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EXTREME VALUE DISTRIBUTION FOR THE LARGEST 
CUBE IN A RANDOM LA’ITICE* 

R W. R DARLINGt AND MICHAEL S. WATERMANtS 

Abstra& Suppose that the sites of a finite d-dimensional lattice (d Zz 2) of side n are occupied by 
independent, identically distributed random variables with value 0 or 1. The length of the side of the largest 
cube of 1’s is found to have (approximately) an integerized extreme value distribution. The distribution 
becomes increasingly concentrated on three consecutive integers, as n increases. Applications to clustering 
are discussed. 

Introduction. Long success runs in coin tossing have long been studied in probabil- 
ity theory. The applications range from gambling to quality control and pattern 
recognition. In this paper we consider higher dimensional analogues of “long success 
runs”. That is, we derive the asymptotic probability distribution of the largest cube of 
1’s in a d-dimensional random lattice of 0’s and 1’s. We also derive the asymptotic 
distribution along a subsequence when up to b zeros are allowed in the cube of 1’s. 
These distributions are fundamental for pattern recognition and have application to 
a number of areas such as vision (Glatz [8]), uranium prospecting (Conover et al. 
[3]), ecology, radar astronomy (Schwager [13]) and cosmology (Abell [l]). Our result 
verifies a conjecture of Diaconis and Freedman [19, p. 1201. 

The organization of the paper is as follows. Section 1 contains the statement of 
the theorem and two corollaries. In 8 2 we explain precisely how to use the theorem 
to test for existence of clustering in spatial data. Sections 3, 4 and 5 are concerned 
with the technicalities of the proof, which uses only elementary combinatorial methods, 
without recourse to any theorems of probability. In 8 6 we prove that the distribution 
of the side of the largest cube of 1’s (except for at most b zeros) becomes increasingly 
concentrated on three consecutive integers (depending on n), as the lattice size n goes 
to infinity. Section 7 presents the results of a Monte Carlo simulation, showing that 
the asymptotic probability distribution is a good approximation to the actual distribu- 
tion even for a 30x30 lattice. 

The almost sure behaviour of the length of the longest head run in one dimension 
has been studied by Erdos and Renyi [5], Naus [ll], and Erdos and Revesz [6]. The 
probability distribution of the length of the longest head run was obtained only recently 
by Gordon, Schilling and Waterman [9], using methods of extreme value theory. 
Almost sure behaviour of the area of the largest square and the largest rectangle of 
1’s in an n x n lattice of 0’s and 1’s was studied by Nemetz and Kusolitsch [ 121. 

The methods of the present paper were inspired by those of Watson [14], who 
was studying extreme values of a stationary stochastic process. It may be appropriate 
to embed the result of the present paper into the theory of maxima for discrete random 
fields. For example in dimension 2, for each site i of the n x n lattice, let U(i) denote 
the length of side of the largest square of 1’s whose lowest vertex is i. The subject of 
our present study is max { U(i)} over all lattice sites i. For a detailed survey of extreme 
value theory for stochastic processes, see Leadbetter et al. [ 101. 

, i d ) € Z d )  be a collection of 
independent, identically distributed Bernoulli random variables, with 

1. Description of the resnlts. Let (X(i): i =  (il,  - 
P(X(i) = 1) = p  = 1 - P(X(i) = 0), each i. 
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For a = 1,2, * - and each index i, define 

Ca(i) = {j= (jl, - - , j d ) E Z d :  i,,, si,,, 5 i,,,+a - 1, all m}. 

Think of Ca(i) as a cube of side a in the integer lattice Zd, with lowest vertex i. Let 1 
denote the lowestvertex of all, namely (1, 1, - , 1) in Zd. For each nonnegative integer 
b, let Zb(n) denote the length of the side of the largest cube of sites in Cn(1) consisting 
entirely of l's, except for at most b zeros. More formally, 

Zb(n)  = max { a :  X(j) = 1 for all but at most b sites j in Ca(i)}. 

For example, when b = 0 and d = 2, Zo( n) is the length of the side of the largest square 
consisting entirely of 1's inside the set of sites { ( i l ,  i2): 15 il 5 n, 15 i 2 5  n}. For the 
following example, d = 2, n = 5, Z0(5) = 2, and Z2(5) = 3. 

1 0 0 1 0  
0 1 1 0 1  
1 1 1 0 1  
1 0 1 1 0  
0 0 0 1 1  

i E C " ( 1 )  

THEOREM. Suppose d B 2, and fix an integer b B 0 and a real number t. For each 
positive integer a, define 

n = n ( a )  = [e(u-') 'd]+a - 1, 

u = -1n ( ( y )  (1 - p y p a d - j )  (=ad  In (l /p) if b = 0),  
j = O  

and 
[ X I  = greatest integer less than or equal to x. 

The asymptotic distribution of the side of the largest cube of l's, except for at most b 
zeros, along the subsequence ( n ( a ) ,  a = 1,2, 

lim P(Zb(n (a ) )  5 a - 1) =exp (-e-') (1.3) 

.) is 

a+oo 

and the convergence is uniform in t. 

mBl,nBl, a n d b Z 0 ,  define 
COROLLARY 1 (rectangular lattice, dimension 2). Take d = 2, and for integers 

&(m, n) = max {a :  X(j) = 1 for all but at most b sites j in Ca( i l ,  i2)}. 
I S i , S m  
1 S i 2 S n  

Fix real numbers t and y, with y > 1. For each positive integer a, define 

where u is the number defined in (1.2) and [ 3 is the greatest integer function, as before. 
Then 

lim P(Zb(  m( a ) ,  n( a ) )  5 a - 1) = exp (-e- ')  
a-w 

and the convergence is uniform in t. 
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Remark The derivation of formula (1.4) depends on the equations 
( m  - a + 1)( n - a + l)e-" = e-' +truncation error, 
m = ny + truncation error. 

In practical applications, the integers m and n will be given. Assume m > n, and take 
y = m/n .  The number u is known, so select a pair (4 t )  such that (1.4) holds. Then 
P ( Z (  m, n )  s a - 1) is approximately exp ( -e- ' ) .  

No separate proof of Corollary 1 will be given, since the proof of the Theorem 
can easily be modified to deal with this case. T 

COROLLARY 2. Fix b B 0, and for each positive integer n, define Ir 

m ( n ) = [ ( d  log l/pn)l/d]. 

For each E > 0,  there exists an integer K ( E )  such that for all n L K ( E ) ,  

P ( m ( n ) -  1 S Z b ( n ) S  m ( n ) +  1)> 1 - E .  

Remarks. (1) Notice that the three integers on which Zb( n )  becomes concentrated 
do not depend on b; this is because the b zeros make a negligible contribution to a 
cube with volume ( Z b ( n ) ) d  as n tends to infinity. 

(2) It would be desirable to have an estimate of K ( E ) .  Unfortunately K ( E )  is 
related to the rate of convergence in equation (1.3), whose calculation seems intractable 
at the present time. 

(3) The proof uses (1.3) to estimate the probability that Z b ( n )  lies in the given 
range. An even sharper result in the case d = 2, b = 0 and p = 0.5 has been obtained 
recently by P. Revesz [ 171, who is able to restrict to two integers. (Revesz's result was 
not known to us when we wrote this article.) The method in [17] is entirely different. 

2. Application to clustering. The previous theorem can be used to construct a test 
for clustering. For the sake of concreteness, we shall give an example from astronomy. 
The book of Diggle [15] gives an excellent survey of methods for treating this class 
of problems. 

Earlier in this century Shane and Wirtanen produced a series of photographic 
plates, designed to show all the galaxies above a certain magnitude (brightness). A 
typical plate might show 500 galaxies. More recent studies using red shifts make it 
possible to add a third dimension to the location of galaxies in the sky. Many 
astronomers have analyzed such data to discover evidence of superclustering and other 
structure in the positions of clusters of galaxies (see Peebles [16]). 

Abell [l] divided the photographic plate into equal rectangular regions, and 
counted the number of clusters in each region. He then performed a chi-squared 
goodness-of-fit test to compare the counts with the best-fitting Poisson distribution in 
the plane. However this method does not, strictly speaking, test for the existence of 
"super-clusters", but only for goodness of fit to the Poisson distribution. 

We now propose an alternate way to analyze data of this kind. Suppose K clusters 
appear on the plate. Choose n to be the greatest integer less than or equal to G. Define 

which is approximately $. Put an n x n  grid of equally spaced lines over the plate, 
dividing the plate into n2 equal rectangular sites. For each site ( i ,  j), i, j 5 n, define 

0 if no galaxy appears in site ( i ,  j), 
1 if 1 or more galaxies appear in site ( i ,  j). 

X( i, j )  = 
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Let Ho be the null hypothesis that these K clusters have positions which are distributed 
like K independent, identically distributed random variables, each with the uniform 
distribution over the area of the plate. Then under H,, 

P ( X (  i, j )  = 0 )  = P(0  out of K uniform random variables 
takes values in rectangle ( i ,  j ) )  

n 2 - 1  K 

=(T) = ( l - $ )  = 1 - p  

which implies 

P ( X ( i , j ) = l ) = p .  

For various integers a (for example 2 , 3 , 4 , 5 ,  * e )  calculate corresponding values of 

e-’ = p a 2 ( n  - a  + I ) ~ .  

(This is obtained from ( 1 . 1 1 . )  The theorem states that under H,, P ( Z , ( n ) S a - l )  is 
approximately exp (-e-‘). Select the probability a of a Type I error, say a = 
and find the smallest integer a, so that 

exp(-e-‘)=exp ( -pa : (n -a ,+1)2 )>  1-a.  

P ( Z , ( n ) Z a , ) < a ,  

Then under H,, 

neglecting the errors involved in the limiting operation described in the theorem. 
Finally, we examine the ( X (  i, j ) :  1 S i, j 5 n )  derived from the photographic plate, and 
obtain a value for Zo(n) ,  the side of the biggest square of 1’s in the n x n array of 0’s 
and 1’s. If Z,( n )  is greater than or equal to a I ,  we reject Ho with approximate significance 
level a. 

The procedure could easily be modified to allow for the processing of rn separate 
plates: simply perform a goodness of fit test against the predicted distribution of Z,( n). 
To detect large-scale clustering, it may be more appropriate to use Zb(n) ,  for some 
b>0. The same test can easily be performed in dimension d > 2 .  If the researcher 
were interested in the existence of large “gaps” containing no galaxies, then he could 
count the side of the largest square of zeros instead. 

An even more natural context for such a method is when a grid of lattice sites is 
defined a priori, and the result of the experiment is to label each site either occupied 
( 1 )  or unoccupied (0).  In that case we would estimate p by the proportion of occupied 
sites. 

3. Technical preliminaries-intersection numbers. Consider two squares in Zd of 
side a, one of which has lowest vertex ( 1 ,  l ) ,  while the other has lowest vertex ( 3 , 5 ) .  
The intersection number for these two squares simply means the number of sites in 
common, which in this case will be ( a  - 2)( a - 4) .  We shall formalize this notion in d 
dimensions. For i in Zd and a Z 1 ,  recall that 

C,(i) = {jc zd : i ,  sj,,, I i ,  + a - 1, rn = 1,2,  9 , d ) .  
Thus C, (i) is a cube of side a, with lowest vertex i. For pairs of sites i and k in 2 *, define 

Na(i, k) = ICa(i) n Ca(k)l, 

Z,(i)={k#i: N,(i, k)>O}. 
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We refer to Na(iy k) as the intersection number of cubes Ca(i) and Ca(k), and IJi) 
may be called the set of sites which a-interact with i. In the sequel we shall usually 
abbreviate Na(i, k) to N(i, k) and Za(i) to I(i), whenever a is fixed. This section is 
devoted to proving the following algebraic inequality: 

PROP~SITION 1. Let 0 < p  < 1, and let a 2 1 be fixed. Then 

(3.1) 

where h = (1 -p) - ’  and c , ( d )  = 2d + d. 

variable w, define a sequence of polynomials (J,(a, w ) ,  rn = 0,1,2, 
the following recursive scheme: 

Let us begin with some algebraic preliminaries. For any integer a 2 1 and a real 
* )  according to 

- 

j = l  j = 1  

For integers 1 4 r S  d, define 
d A( d, r )  = {i = ( il, - , i d )  E E : 1 d i, S a - 1 if 

1 5  rn 5 r, and 1 5  i, 5 a if ( r+ 1 ) s  rn d d } .  

In other words, A(d, r) is the product of r copies of {1,2, . - , a - 1) and (d - r) copies 

A routine induction argument proves the following: 
LEMMA 1. 

of {1,2, * * , a}.  

Jd(a, w )  = (”> ,e wil”’id ford  2 1. 
r=O r (i,, ...,ld)~A(d.r) (3.3) 

The connection between the polynomials &(a, w )  and intersection numbers is as 

LEMMA 2. The following identity holds for all w and all a 2 1;d 2 1: 
follows: 

(3.4) 

Prooj Observe that for all k in Ia(i) = I(i), 

N(i, k) = ( a  - l i l -  k,l)(a - l i 2 -  k21) ( a  -lid -kdl). 

Consequently 

(3.5) 
kEI(i)  j , = - a + l  j d = - a + l  

(The reason for subtracting wad from the sum on the right is that the site i itself is not 
a member of I @ . )  When d = 1, this expression becomes 

a-1 a 
W k +  W k - W a  

k = l  k = l  

which is precisely Jl(a,  w )  - wa. Therefore (3.4) holds when d = 1. Suppose (3.4) holds 
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when d = m. When d = ( m  + l), the left side of (3.4) may be calculated by (3.5); it equals 

a-1 

k=-a+l  

= J,(% wa-lkl) - 

by the assumption that (3.4) holds when d = rn This equals 
a-1 

= Jm(u, w')+ i J,(u, w+warn+l, 
j = l  j=l  

m + l  =J,+,(u, w )  - wa 

by the recursive definition (3.2) of J,+,(u, w). This completes the induction and the 
lemma is proved. 

Proof of Proposition 1. Let w =  l / p >  1, and let h = l / ( l -p) .  Then for m =  
1,2,3, * * 

W r n  

w"-1 
-- - (1 - l / w m ) - l s ( l  - l /w) . - l= (1 -p)-l= h 

and so 

(3.6) 

Combining Lemmas 1 and 2 gives 

An elementary but lengthy calculation shows that this is 

Wil""d + 

Applying (3.6) repeatedly to this expression, we deduce that it is 

which completes the proof. 

4. Intersecting cubes containing zeros. Let b be a fixed nonnegative integer. For 
each integer a Z 1, and each lattice site i, let Sa(i) denote the event that the cube of 
side a, with lowest vertex i, consists entirely of ones except for at most b zeros. More 
formally, 

Sa(i) = {X(j) = 1 for all but at most b sites j in Ca(i)}. 
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When a is fixed, we may abbreviate S,(i) to S(i). The purpose of this section is to 
prove the following: 

(4.1 ) 

where, as in (1.2) 

PROPOSITION 2. For each integer a Z 1 ,  
bd ad-' C P(Sa(i) n sa(k)) 5 c2(4 P) e-"a P 

kEI,SO 

and c2(d, p )  is a constant, given by 

c2 (d ,p )  = (2d + d)hde  max ( 1 ,  ( ' i p ) b ) ,  - h = ( l - p ) - ' .  

Prooj Suppose k belongs to I,(i), so that the intersection of the cubes C,(i) and 
C,(k) is nonempty. Define random variables Z , ,  Z2 and Z3 as follows: 

Z ,  = number of zeros in C,(i) fl C,(k), 

Z2 = number of zeros in C,(i)\C,(k), 
Z3 = number of zeros in Ca(k)\Ca(i). 

Then 
b b-s b-s 

P ( S , ( i ) n S , < k ) ) =  C P ( Z , = s , Z 2 = q , Z 3 = r ) .  
s=O q=O r=O 

Since Z, ,  Z2 and Z3 are independent, this equals 

b b-s b-s 

= C C P ( Z l = s , Z 2 = q )  P ( Z , = r )  

= P ( Z , + Z 2 S b , Z , = s )  C P ( Z 3 = r )  

s=o q=o r=O 

b b-s 

s=o r=O 

h 

5 max P ( Z 3 S b - r )  P ( Z l + Z 2 5 b , Z , = s )  
OLrLb s=o 

4 P ( Z 3 S  b ) P ( Z l + Z 2 S  b ) .  

Notice that (E) S nk/  k ! .  Hence for b S n, we have 

i ( n ) =  i rr_*,nb C b 1  --<nbe. 
k=O k - k = O  k!- k=O k! (4.3) 

Define 

(4.4) L = m a x ( l , ( y ) b ) .  

Now 
bA(a;-N) ( a d  - " ) p  

P ( Z 3  S b )  = ad-N-r( l  -PY 
r=O r 



I EXTREME VALUE DISTRIBUTION IN A RANDOM LATITCE 125 
, 

where N = N(i, k); notice that ( a d  - N) is the number of sites in Ca(k)\Ca(i), and 
b A c denotes min (b, c). By (4.3) and (4.4) 

P ( & S  b)pad-N(ad - N)bLe< e l a M p a d - N .  

On the other hand, 

ad 
P(Z,+Z,Sb)=P(S,(i))= j = o  ( J .)(l-pypad'=e-" 

where u is the constant defined in (1.2). 
i Therefore from (4.2) 

P(Sa(i) n Sa(k)) < Lel-uabdpad-N(i*k). 

Now apply Proposition 1, inequality (3.1): 
d bd ad-' P(Sa(i) r) Sa(k)) < Le'-"c,(d)h a p 

kEI,(I) 

as desired. 

5. Proof of the theorem. 
Step I. As in the previous section, define the event Sa(i) by 

Sa(i) = {X(j) = 1 for all but at most b sites j in Ca(i)) 

where the integer b is fixed throughout. Then for any integer a B 1; 

By the inclusion-exclusion formula (see Feller [7, p. 99]), for each even integer r, 

(5.2) Q r  5 p( sa(i ) )  5 Q r + 1  

where Q, is an alternating sum of r terms as follows: 

Q, = C P(S(i)) -E P(S(i) n S(j)) + - 
(5.3) 

i i jr'i 

distinct 

Recall the definition (1.2) of u and the relationship (1.1) of n(a) and a. The first term 
on the right side of (5.3) is equal to 

I 
(5.4) 

For all values of a and n(a), A is approximately e-'. 

following notation, for r = 2, 3, 4, - - : 
Step 11. We proceed to estimate the general term in (5.3) Let us introduce the 

V, = {collections of r distinct lattice sites in Cn-a+l(l)}, 
A, = {{i( l), * - , i(r)} in V, such that Na(i(j), i(k)) = 0 for j # k (see 9 3)}, 
B,= V, -A,  

I 
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Let us fix an integer q 2 2. Then by independence 

c P(S(i(1)) n . n S(i(q))) 
{ i ( l ) : . . .Nq) ) inVq 

= P(S(i(1))) - - - P(s(i(q)))+C P(S(i(1))n fl S(i(q))) 

= (( n - a + 1 ) e-") / q ! + R ( q, 1 ) + R (q,2)  

= - + R 

4 4 

A q  

q !  
+ R (432) 

where 

(5 .5 )  R(q,  1)= e-q"(IAqI-(n-a+l)qd/q!) ,  

(5.6) R(q,  2) = P(S(i(1))fl . f l  S(i(q))). 
4 

Now 
[A,IZ (l/q!)(n - a +  l)d((n - a  + - * ((n - a  + l)d - ( q -  1)(2a - l)d). 

It is easily verified by induction that for O <  S < 1 and m = 1,2, * * ,  [1/S], 
(1 -s)(I -26) - - - (1 - m S ) Z  1 - mZS. Thus 

-(2a - 

IAqlZ (l/q!)(n - a +  l)qd(l - ( q -  1)'[(2a - l)/(n - a +  l)ld). 

Hence 

o > R(q,  1) z -(e-q"/ q !)( n - a + 1 )qd ( q  - 1 )'[(2a - 1 )/( n - a + 1 )Id, 

O> R(q ,  1)Z -(Aq/q!)(q-1)'[(2a- l)/(n+l)Id. 

From (1.1) and (1.2) 

Using (4.3) and (4.4), we see that 

(5.7) 

Therefore 

(5 .8)  O> R(q,  1 ) 2  - (Aq/q!)(q-1)ZLe'+'pad(2a-l)dadb.  

Step 111. We now proceed to estimate the second remainder term R(q ,  2) defined 
in (5.6). First we introduce some new terminology. Any collection of r sites 
{i(l), , i(r)} in H d  may be considered as the vertices of a graph G, where distinct 
sites i(j) and i( k) are joined by an edge whenever Na(i(j), i(k)) > 0. If G is connected, 
we shall refer to {i(l), - - , i(r)} as a cluster of size r. - , i( r)} in B, has a unique 
decomposition into rn, clusters of size 1, m2 clusters of size 2, and so on, where the 
integers m,, m2, * * satisfy: 

(5.9) mj Z 0, m, 5 r - 2, m, + 2m2+ 3m, + - - - + rm, = r. 

We shall call the vector m = (m,, * . , m,) the vector of cluster-numbers for 
{i( l), - * , i( r)}. Let M( r )  denote the set of all vectors m = ( m,, - - , m,) in 2' satisfying 

Using this construction, each collection of sites {i( l), 
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(5.9). An asymptotic formula for IM(r)l may be found in Hall [18, p. 401; in any case 

(5.10) lM(r)ls(r+l)r/r!. 

For each m in M ( r ) ,  let H(r ,  m) denote the set of collections of sites {i(l), - 
in B, whose vector of cluster-numbers is m; thus 

, i(r)} 

(5.11) B,= U H(r ,m) .  
m o M ( r )  

Of special interest is H( r, (0, - 
which form a single cluster of size r. Our immediate goal is to estimate 

, 0 , l ) )  = G( r ) ,  the set of collections {i( l), - , i( r ) }  

g(a, r ) =  C P(S(i(1))fl . . . flS(i(r))). 
G ( r )  

By (5.1), g(a, 1)  = (n  - a  + l)d e-" = A. By (4.1), 

d a y  2) = C C P ( S 0 )  fl S(k))/2! 
i kEL(i )  

5 ( n  - a  + l)dcz(d,  p )  e-"abdpad-'/2! = Ac2(d, p)abdpad-*/2!. 

Estimate g(a, 3) as follows: choose i(1) from (n  -a+ l)d possible sites, choose i(2) in 
Ia(i(1)), and i(3) in I,,(i(l)) U Ia(i(2)) (at most 2(2a - l)d choices). Then by inclusion 
P(S(i(1)) fl S(i(2)) n S(i(3)))d P(S(i(1)) n S(i(2))), and 

g(a, 3) 5 { C P(S(i(1)) fl S(i(2))) 2(2a - lId/3! 
i(i)  I(Z)E~.(I(I))  I 

where we divide by 3! because permuting the labels gives the same element of G(3). 
For r84 ,  we use the same trick, restricting i(k+ 1) to lie in U &j=,k Ia(i(j)) for 
k = 2, * - * , r - 1; we obtain 

g ( a, r )  5 {( n - a + 1 )dc2( d, p e-" a bdpad-l}( r - 1 ) ! (2a - 1 ) d ( r - z ) /  r !, 

which gives 

(5.12) g(a, r )  5 (cz(dy p)A2d'r-2'/r)ad(r+b-2) p , r22 .  

Next we wish to estimate 

h(a, m) = P(S(i(1))n . fl S(i(q))) 
H ( q ,  m) 

for an arbitrary m in M(l),  for q 2  2. Suppose first that the element {i(l), - * , i(q)} 
of H( q, m) is labelled so that members of the same cluster appear in consecutive order, 
with the clusters in increasing order of size. An obvious property of independence 
between clusters shows that, for example, if q = 5 and m = (1,2,0,0,0), then 

P(S(i(1)) n - . S(i(5)) = P(S(i(l)))P(S(i(2)) n S(i(3)))P(S(i(4)) n S(i(5))). 

The obvious generalization shows that 

h(a;rn)= n g(a, r)"'r/mr! 

where the factors m,! appear because switching clusters of the same size yields the 
same element of H(q,  m). Hence by (5.12) 

h(a, m) 5 Ami n (c2(d, p)A2dr2-2dadrad(b-2)pad-'/r)m,lml!.  

l l r s q  

2 S r S q  
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Let v =E;=, jmj and z =E;=, ml; then 

(5.13) h(a, m) S A"l(c2(d, p)A2-2dad(b-2)pad-1)'(2dad)u/ 2SrSq n rmvnr!. 
I 

However (5.10) and (5.11) imply 

R(q,2)  = E h(a,m)SlM(q)l max{h(a,m): mEM(q)}. 
meM(q)  

The inequality for h(u, m) shows that as a +a, 
h(+  m) = 0(~d(~+z(b-2)) 'ad-' P ). 

Since D 9 q and 1 I z 5 q/2,  

max { h ( a ,  m): m e  M ( q ) }  = O(adq(1+0.s(b-2)) P ( Id--(  1- 

Combining all this with (5.8) gives 

P(S(i(1))f l  fl S(i(q)))=Aq/q!+R(q,  l )+R(q,2) ,  

(The constants in the O( a )  estimates are easily deduced from the above.) Notice, by 
the way, that R( q, 2) goes to zero as a + 00 only when d h 2. 

Step IV. Let us now return to (5.3) in Step I. Equation (5.14) shows that for a 
fixed even integer r, and for m = r, r + 1, 

where 

A = ( n  - a + l )d  e-", /3 = 1 +0.5(b -2). 

From (5.1) and (5.2), 

1 - o r + ,  9 P(&(n) 5 a-  1) 5 1 - 0) 
which may be written 

where 
d(r+l)p e-ad-l In (l/p). (5.16) f(a) = a 

We now show how to replace A by e-' in (5.15). First, (1.1) gives 

( n  - a + I ) ~  s e"-'< ( n  - a+2)d, 

so that 

(5.17) (n - a +  l ) d  e-"= A S e-' C A 
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However 

by (5.7). This proves that if S = S ( a )  = ( n  - a  + l ) - ' ,  then 

(5.18) s ( a )  = O(abp(ad'd)).  

Now apply the inequality 

( 1  + 6)" 41 +2"-'mS for OS 6 < 1,  m =2,3, . 
This together with (5.17) shows that 

h k  h k  e-kt ~k 

-5- <- ( 1  + 
k ! -  k !  k !  k !  

5- ( 1  +2dk-1 dkS). 

Thus 

Hence (5.15) can be rewritten as 

Keeping r fixed, let a tend to infinity. Then 

Finally let r tend to infinity, giving 

lim P( Zb( n( a ) )  S a - 1) = exp (-e-') 
a-m 

as desired. 

6. Length of the side becomes concentrated on three integers. Let m ( n )  be the 
integer function of n defined in (6.1) below. It was proved by Nemetz and Kusolitsch 
[12] that when d = 2, Zo( n)2/2 log,/, n converges almost surely to 1. The theorem above 
allows us to prove a much stronger result, namely that for any d Z 2  and any b Z 0 ,  
as n increases & ( n )  becomes concentrated on the three integers { m ( n ) -  
1,  m ( n ) ,  m ( n  + 1)) .  This is reminiscent of the tightness result in one dimension proved 
by Gordon, Schilling and Waterman [9],  and also of a general property of extreme 
value distributions proved by Anderson [2] .  For the reader's convenience, we restate: 

(6.1) m ( n )  = [ ( d  log,/, n) ' ld] .  

COROLLARY 2. Fix b Z 0, and for each positive integer n, dejine 
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For each E > 0, there exists an integer K ( E )  such that for all n B K ( E ) ,  

(6.2) P ( m ( n )  - 1 dZb(n) d m ( n ) +  1)> 1 - E .  

Proof: Abbreviate m ( n )  to m. It follows from (6.1) that 

m d s logl,, nd < ( m  + I)', p-md 5 nd ~ p - ( ~ + l ) ~ ,  

and 

(6.3) p(m+1)d<;; ; j5p 1 md . 

Define real numbers u = u( n) and u = u( n) by the formulas 

Define another pair of real numbers s = s( n )  and t = t (  n )  by the formulas 

(6.6) 

(6.7) 

Then (6.3) shows that 

e-' = e-"( n - m + 2)d, 

e-' = e-"(n - m - I ) ~ .  

Since 0 < p < 1, and since m and (m - 2)/ n tend to infinity and to zero respectively as 
n tends to infinity, by (6.1), it follows that 

Likewise by (6.3) and (4.3), 

Since 0 < p < 1, and since m and ( m  + 1)/ n tend to infinity and to zero respectively as 
n tends to infinity, it follows that 
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is greater than [(d logl/, n)"d], even for moderate values of n such as n = 30. (The 
approximation improves as a increases, because the remainder terms diminish when 
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Given E > O ,  (6.8) and (6.9) imply that there exists L(E)  such that for n Z L(E) ,  

(6.10) max (exp l-exp(-e-"")))<~/4. 

We now proceed to derive formula (6.2). First, write I 
P m( n) - 1 5 zb( n ) 5 m( n ) + 1 = P z b (  n) 5 ( m( n) + 2) - 1) ) , (  

- p (  &(n) 5 ( m (  n) -1) - 1 

( 
(6.11) 

) 
For the sake of comparison with definitions (1.1) and (1.2) in the theorem of 8 1, we 
shall express n as if it were a function first of ( m  - l), then of ( m  +2); using (6.6) and 
(6.7), we may write 

I 

I (6.12) = Le(u-s)/d ]+ (m - 1) - 1, 

(6.13) 

Apply the Theorem first with ( m  - 1) in place of a, then with ( m  +2) in place of a: 
there exists an integer M ( E )  such that for n 2 M ( E ) ,  

P(  &( n) 5 m( n) - 2) < exp (-e-'(")) + ~ / 4  

= Ie(u-')/d 3 + (m + 2) - 1. 

and 

P ( & ( n ) s  m(n)+l)>exp (-e-'("))-c/4. 

Equations (6.10) and (6.11) show that when n L K ( E )  = max (L(E),  M ( E ) ) ,  we have 

P ( m ( n )  - 1 s &(n) s m ( n ) +  1) > exp (-e-'(")) -exp - ~ / 2  

> 1 - ~ / 4 - ~ / 4 - ~ / 2 = 1 - ~ ,  

as desired. 
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TABLE 

Theoretical frequency1 Monte Carlo frequency 

0.73310.682 
0.01 1/0.010 

Explanation Each site in an n x n lattice takes values 0 or 1. each with 
probability 0.5, and all sites are independent. The “largest square’’ means the 
side of the largest square of sites consisting entirely of 1’s. The “theoretical 
frequency” of a square of side a is simply e-A(a+’)- e-*(‘), where A( a )  = 
(n - a + 1)22-”2. The “Monte Carlo frequency” is the proportion of pseudoran- 
dom n x n lattices for which the largest square was as shown, out of the sample 
of sue 104 or io5. 
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