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ABSTRACT. Recently DNA sequence comparisons have 
focused on finding long matching segments between 
two sequences, rather than matching the entire 
sequences. Generalizations of the celebrated Erdos- 
Renyi law give laws of large numbers and extreme value 
distributions for random variables equal to the length 
of the longest exact match and longest approximate 
match between the sequences. The cases of indepen- 
dent, identically distributed sequences and of Markov 
chains are presented. In the final section, simulated 
sequences and sequences from bacteriophage lambda are 
analyzed in light of these theoretical results. 

1. INTRODUCTION AND DNA SEQUENCE COMPARISONS 

As the nucleic acid sequence data accumulate at an 

increasing rate, comparison of the sequences becomes 

increasingly central. In the late 1960's, macromolecular 

sequence comparison meant calculating a matrix of pairwise 

distances between sequences of a protein, such as cytochrome - 
C, taken from a number of organisms. Then, with a variety of 
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algorithms, attempts were made to reconstruct the evolutionary 

history of the protein. The paper by Fitch and Margoliash 

(1967) is an excellent early example of such a study. In 

general, such sequence comparisons involve finding a minimal 

evolutionary pathway by which one of the molecules can be 

transformed into another by events like mutations, deletions, 

and insertions. 

Recently, Sanger (1977) and Maxam and Gilbert (1977) 

independently discovered methods for rapid sequencing of DNA. 

Sanger and Gilbert were awarded Nobel prizes in 1980 for this 

work. Their procedures created a revolution in molecular 

biology. Among the revelations from the data is a new, dynamic 

picture of the genome with elements called transposons which 

relocate themselves and with viruses which move genetic 

material within and between genomes. For these and other 

reasons, OUK picture of the genome emerges as a mosaic of 

variously sized blocks of DNA sequences. Unexpected 

relationships have been discovered between viral DNA and host 

DNA (e.g., see Doolittle et al., 1983, Naharro et al., 1984 and 

Weiss, 1983). These discoveries have implications for the 

study of cancer. In these situations, instead of entire 

sequences wfth high similarity, it is contiguous subsequences 

OK segments with high similarity that are found. 

Sequence comparison problems have motivated algorithms and 

associated mathematics (see Waterman, 1984, for a review). In 
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t h i s  art icle,  I w i l l  survey some recent  r e s u l t s  concerning 

probabi l i ty  d i s t r i b u t i o n s  appropr ia te  f o r  the "highly similar 

segments" problems of sequence comparison. However, before 

discussion of the  p r o b a b i l i s t i c  aspec ts  of the  problem, I 

present algorithms which. may be used t o  analyze Monte Carlo and 

b io logica l  sequence da ta ,  as i n  Sect ion 4 of t h i s  paper. 

Suppose the  two DNA sequences being compared are 

X = x x ... x and g = yly l...ym where xi and 

yi € {A,T,G,C). 

1 2  n 

The random v a r i a b l e  of i n t e r e s t  here  is 

Mn(k> - =Em: xi+ll- yi+E f o r  E - 1 t o  m except f o r  

a t  most k f a i l u r e s ,  f o r  some 0 < i < n-m). 

Thus %(k) is the  longest  match in te r rupted  by a t  most k 

mismatches. By moving along diagonals  of constant  j-i and 

s t o r i n g  the pos i t ions  of the ( a t  most) k mismatches, it is 

easy t o  see t h a t  s ( k )  can he computed i n  t i m e  nm and 

s torage  k. It is poss ib le ,  f o r  example, t o  f i n d  %h<O), t h e  

longest  exact match, i n  t i m e  (n+m)log(n+m) but  the  concern 

here is not with f ind ing  the most e f f i c i e n t  a l g o r i t h m .  It is 

more d i f f i c u l t  t o  improve the algorithm given here  f o r  

k f 0. For example, with 

s ( k ) ,  

X P A G T C T G A A G C A C A A C T G T  

Y = T A T C T T T G A A G C C C A T T T  
* 

M18(0) = 6 f o r  the match of TGAAGC beginning a t  x5 and 

y7. Also M18(2) = 11 f o r  these sequences. 
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As mentioned above, DNA sequences evolve by deletion and 

insertion as well as mutation of letters. That is, spaces can 

be placed in either sequence. A random variable of interest 

here is 

H - max (I matches - u# mismatches - X #  insertion/deletions), 
IC x 

JCY 

where I C X ,  J C Y ranges over all contiguous segments in the 

indicated sequences. Smith and Waterman (1981a,b) solved this 

problem with an algorithm which uses time proportional to 

nm. Let be the maximum score (I  matches - 
VI mismatches - A# insertion/deletions) of two segments that 

end in xi and yj, or zero, whichever is larger. It is 

shown that, if Hi,0 = H = 0 for 0 < i < n and 

1 < j < m, then 
os1 

H i ,j = max(Hi-l,j-l+ s(xi,Yi),Hi-l,j- a,Hi,j,l- A ,  01 

where 

Of course, 

H = ma~{H~,~: 1 < i < n, 1 < j < m). 

Figure 1 is an example of ( W i , j )  for a specific 

problem. The value of H is 3.10 corresponding t o  the aligned 

segments 

C T G C G  
C T G G G '  
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G T C C G C T G C G  
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
T 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 
c 0.0 0.0 0.0 2.0 1.0 0.0 1.0 0.0 0.1 1.0 0.0 
T 0.0 0.0 1.0 0.0 1.1 0.1 0.0 2.0 0.0 0.0 0.1 
G 0.0 1.0 0.0 0.1 0.0 2.1 0.1 0.0 3.0 1.0 1.0 
G 0.0 1.0 0.1 0.0 0.0 1.0 1.2 0.0 1.0 2.1 2.0 
G 0.0 1.0 0.1 0.0 0.0 1.0 0.1 0.3 1.0 0.1 3.1 
A 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.1 1.1 
A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
G 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 1.0 

Figure 1. Similarity matrix where matches receive weight 1, 
mismatches receive weight -.9, and deletion/insertions receive 
weight -2.0. 

Earlier work on probability distributions for sequence 

alignments is motivated by best matching of entire sequences. 

Chvatal and Sankoff (1975) studied the length $ of the 

longest subsequence common to two random sequences with a 

finite alphabet and equally likely letters. Deken (1979) noted 

that there exists a c such that 

'n P(1im * c) = 1. n+- 

Steele (1982) showed Var(Ln) = O(n). In this paper, I 

consider probability distributions for the "highly similar 

segments" problem. 

In the following sections, I survey results principally 

obtained in collaboration with my colleagues Richard Arratia 

and Louis Gordon at the University of Southern California. 

Section 2 presents laws of large numbers for a large class of 

random variables including %(k), k > 0. Section 3 contains 
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much f i n e r  d i s t r i b u t i o n a l  r e s u l t s  f o r  Mn(k), k > 0, r e l a t ed  

t o  the  extreme value d i s t r i b u t i o n .  F ina l ly ,  i n  Section 4, 

Monte Carlo and b io log ica l  sequences are examined i n  l i g h t  of 

t he  p r o b a b i l i s t i c  r e s u l t s .  Even the  complex random va r i ab le  

H disp lays  evidence of an extreme value d i s t r i b u t i o n .  

2. LAWS OF LARGE NUMBERS 

I n  t h i s  s ec t ion ,  I present laws of l a r g e  numbers f o r  t he  

asymptotic behavior of the  longest match between two random DNA 

sequences. Random here  means e i t h e r  independent and iden t i ca l -  

l y  d i s t r ibu ted  o r  Markov, although similar laws f o r  nrdependent 

processes can be obtained. While the  laws of l a rge  numbers 

only give order of magnitude r e s u l t s ,  these  estimates are 

su rp r i s ing ly  good. The extreme value r e s u l t s  of Section 3 give 

much more prec ise  r e s u l t s  and allow comparison with the more 

e a s i l y  obtained r e s u l t s  of t h i s  sec t ion .  

The f i r s t  problem considered here  w i l l  be t he  length  l$, 

of the  longest match between two independent i d e n t i c a l l y  

d i s t r ibu ted  (i . i .d.)  DNA sequences of length  n which are i n  a 

f ixed  alignment. L e t  

where pi is t h e  p robab i l i t y  of base i. The random va r i ab le  

% is only of i n t e r e s t  i n  t he  cases p € ( 0 , l ) .  The problem 

posed here can be r e s t a t ed  as the  longest run of heads i n  n 

co in  tosses  where p = P(1ieads). E r d k  and &nyi (1970) 
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presented results which contain the following theorem. I give 

an outline of a proof which prepares the way for generali- 

zation. 

Theorem 2.1 Let X1,X2 ,..., Yl,Y 2... be independent and 

identically distributed and let Define 

Rn= max{m: 

0 < i < n-m}. Then 

0 < p I P(X1= Y1) < 1. 
for k = 1 to m, for some ‘i+k * ‘i+k 

Proof. Let Ai= {Xi+k = Yi+k for k = 1 to m) where 

0 < i < n-m. Now, for E > 0, let m = [(l + E) 10g~/~(n)l. 
Since P(Ai) = pa, we have 

‘(l+€)< P(Ai) I pm < n-(l+e). P n  

 or n = nk- [(l/plkl, 

Therefore, by the Borel-Cantelli lemma (Chung, 1965) , 
P(+(nk) occurs infinitely oPten) = 0. 

Since longest match length increases with n, it follows that 

P ( K  Rn/logl/p(n) < 1) - 1. 
n 

This establishes half of the result. 
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To obta in  a corresponding lower bound, r e c a l l  t h a t  t h e  

Borel-Cantelli lemma has a converse i f  t h e  events are 

independent. To create non-overlapping head runs,  let  

Biz Ami= {Xm,,- Ymi+k f o r  k = 1,. . . ,m), 
and 

Theref o re  

l k m  E(S) = 

and 

P(1im S > 0) - 1. 
n 

It follows t h a t  

Next I take up a problem of more d i r e c t  i n t e r e s t  t o  

molecular biology, the  length  s ( 0 )  of the  longest match 

between two sequences when s h i f t s  are allowed. Allowing s h i f t s  

gives n2 choices f o r  ( i , j ) ,  the  s t a r t i n g  pos i t i on  of a 

match run. Above there  were only n s t a r t i n g  pos i t ions .  This 

naive approach might suggest t h a t  q ( 0 )  grow l i k e  

2 logl/p(n ) - 2 log  (n) .  This tu rns  out t o  be co r rec t  and is 
1 /P  



PROBABILITY DISTRIBUTIONS FOR DNA SEQUENCE COMPARISONS 

formalized i n  the next theorem, due to Arratia and Waterman 

37 

( 1984a). 

Theorem 2.2. Let X1,X2 ,..., Y1,Y2 ,... be independent and 

identically distributed and let Define 0 < p z P(X1= Y1) < 1. 

for k = 1 to m, Mn(0) = max{m: 'i+k= j+k 

for some 0 < i ,  j < n-m). 

Then 

Proof. The upper bound is established as i n  Theorem 2.1, but 

the lower bound i s  more difficult. Define Aij= {Xi*= Y 

for k = 1 to m) and let m = [ (%E) logl,p(n)]. Let 

Bij = and S = I(Bij). As i n  Theorem 2.1, 

E(S) m-'nE+ -. To handle the dependence introduced by 

shifting, it is  sufficient to show 

j+k 

Var(S) /(E (s)  ) 2+ 0. 

See, e.g., Problem 10, Section 4.3 of Chung (1968). Using the 

above formula for 

Var(S) = 

< 

= 

In the last line 

s,  
E(,Fj(I(Bij) - P(Bij)) 2 

E P(Bij n Bka) 

i=k i#k i=k 
E + E + 2E P(Bij n Bkt). 

j=t j * a  j fa  

the first sum is  less than E(S) while the 

second is 0. The third sum has approximately 2(n/mI3 

qa is the 2 tern. Let p = E (PO = a)>2= E qa , i.e., 
a a 
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probability distribution on the atoms of X. Now, using a 

version of Holder's inequality (Hardy, Littlewood, and 

Polya (1934), formula 2.10.3) for j # k, 

Combining these estimates yields, 

var(s) < E(S)  + ~(E(s))~/~, 

This completes the proof of the theorem. 

Notice that the effects intnduced by shifting make the 

theorem more difficult to prove. It is possible to obtain 

results for Markov chains as well (Arratia and Waterman, 

1985a). 

Theorem 2.3. Let X1,X2, ..., and Yl,Y2, ... be two 

independent Markov chains on a finite alphabet S which are 

irreducible and aperiodic and have transition probabilities 

(pij) i,j € S. Let p € (0,l) be the largest eigenvalue of 

the substochastic matrix ((pijl2) i,j S. Then 

Our int rest in establishing Theorem 2.3 is the fact that 

(first-order) nearest neighbor effects in DNA sequences are 

statistically significant (Smith et al., 1983). Another 

feature of DNA evolution that concerns us is substitutions, 
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insertions, and deletions of letters as well as inversions. We 

ask how many letters can be "removed" from the sequences to 

lengthen the match and still retain the 2 logl/p(n) behavior. 

The result is surprisingly strong. 

Theorem 2.4. Let X1,X2 ,..., Y1,Y2, ... and p be as in 

Theorem 2.2 or 2.3. Let Mn(k) be the longest match between 

XI...% and Y1. ..Yn allowing shifts and removal of k 

single letters, i.e., 

* 

Then for any constant k or any deterministic sequence 

k = k(n) where 

k = o(log(n)/log log(n)), 

it follows that 

in probability. 

Another feature of DNA sequences Arratia and I (1985b) 

considered was that all sequences do not have the same 

distribution. We obtained results for Markov sequences as well 

as i.1.d. sequences but only the i.i.d. results are discussed 

here. The surprising discovery 5s that b$, can still have 

2 logl/p(n) 

quite different. 

behavior even when the marginal distributions are 



40 MICHAEL S. WATERMAN 

Theorem 2.5. Let  X1,Xz, ... be d i s t r i b u t e d  as p ,  Y1,Y2, ... 
be d i s t r i b u t e d  as v with a l l  letters independent and p = 

P(X1 = Y1) (0,l). Then t h e r e  is a constant  C(p,v) € [1,2] 

such t h a t  

P Q g  Mn/logl /p(d = C(P,V)) - 1. 

In addi t ion  

where aaa uava/p, H(a,v) = E a, log(aa/va) ,  and y ranges 

over the probabi l i ty  d i s t r i b u t i o n s  on the state space S. Here 

log can be t o  any base. Also C(p,v) = 2 i f  and only if 

a 

The set of p such t h a t  C(u,v) = 2 f o r  a f ixed  v has 

p o s i t i v e  diameter. Of course,  C(v,v) - 2 by Theorem 2.2. 

That a la rge  set of p s a t i s f i e s  C(p,v) = 2 is another  

ind ica t ion  of the  s t r e n g t h  of the "2 log(n)"  law. 

3. EXTREME VALUE DISTRIBUTIONS 

Next I give some r e s u l t s  f o r  the "exact" d i s t r i b u t i o n  of 

R, and %(k). For coin toss ing  the  f i r s t  r e s u l t s  were given 

i n  a paper by E r d h  and &vdsz (1975) and improved by Guibas 

and Odlyzko (1980). More r e c e n t l y  Gordon, Schi l l ing ,  and I 

(1984) gave a p r o b a b i l i s t i c  a n a l y s i s  which is e a s i l y  motivated 

and extends the  e a r l i e r  r e s u l t s .  
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I begin by again considering R,,, the length of the 

longest head run where p = P(Heads). Each head run is pre- 

ceded by a tail and has length m with probability qpm, 

q = 1-p. There are approximately nq tails in n trials so 

that 
Rn - max Zi 

lti<nq 

where Zi is geometric and P(Zi= m) = qpm- Also 

Zi= [W,] where Wi are i.i.d. .exponential random variables 

with mean l/X, X = ln(l/p), and [ 1 is the usual greatest 

integer function. Therefore it follows that 

The maximum of i.i.d. exponential random variables is an 

extreme value random variable. Letting V denote a random 

variable such that P(V < t) - exp(-e-t) (that is, the 

B 

standard extreme value distribution), I$., then should satisfy 

Rn - [ln(nq)/X + V/X]. 
Hence 

E(R,) - ln(nq)/X + EW/X -92 

= In(nq)/X + Y / X  -V2, 

= logl/p(n) + loal/p(q) + Y / X  - 112 , 

where E(V) = y is the Euler-Mascheroni constant and the 1/2 

is Sheppard's continuity correction. For Q = q - 1/2 , the 
approximation is (ln(n) + y)/X - 312,  exactly the leading 

terms found by Guibas and Odlyzko (1980). Applying the same 
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approach to the variance, Var(Rn) n2/6k2+ 1/12. Here the 

1/12 is Sheppard's correction for variance and Var(V) = nL/6. 

The next theorem appears in Gordon, Schilling, and Waterman 

(1964). 

Theorem 3.1. Let X1,X2 ,..., Y1,Y2 ,... be independent and 

identically distributed and let 0 < p = P(X1 = Y1) < 1. Let 

R,(k) = max{n: Xi+a= Yi+a for L = 1 to m except for at 
most k failures, for some 0 < i < n-m). 

Then for a = gn(l/p), 

E(Rn(k)) = logl/p(n) + k logl/plogl/p(n) 

+ (k+l)lOgl/p(q) - logl/p(k!) + k 

+ y/x - 1/2 + r,(n) + o(l), 
and 

2 2  Var(Rn(k)) = n /6X + 1/12 + r2(n) + o(l), 
2 where, for 8 = IT /X, 

-1 1/2 e-e ( l-e-e -2 Irl(n)l < (2n) e 1 

and 

1/2 -e -e -3 Ir2(n)l < (1.1 + .70)(28 e (l-e 1. 

Notice that the bounds are about equal to 1.6 x (or 

3.45 x for the mean and 6 x (or 2.64 x for 

the variance when p - 1/2 (or 1 / 4 ) .  The striking feature of 

the variance being approximately constant with n is derived 

from the extreme value distribution. 

The next question of interest to DNA sequence analysts is 

whether these results carry over to matching with shifts. This 
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is answered i n  the a f f i rmat ive  by the  next theorem which is 

proved i n  Arratia, Gordon, and Waterman (1984). Kar l in  et al. 

(1984) announced a similar r e s u l t  f o r  M,,(O), the  longest  

match with no mismatch. Their r e s u l t  as s t a t e d  gives  no e r r o r  

estimates and d i f f e r s  from the one given here f o r  k = 0 by 

minor cons tan ts .  

Theorem 3.2. Le t  X1,X2, ..., YI,Y2, ... be independent and 

i d e n t i c a l l y  d i s t r i b u t e d  and le t  0 < p = P(X1 - Y1) < 1. Let  

%(k) = maxCm: Y,+g f o r  g - 1 t o  m f a i l s  a t  most 

k times, for some 0 < i, j < n-m). Then 

E(Mn(k)) - logl /p(n 2 1 + k logl /plogl /p(n 2 1 + (k+l) logl/p(q) 

(kl) + k + y/X -1/2+ r ,(n) + o ( l ) ,  - l 0 g l / p  

and 

2 2  Var(Mn(k)) = ‘A /6X + 1/12 + r2(n) + o(1). 

The funct ions r , (n)  and r2(n)  are bounded by the 

corresponding funct ions of e i n  the  statement of Theorem 

3.1. DNA sequences do not always have equal lengths ,  and i n  

Arrat ia ,  Gordon, and Waterman (1984) a more general  theorea 

appears with n2 replaced by n1n2, t h e  product of 

the lengths  of the  sequences. The necessary condi t ion  is  

log(nl) / log(n2)  + 1. 

It is poss ib le  t o  present  these  r e s u l t s  in the  case of 

Markov chains or even m-dependence. However, the ana lys i s  of 

DNA sequences seems only t o  requi re  the i.1.d. case. The newt 

sec t ion  examines d a t a  support ing t h i s  observation. 
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4. DATA ANALYSIS. 

In  t h i s  f i n a l  s e c t i o n ,  I test t h e  previous theory by 

applying the  algorithms of Section 1 t o  Monte Carlo and DNA 

sequences. The DNA sequences come from a bacteriophage named 

lambda. (Bacteriophages are v i ruses  t h a t  i n f e c t  b a c t e r i a ) .  

The complete sequence of lambda is  now known and has 48,502 

base p a i r s  (Sanger et  al.,  1982). Beginning at base 1 of 

lambda, I chose Z7,  2', . . . , 212 bases i n  a nonoverlapping 

manner. Then I repeated t h i s  process u n t i l  the remaining 

sequence was less than 27 + 28 + ... + 212 bases. Therefore 

I have s i x  sequences z7 long, s i x  sequences 28 long,..., 

and s i x  sequences 212 long. The value of p f o r  lambda is 

e s s e n t i a l l y  114. Similar  Monte Carlo da ta  was generated with 

a l l  bases equal ly  l i k e l y  so t h a t  p = 1/4. 

Assuming the s implest  log(n2)  l a w ,  y = a log(n2) + b = 

ax + b, the scores  M, , (O) , s ( l ) ,  ..., M,.,(6), and H were 

p lo t ted  vs. logl,p(n2) where a l l  p a i r s  of sequences of equal 

length are compared. The r e s u l t s  are shown i n  Figures 2 

through 9, where (a) is Monte Carlo and (b) is lambda. In 

% ( I )  through M,,(6) t h e  s lope  o r  c o e f f i c i e n t  of log(n2)  is  

not 1. This is accounted f o r  by the  k logl /plogl /p(n2)  

term of Theorem 3.2. I n  the  range of 2' t o  212, 

k log410g4(n2) - ( . l ) k  logb(n2) + c. When t h i s  approximately 

l i n e a r  e f f e c t  of the loglog term is accounted f o r ,  the  coef f i -  

c ien t  of the logl lp(n2)  term is approximately 1 as 
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predicted.  The constant  terms, b, are not equal t o  those 

given by the formula f o r  E(%(k)) i n  Theorem 3.2 and requi re  

addi t iona l  terms i n  t h e  expansion. See Arra t ia  et  al .  (1984) 

f o r  d e t a i l s .  The DNA scores  have a s l i g h t l y  l a r g e r  var iance 

but the agreement is good. 

45 

Smith, Waterman, and Burks (1985) c a l c u l a t e  H f o r  over 

40,000 p a i r s  of v e r t e b r a t e  sequences i n  an empir ical  study. 

That work w a s  the  motivation f o r  t h e  t h e o r e t i c a l  r e s u l t s  

reported i n  t h i s  paper. The f i t  t o  the  da ta  there  is 

H - 2.55 logl,p(nln2) - 8.99 

where n1 and n2 are the length of sequences being 

compared. The f i t s  i n  Figure 9 are reasonably c lose  t o  t h i s  

one. What t h i s  a l l  suggests  is t h a t  the  d i s t r i b u t i o n  of 

maximum segments scores  is not very dependent on the b io logica l  

d e t a i l s  of the sequence genomes. Alignments with s i m i l a r i t y  

scores  d i f f e r i n g  s i g n i f i c a n t l y  from the expected scores  should 

be c a r e f u l l y  examined by the sequence ana lys t .  
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y -1.15 t 1 . 1 3 ~  
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I io. , l l .  ,12. ,13. 

1 6 .  1’.  I 8 .  

Fig. 2. k = 0. 

Figures 2-8. Length of longest matches with k = 0 , 1 , . . . , 6  
mismatches. For each value of x = loglk(nln5)  = log4(n1n2) 
there are 15 sequence comparisons. (a)  nte  arlo sequences 
and (b) Lambda sequences. The best linear f i t s  of y = longest 
match length with k mismatches are given by y = a + bx. 
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Figure 4 .  k = 2. 
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Figure 6 .  k = 4 .  
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t 

y - -9.23 + 2 . 5 8 X  

I I I 

t 

y - - 5 . 5 5  t 2.2ox 
- 3  
- 2  
- 1  

16 ( 7  18 1 9  1 1 0  I l l  I 12 1 1 3  

l 0 g ( n ~ ~ ~ I / l o g ( 1 I ~ l  

Figure 9. Best similarity scores. For each value of x = 
= log4(n1n2) there are 15 sequence comparisons. 

t::1k%2(!arlo sequences and (b) lambda sequences. The best 
linear fits of y - score - max ( #  matches - .9# mismatches - 
2.08 deletionsfinsertions) are given by y = a + bx. 
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