is carried out in Arratia and Waterman (1985b). In order 
to describe the result of that analysis by pattern, consider the distribution 
a defined by a, = P(Xl = a(X,  = Yl) = ( ~ , ) ~ / p ,  and note that p = a iff p 
is uniform. Let H(a,  p )  be the relative entropy, H(a,  p )  = CaeSa,log(aJp,), 
so that H(a, p )  2 0, with equality iff p is uniform. Formula (1.1) in the 
introduction to this paper gives neceaSary and sufficient conditions for 
M(m, n)/(log,,,(mn)) + p  1 when m grows like ne; the critical value there is 

+ m. 

given by 8, = P)/(lOg(l/P) - m a ,  p)). 

6. Boundary effects are negligible. To be strictly accurate, we note that 
M,(m, n), defined in (1.2), is not really the length of the longest k-interrupted 
matching between X, - - - X,,, and Y, - Y,. Instead, M,(m, n) is the maximum 
of an m by n block of random variables from a two-parameter stationary family, 
and the event {M,(m, n) 2 u }  involves m + n + 2u letters, Xo through X,+,-, 
and Yo through Y,+,-’. Given actual data, X, - X, and Yl - - - Y,, the length 
Mf(m, n) of the longest k-interrupted matching is defined below; note that it is 
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a nontrivial function of all m + n letters. Here for comparison are the two 
definitions: 

Mf=Mt(m,n)=max{u:  X,+, Xi+, matches Y,+, Y,+, 
with at most k mismatches, for some 
Os i s m -  u,O IJI n -  u } ,  

Mk = Mk(m, n)  = max{u: X i + ,  X,,, matches q+l q+, 
with at  most k mismatches, and Xi # Y,, 
forsome0 I i e m, 0 s j <  n}. 

In Lemma 6 we show that Mf(  m, n )  is on the order of log( mn), provided that 
each sequence is at  least this long. Theorem 3 essentially says that boundary 
effects are negligible if and only if each sequence is many times longer than 
M f ( m  n). 

LEMMA 6. Suppose the letters {Xi} and {Y,} are i.i.d. ( p )  from a finite 
alphabet S. Let \H = -CacSpalog(pa) > 0 be the entropy of p, and let p = 
ZaEs(pa)2.  Fix k > 0. Foranye > 0, a s m a n d n  -, 00, 

P(min(m, n, ( l  - e)log(max(m, n ) ) / H )  s M f ( m ,  n )  e (1  + e)logl/p(mn)) 

+ 1. 

PROOF. The upper bound comes from Chebyshev's inequality, as discussed 
following formula (1.5), and using (4.2) in case k > 0. For the lower bound, it 
suffices to consider the case k = 0, since Md( m, n)  = M,d( m, n )  I Mi( m, n )  for 
all m, n, and k. Without loss of generality we may assume that m I n. 

Let t min(m, [( l  - e) log(n)/H]) .  Write W for the random word 
W = X, . X, E S'. We will show that with probability tending to 1, 
the word W appears somewhere in Yl - * - Y,, so that Md(m, n )  2 t. Since 
(l/t)log(p,(W)) + -H in probability, P(p'(W) > exp(-(1 + e)Ht)) 1. For 
large n, exp( - (1 + e)Ht) 2 exp( - (1 - E2)log n)  > t2/n. Now in n/t indepen- 
dent trials, each with succeas probability > t2/n, the probability of no successes 
is bounded above by (1 - t2/n)n/t  e e-t -, 0. Hence 

P( Y,,+, %.,+, = w for some o ~j < n/t l$(W)> t2/n)) -, 1, 

and the lower bound is proved. 0 

THEOREM 3. Suppose the letters { X i }  and { y i }  are i.i.d. ( p )  from a finite 
alphabet S, with 0 e p a  e 1 for all a E S. Fix k 2 0, and let m and n -, 00 

along a given sequence (mi, ni). The following conditions are equivalent: 

(a) (log n) /m + 0 and (log m ) / n  + 0, 
(b) P( M t (  m, n )  = Mk( m, n)) -, 1. 

PROOF. Fix any E > 0, and let t = t(m, n )  [(l + e)logl,p( mn)], so that 
by Lemma 6, P(M,d 2 t )  + 0. We place the letters XoXl - - X,,,+,-, around a 
circle of length m + t, and similarly place the letters YoYl . * Y,+,-, around a 
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circle of length n + t. Let Lij  be the length of the K-interrupted match following 
position (i, j )  on this pair of circles: Li j  = max{u: Xi+l  - * X i + ,  matches 
q+ ?+,, with at  most K mismatches}, where the indices for X are taken 
modulo (rn + t) and those for Y are taken modulo (n + t). 

We show that (a) implies (b). Let A = Z2 n [0, rn + t )  X [0, n + t), and let 
B = Z2 n ( t ,  rn - t )  X ( t ,  n - t). Let E = E(m, n) be the event {max(', j ,  E 

Li j  e max(i, j ) E A - B L i j } .  Since the two-parameter family ( L i j )  is stationary, 
P( E)  5 (A  - BI/IAI, and thus condition (a) implies that & E )  + 0. Note that 
{ M i  # Mk} c E u { M f  2 t}, so that P(Mf # Mk) --* 0, which is condition (b). 

Now we assume that (a) fails, and show that (b) fails. Without loss of 
generality we may assume that rn s n and (logn)/n is bounded away from 0. 
We need to show that P(Mf # MA) is bounded away from zero. Let Lij = 
( Lij)l( Xi # Y,), still taking the index i modulo (rn + t) and the index j modulo 
(n + t). Let s = min( rn - 1, (1 - &)log( n ) / H ) .  Let D be the event { s < Mi e t}. 
By Lemma 6, P(D) + 1. Let I = Z2 n [l, rn) x [l, n), and let J = Z2 n 
[m - 8 ,  rn) x [l, n). Let F be the event {max,-,Eij 5 maxJEi j } .  Since 
the two-parameter family (ei,) is stationary, P ( F )  2 IJl/lIl = s/m. By the 
assumptions that (a) fails and that rn s n, s/rn is bounded away from zero, and 
hence P( F) is bounded away from zero. 

Let G be the event {max(i, j ) E  I-J&j e max(,, j ) E J L i j } .  Note that G n D c 
{ M i  # Mk}. Since P ( D )  -+ 1, we need only show that P(G) is bounded away 
from zero in order to conclude that (b) fails. Let c = min. ESpO/(l - pa), 80 that 
c E (0,1]. Consider the map from F n GC n D into G defined informally as 
follows. Let u = max,-,Eij = maxJLij, and find the match X i + l  - X. I + Y  = 

q+ I . Y,+ with (i, j )  E J which minimizes i and j .  Then change the letter 
Xi+u+,  so that it  agrees with ?+,+,. This map f is many-to-one, but P ( B )  2 
cP( f - ' (B) )  for any B c range(/). Hence P(G) 2 c(P(F)  - P(G) - P(D')), so 
liminf(P(G)/P(F)) 2 c/(l + c). This shows that P(G)  is bounded away from 
zero. 0 

- 

7. A biological example. The complete DNA sequence of the virus lambda 
can be represented as a word consisting of 48,502 letters from the alphabet 
{A, C, G, T}, with respective relative frequencies (0.2543,0.2343,0.2643,0.2471}. 
See Sanger et al. (1982). The virus is a bacteriophage that infects the bacterium 
Escherichia coli. As of mid-1984, the lambda sequence is the longest completely 
known genetic sequence. 

Because viral sequences do not seem to contain repeated or redundant regions, 
we do not expect disjoint segments to contain long matching regions. As a test of 
the utility of the asymptotic theory, we started at the beginning of the lambda 
sequence and took disjoint segments of length 27, 28,. . . , 212, repeating the seg- 
mentation for 6 complete cycles. In all, 48,378 of the 48,502 letters were grouped 
into 36 disjoint segments. 

Each segment of length 2"' was matched against every other segment of length 
2", and the longest K-interrupted match run was determined for each value of 
k = 0,1,2,. . . , 6. This matching scheme accounted for 630 determinations of 
longest match runs Mk(2"',2"'): (:) pairings with 6 levels of rn by 7 levels of k. 
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For the value of p = 0.2505 = 0.2543' + 0.2343' + 0.2643' + 0.24712, we com- 
puted the exact solution uk( rn) to the equation 

(1 - P)Gk(U), 2-2m = (7.1) 
where GA(u)  is defined in (4.1). If the order of letters in the lambda sequence 
were well approximated by an i.i.d. scheme with the cited frequencies, we would 
expect as a consequence of Theorems 1 and 2 to observe longest match runs 
consisting of about u,(m) + y/Z - letters. 

Presented in Figure 1 is a scatterplot of the 630 actual values of longest 
k-interrupted match runs plotted against their asymptotic theoretical values 
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TABLE 1 
Comparison of two asymptotically equivalent forms for centering constant 

~~ 

m 7 7 7 10 10 10 12 12 12 
k 0 3 6 0 3 6 0 3 6 

~ , ( q 2 ' ~ )  6.8 12.0 15.1 9.8 15.8 19.7 11.8 18.2 22.5 
U , ( Q ~ * ~ )  6.8 13.4 19.0 9.8 16.9 22.9 11.8 19.2 25.4 
uk - uk 0.0 -1.4 -3.9 0.0 -1.1 -3.2 0.0 -1.0 -2.9 

uk( rn) + y/Z - i. The digits 0,1,. . . , 6  signify the value of k for the particular 
k-interrupted run. Because the longest match run must take on integer values, 
the points themselves are randomly jittered by a small uniformly distributed 
value in order to display the density of deviations. The data appear well centered 
about the theoretical value. 

The reader will note that we have used uk, and not the asymptotically 
equivalent value vk  defined in (4.6) and used in Theorem 2. That such accommod- 
ation to small sample properties is necessary is evident from Table 1 (and our 
initial less satisfactory attempts at plotting the longest match run against vk).  

Given the remarkable fit of predicted location, the next natural question is the 
quality of approximation for the predicted dispersion. Here the answer is less 
satisfactory. Spread is greater than predicted by the asymptotic theory, espe- 
cially for larger values of k. We believe that a large portion of the lack of fit is 
attributable to slowness of convergence. This suspicion is supported by the data 
from the bacteriophage lambda, and from a simulation in which the segments' 
letters were truly generated by an i.i.d. mechanism, with uniform distribution 
upon an alphabet of four letters. 

As a consequence of Theorem 2(c), P{Mk(2", 2") - [uk( 422")1 = j }  should be 
well approximated by exp( - qpj+ ') - exp( - qp'), where logl.,pq = b,( u,( 422")), 
the fractional part of ~ , ( q 2 ~ " ) .  Presented in Table 2 is a comparison of 

TABLE 2 
Observed and expected deoiutions from asymptotic 

centers for the longest match run 

lambda ( p = 0.2505) simulation ( p  = 0.2600) 
j observed expected observed expected 

- 4  
-3 
-2 
-1  

0 
1 
2 
3 
4 
5 
6 
7 

1 
3 

26 
103 
192 
173 
79 
32 
15 
3 
2 
1 

0.0 
0.0 
1.6 

93.1 
277.9 
177.7 
58.6 
15.8 
4.0 
1 .o 
0.3 
0.1 

0 
2 

27 
152 
217 
148 
60 
15 
5 
3 
1 
0 

0.0 
0.0 
1.2 

87.1 
277.3 
182.1 
60.5 
16.3 
9.1 
1.0 
0.3 
0.1 
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deviations from [uk( q22m) l .  The columns for expected values are computed as 
discussed above for the biological sequence with p = 0.2505, and for the simu- 
lated biological sequence with p = 0.2500. The “observed” columns correspond to 
the biological data plotted in Figure 1, and for simulated data from a uniform 
four-letter alphabet with segments of identical length. 

that the degree of lack of fit from asymptotic prediction could be attributable to 
small sample properties of the distribution of the maximum K-interrupted match 
run length. A greater understanding of rates of convergence to the integerized 
extreme value distribution is clearly needed. 

* We tentatively conclude from this simulation and from other simulation work 

Acknowledgment. The authors thank S. Karli” for calling to our attention 
the question of the locations of long matches, addressed here in Theorem 1’. 
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