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Abstract. S. M. Ulam’s contributions to biology are surveyed. The survey covers cellular automata theory, 
population biology, Fermi-Pasta-Ulam results, pattern recognition, and sequence similarity. 

1. Introduction 

In Poland before the war, there was a tradition that the scholar should be familiar with 
other scientific disciplines in addition to his own. In this tradition, Stanislaw M. Ulam 
was educated in prewar Poland as a mathematician and throughout his life he enjoyed 
finding problems in physics, astronomy, and biology as well as in mathematics. 

In 1934 Ulam left Poland for a few months in Cambridge. On his return to Poland 
in early 1935, he received an invitation to visit the United States. He spent 1935-1936 
at Princeton, 1936-1940 at Harvard, and 1941-1943 at the University of Wisconsin. 
His work relating to biology was begun at Los Alamos where he moved to next. 

His association with the Los Alamos Scientific Laboratory began in early 1944. Chain 
reactions were an important process at Los Alamos, and these reactions do have a 
certain vague analogy with the multiplicative processes in biology. In addition, computers 
Were being built and used at Los Alamos. While the analogy between the computer and 
the brain seems obvious to us today, that was not so in the early days of computing. 
U h ,  Alan Turing, and John von Neumann shared an interest in this analogy. Also, 
the birth of the new biology with the Crick and Watson discovery of the structure of 
DNA in 1953 stimulated more applications of mathematics to biology and Ulam 
Participated in these applications. 

h m ’ s  contributions to theoretical biology are discussed under the sections: 
(2) cellular automata theory, (3) population biology, (4) Fermi-Pasta-Ulam results and 

(5) pattern recognition, and (6) biometric spaces. 
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2. Cellular Automata Theory 

In the late 1940s von Neumann began the development of a general theory of automata. 
Von Neumann often discussed this work with Ulam who made suggestions a d  
contributions of his own. This theory included self-reproducing automata. von 
Neumann’s work was first presented in his University of Illinois in December 1949. fie 
work is thoroughly reviewed in his posthumous book [ 11 edited by Arthur W. Burks. 
There were five models of self-reproducing automata: the kinematic model, the cell& 
model, the excitation-threshold-fatigue model, the continuous model, and the proba- 
bilistic model. The kinematic model might be described today as a robot without a power 
source. 

The cellular model was suggested in conversation with Ulam. Ulam suggested that 
this model would be more amenable to logical and mathematical treatment than Would 
the kinematic model. In 1950 [2], Ulam proposed considering an infinite graph of 
points, each point with a finite number of connections to certain of its ‘neighbors’. Each 
point can occupy one of a finite number of states. The states of the neighbors of a point 
and the state of the point at time n induce a state of the point at time n + 1 by means 
of a formula. Ulam calls a finite subset F of the graph an automaton of organism if F 
satisfies the following two conditions. First, the statzs of F must be periodic or almost 
periodic functions of time. Second, the neighbors of F must have only a ‘weak’ influence 
on F, but F can have a strong influence on its neighbors. (These imprecise statements 
are made precise by von Neumann.) Ulam proposed that one should find formulae 
whereby an automaton can reproduce itself in the sense that another automaton, 
congruent to the original automaton, arises in some other part of the graph, assuming 
only one automata exists initially. For his own model von Neumann chose 29 states for 
each point, the points being those with integer coordinates. Each point communicates 
with its four contiguous neighbors with a delay of at least one unit of time. The points 
all have the same rules of operation; Le., the points were homogeneous in space. 

On page 30 of Ulam’s book, A Collection of Mathematical Problems, he posed problems 
about cellular automata problems in terms of infinite matrices; e.g., does there exist an 
infinite matrix A of zeros and ones with uniformly bounded row sum so that every 
possible finite matrix of zeros and ones appears as some power of A ?  

Ulam wrote three subsequent papers or reports on cellular automata. The 1962 paper 
[ 31 discusses growth models with the plane tessellated into regions which are squares 
or equilateral triangles. An organism is a single one of the regions which is assigned the 
value one to denote that it is occupied. An unoccupied region is assigned the value zero. 
The regions of the plane then evolve in discrete time steps according to various rules 
involving occupied and unoccupied regions. The state of an organism may be generated 
to take account of the age of the cell. Examples are given. 

The report [ 41, by Ulam and Schrandt, continued this work. They were able to find 
self-reproducing automata. They also had models in which the descendents of different 
systems could collide and ‘fights’ would ensue for space. In some cases both sets of 
descendents would die out. They also calculated models of automata in three dimen- 

J 
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sions. Some very striking pictures appear in this report. These last two reports have been 
reproduced in the book Cellular Autotuutu, edited by A. W. Burks [ 3,4].  Schrandt and 
Ulam realized self-reproducing automata with simpler models than those used by 
von Neumann. 

These cellular automata systems have had an active life. Some of it is summarized 
by Butler and Ntafos [ 51. We quote their abstract: 
A major impedimetlt i n  the application ofcellular spaces to the modeling of biological phenomena and other 
physical processes has been the lack of tools which relate global to local behavior. In this paper, the vector 
string description is introduced as a tool for the analogies of the cellular spaces studied by S.  Ulam. With 
such a tool, it is quits straightforuard to sho\v the existence ofglobal properties which would otherwise be 
very difficult to prove. For examples. a conjecture b) Ulani concerning the density of cells in a 'growth' 
pattern is sho\vn t o  be true. We also shou that a self-reproduction process occurs which allows regeneration 
of specific patterns from 'cuttings' of those patterns. 

Moore [ 61 made the surprising discovery that certain patterns cannot be reproduced, 
and thus is a Garden of Eden configuration. 

The subject of cellular automata has had a long and distinguished history since Ulam 
and von Neumann founded the subject. For example, 95 references to cellular automata 
have appeared in the Mathematical Reviews since 1972. See the book Cellular Automata 
[7] edited by Farmer et al. 

3. Population Biology 

Ulam's interest in population dynamics dates from the beginning of his association with 
war-time Los Alamos and the work on chain reactions in nuclear fission devices. The 
development of Monte Carlo methods, introduced by Ulam, Fermi. von Neumann, and 
Metropolis was a natural calculational tool for the study of the evolution of populations. 

We will discuss Ulam's work on population biology under four headings: multi- 
plicative processes. evolution, genealogical distances, and binary reaction systems. 

3.1. MULTIPLICATIVE PROCESSES 

The four papers [SI, one with Hawkins and three with Everett, are watershed papers 
in the theory ofbranching processes. Both the theory and history of this subject are given 
in the book of Harris [9]. In a biological context, simple branching processes can be 
associated with sexless reproduction. While there were earlier papers on the subject, 
P~icularly in reference to the problem of survival of family surnames, the papers by 
ulam and his colleagues were the first to set out a comprehensive theory of these 
processes. For example, Hawkins and Ulam were the first to derive the Abel functional 
quation for the moment-generating function for the Galton-Watson branching process. 
Everett and Ulam derived general expressions for the first and second moments for 
Processes in which several types of objects are involved. They also derived an expression 
'Or the limiting vector of types and derived the generalized functional equations for the 
moment-generating function. 
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In Everett-Ulam [8], Parts I and 11, the generating transformation G(x) whose 
iterates yield the probability distribution for higher generations is introduced and 
investigated. They investigate both the subcritical and supercritical case. In Everett- 
Ulam [ 81, Part 111, the set of all possible genealogies for a given branching process 
starting with one particle of type i is treated abstractly. As Ulam would do naturally, 
a distance is immediately defined on the set and the set becomes a zero-dimensional 
metric space satisfying the second axiom of countability. A measure is then defined on 
this genealogy space. If xo = G(xo) is a fixed-point of G(x), it is shown that the set of 
genealogies which terminate in death has measure x,? where i is  the type of particle which 
starts the genealogies. Let V be the eigenvector corresponding to the maximal positive 
eigenvalue L > 0 of the supercritical system. The set of all genealogies whose f i  
generation population approaches the ratios V, : V, : . . . : V, has measure 1 - $. 
Hence, almost all genealogies either terminate in death or approach V as a limit. 

3.2. EVOLUTION 

In contradistinction to particle multiplication in physics, biological populations usually 
include mating rules. This gives evolutionary trees a different appearance. 

Ulam's work on models of evolution was done with Schrandt. These models were 
first reported on in a transcript of a lecture [ 101 Ulam gave at the Wistar Institute of 
Anatomy and Biology. The transcript is amusing reading. (The audience had trouble 
with the meaning of 'a' and frequently so informed the speaker.) A smoother presen- 
tation was given by Schrandt and Ulam [ 111 in 1971 where the computational 
realizations of the models were completed. The parameters of the Schrandt-Ulam 
evolution models include: 

(a) number of generations, 
(b) population size, 
(c) total number of favorable mutations necessary to produce the desired charac- 

(d) probability of a favorable mutation per individual in the population, 
(e) the value y of a single favorable mutation such that an individual having this 

mutation would have k + y descendents versus k descendents otherwise. 

Additional conditions are then added in the several models. One model, ADAM, allows 
only asexual reproduction. A second model, called EVE, allows for sexual reproduction. 
It is observed that sexual reproduction yields faster evolution, and additional work is 
promised. 

In the paper with T. F. Smith, Myron Stein, and Beyer, [ 121, an investigation is 
carried out of the reconstruction of evolutionary trees based on 33 protein cytochrome 
C's from 33 extant plants or animals. Distance between these proteins is calculated by 
a theory discussed in [ 131 and hypothetical evolutionary trees constructed by use of 
linear programming methods. Agreement of the trees with generally accepted evo- 
lutionary trees was reasonably good. 

teristic, 
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3.3, GENEALOGICAL DISTANCES 

pure branching processes can be symbolically represented by a graph-theoretic tree. 
Ulam was often interested in the problem of genealogical trees (different from graph- 
theoretical trees) in which mating is required to produce additional branches [ 141. In 
conversation he would call the resulting ‘graphs’, pair trees. One of his ambitions was 
to develop their theory. 

The paper with Mycielski [ 151 presents some results on the pairing process and the 
notion of genealogical distance. The Mycielski-Ulam pair tree is the following. A 
population P is divided into disjoint generations A i ,  i = 1,2,3, . . . . The size of each 
generation A, is a fixed even number 11. Each generation is divided randomly into couples 
and each couple produces exactly two individuals in the next generation. The authors 
then ask for ways of measuring the genealogical distance between individuals. Who, for 
example, are close cousins and who are distant cousins? Of course, this will depend on 
which divisions into couples are realized. The authors discuss three different distances 
and their properties. For example, the authors place a natural probability measure on 
the space of realizations of the random matings. They then show that for almost all 
realizations, the first of their distances are in fact metrics. They also show that the 
expected value of the distances are always finite. 

Kahane and Marr [ 161 have generalized the Mycielski-Ulam theory to more general 
pairing processes in which the population size remains constant from generation to 
generation, but the number of offsprings per pair can vary. Kahane and Marr also obtain 
stronger bounds on the mean distance. 

3.4. BINARY REACTlON SYSTEMS 

The study of population dynamics with mating rules takes another form in the work of 
Mary  Menzel, P. R. Stein, and Ulam [ 171 and Stein and Menzel [ 181. The first 
reference [ 171 deals with quadratic transformations. This was then generalized to cubic 
hisformations [ 181. The work on cubic transformations has no biological context, 
unless someday trisexual mating makes its appearance. Of course, one could argue that 
each human adult is the product of not only his or her parents, but of his or her culture. 

An example of a quadratic transformation arising from mating rules in a population 
whose size remains constant from generation to generation and which contains three 

of individuals is the following. Let xi be the fraction of the population of type i 
at the nth generation. Suppose that the following mating rule holds: 

type 2 and type 2 produce type 1 
3 3 1 
1 2 1 
1 3 2 
2 3 2 
1 1 3 
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At the n + 1 generation the fractions become 

( *) x1 = xf + xf + 2x,x2, x2 = 2xlx2 + 2x2x3, x3 = X: 

with 0 < xi < 1 and x1 + x2 + x3 = 1. 
Menzel, Stein, and Ulam carried out several numerical studies iterating the trans- 

formation (*). In fact, they examined 97 inequivalent systems similar to (*). A few 
examples of 4-variable binary reaction systems are also studied. 

The appendix (due to P. R. Stein) to the work on quadratic transformations de& 
with a different class of homogeneous qudratic transformations of arbitrary dimension 
derived more naturally from evolutionary models. For this class of transformation, the 
limiting behavior of arbitrary vectors under iteration is given explicitly. This rather short 
appendix needs to be followed up. 

4. Fermi-Pasta-Ulam Results and Solitons 

It is well known that Fermi-Pasta-Ulam [ 191 have shown that in a nonlinear system 
of differential equations of the form 

xi = (xi+ I + xi- 1 - 2xi) + a[(xi+ 1 - xi)’ - (xi - xi- (1) 

where xi = 0 for i -= 1 or i > N, and a > 0 is some positive constant, the distribution of 
energy among the modes (obtained from the linear part of (1)) may not be asymptotically 
uniform and may even return once and therefore infinitely often to the original 
distribution. This result is one of the progenitors of the theory of solitons (201: Solitons 
in turn are now playing a role in biology. A good survey article has been written by 

Pohl[22] studies the character of cells in the reproductive state and suggests that the 
cell membrane may contain electrons in certain quantum states which Pohl calls 
Fermi-Pasta-Ulam-Frohlich resonance. 

I’ = 1,2,. . . , N ,  

Scott [21]. 

5. Pattern Recognition 

In the period 1964-1982, Ulam occasionally worked on mechanisms the brain might 
use in pattern recognition. This work has never been published but is discussed in [23] 
and [24]. He hypothesized that the brain has by some means stored a set of two- 
dimensional pictures. A picture is throught of as a subset of the plane. A new picture 
then enters through the senses. What would be an eficient means of searching the 
memory for pictures which are ‘similar’ to the new picture? Ulam discussed the 
possibilities of using Hausdorffdistance between two plane sets. A measure of similarity 
is defined as follows. Let d(a, 6) measure the distance between two points a and 6 in 
the plane. LetA and B be two closed subsets of the plane. Define the Hausdorffdistance 
by 

p,,(A, B) = max min d(x, y )  + 
x e A  y e B  

min 
x a A  
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n e  quantity p,(A, E) is then a real-valued symmetric nonnegative function which 
satisfies the triangle inequality: p,(A, C) < &A, E )  + p,(E, C). Also pA(A, B) = 0 
only when A = E. 

It is suggested there is an evolutionary advantage for the memory to form a class 2 
of pictures from each picture by slightly altering A, say by rotation or a slight 
deformation. Suppose the classes A and B are finite, or compact in the case of infinite 
classes. Then for two classes 2 and iterate the Hausdorff distance to obtain 

I 

1 

I 

I 

i 
i 
I 
I, 
I 
i 

1 

i 

- -  
p(A, B )  = ma? min_ p,(A, E) + ma? min_ p,(A, E). 

A E A  B E B  B E B  A E A  

It may also be useful to consider a distance between sets ‘modulo’ small sets. A few 
extra points on a pattern should not chatige the pattern’s class: For example, one might 
use 

pH(A,  B) = min min p,(A, E) 
A - C ,  B - C ,  

where C, and C,  are sets ‘small’ compared to A and B and the two minima are taken 
over all ‘small’ sets. Obviously, this concept needs to be made more precise. 

Other suggestions for distance between sets are also given in [25]. Additional work 
on these suggestions would be useful. 

Around 1965, Schrandt and Ulam carried out some computer experiments at Los 
AlamoS on pattern recognition. An example of a manuscript letter A on a square and 
an example of a manuscript letter E on a square were each encoded and stored in a 
computer. Two transformations S and T were chosen, each of which distorted a picture 
slightly. All 2, = 128 different transformations W, W,. . . W,, where Wi = S or T, were 
applied to each of the two example letters A and E,  yielding 128 new examples for each. 
A test letter was then selected and compared (by HausdorfT distance) with each of the 
samples. A score was then tallied and the letter with the better test score was selected. 

6. Biometric Spaces 

The concept o f a  biological metric space introduced by Ulam around 1970 stands apart 
from the usual examples of mathematical thinking in biology. This metric found 
immediate uses in genetic studies to answer questions about the relationships between 
molecules of DNA and proteins. Ulam’s metric spaces are strikingly different from well 
known Euclidean, or locally Euclidean physical metric spaces. Ulam’s point-sets are 
discrete, and the points are sequences of varying lengths. They are combinatorial in 
nature, as are those topics of biology which are farthest removed from physical theories: 
evolution, biological automata, and classification problems. The idea that biology is 
becoming increasingly understood in combinatorial terms was brought out by Ulam 
articles [ 25, 261, in which his biological metric was presented as a principal example of 
biomathematics. 

On 3 April 1972, Ulam gave a lecture at the Rockefeller University, entitled ‘On Some 
Mathematical Questions Suggested by Problems in Biology’ (unpublished). On this 
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occasion, speaking to mathematicians and physicists, he defined some biological metric 
spaces explicitly and, passing quickly over their biological significance, asked fie 
audience to consider them from a purely mathematical viewpoint. 

His simplest example was as follows: The metric space is a set Of finite Sequences 
of varying lengths, whose terms are taken from a finite alphabet. (For DNA the letters 
are A, G, C and T, but from a mathematical viewpoint any set would do.) The distance 
between two sequences is defined as the minimum total number (of cost) of mutations 
or deletions in either sequence needed to make them both equal. A deletion shortens 
the sequence by the removal of a term, and a mutation changes a term in one sequence 
to make it the same as a term in the other. For instance, the distance between the Words 
GOOD and BAD is 3, because we have to change 2 letters and delete 1 at least to make 
the words equal. This has been called evolutionary distance, which is Somewhat 
misleading because evolution does not necessarily take the shortest distance. However, 
from the standpoint of evolutionary studies, it presents a rational basis of measurement. 
Also, later it was discovered that it could be easily calculated. 

Soon it was realized that a dynamic programming method which had been used by 
Needleman and Wunsch [27] for best matching of two sequences could be modified to 
compute Ulam’s metric [28]. Let x = x l x z . .  . x,,  y = y, y2.. .ym, and D(x ,  y) denote 
Ulam’s distance between the sequences. Also let d(a, b) denote the positive weight of 
a mutation from a to b and d(  - , a )  = d(a, - )be the weight of an insertion and deletion. 
If D,,, = D ( x ,  . . . x, ,  y , .  . . y,) then the algorithm is 

D,,, = min { D i -  ,,, + d ( x i ,  - 1, D i p  ,,, - + d(x i ,  y,), D,,,- + d(  - ,y,>> . 

Of course D,,, n, = D ( x ,  y). The computation time is proportional to nm. Other 
biological metrics have been shown to be readily computable by the same general 
method. See the review [29] for discussion of these and other methods of sequence 
comparison. 

6.1. APPLICATIONS 

The most obvious applications of this metric space is to the construction of evolutionary 
trees of homologous protein sequences as described above [ 121. Since the distances 
between the objects at the vertices of such a tree satisfy the metrix axioms, they will avoid 
the anomalies which will occur, in general, in nonmetric tree constructions. 

A second application of the metric, also suggested by Ulam, is as a pattern recognition 
device. If a DNA sequence is given, the distance algorithm can be used to locate that 
region of the sequence whose distance from some particular sequential pattern of 
interest is a minimum. This search can be carried out in such a way as to find all regions 
in the given sequence whose distance from the pattern is a local minimum with 
computing time proportional to the length of the pattern multiplied by the length of the 
sequence [ 301. In recent years the use of dynamic programming for pattern recognition 
has been extensive, not necessarily using distance as the objective function on which 
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the procedure is based [ 2 9 ] .  These uses demonstrate amply the correctness of Ulam’s 
pattern recognition proposal, even though he apparently had no idea of how it would 
eventually be carried out. 

6.2. PROBABILITY DISTRIBUTIONS 

Statistical significance is one of the first questions which arises when one tries to 
evaluate the results of a sequence comparison algorithm. The simplest of these questions 
can be posed, as Ulam did, with no reference to biological details. The utility to biology, 
however, is nontrivial. If a located sequence match is in the range of results expected 
from random sequences of a similar composition, then the match might reasonably be 
disregarded. If, however, the match is of a quality far above that expected from random 
sequences, then the sequence analyst might be motivated to look carefully for a 
biological explanation of his results. 

The first attempt to address these issues was made by Chvatal and Sankoff [ 3 1 J who 
studied L, = L(X, Y), the length of the longest common subsequence of two random 
sequences X and Y each of length n. They assume that the elements of the sequence are 
chosen randomly and independently from a k-letter alphabet. DNA sequences have 
k = 4 while protein sequences have k = 20. Chvatal and Sankoff prove that the expected 
value of L,,, E(L,,) satisfies limn- Jc E(L,)/n = C,. Deken [ 3 2 ]  notes that Kingman’s 
subadditive ergodic theorem gives P( l im, -~  L,/n = C,) = 1. These authors give 
bounds on C, but results on the distribution of L, seem very difficult. Steele [ 3 3 ]  gives 
additional results on this and related problems. 

The relation between L,, and sequence distance is easily derived. Let D(x ,  y) be the 
minimum distance with d(a,  - )  = d(a, - )  = 1‘ and d(a, b) = 2 if a # b. Then, where 
‘indels’ denotes ‘insertions and/or deletions’, 

D(x ,  y) = min { 2 # mismatches + # indels} . 
Since 2n = total number of letters = 2 # matches + 2 # mismatches + # indels, 

D , , ,  = D(x ,  y) = min (2n - 2 # matches} 

= 2(n - max # matches)) 

= 2(n - L,) 
and 

L,, = n - D,,. ,,I2 . 
Recently, molecular biology has discovered sequence elements that are highly mobile. 

The result of this and other discoveries is that, while sequences might not be similar 
when matched end to end, there may be segments of sequence with high similarity. This 
motivates the study of the longest matching segment between two random sequences. 

as above, that X and Y are independent and identically distributed and that 
= p(xi = Yi)  (0, 1). Erdos and Renyi in 1970 (341 showed that the length R,, of the 
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longest head run in n independent tosses of a fair coin satisfies 

P lim R,,/log, .(n) = 1 = 1 . (.- x 1 

(..- z 1 

This result has been generalized to show that the length M,, of the longest exact ma 
between XI . . .XI ,  and Y ,  . . . Y,,, allowing shifts, doubles the length of the match in 
sense that 

P lim M,,/log, ,,(n) = 2 = 1 . 

In addition, it can be shown that as the two sequence lengths vary or th 
distributions change. the limiting behavior stays identical in a surprising large set. 
a phase transition takes place and MI, - Clog, p(n);  with C < 1. 

These results are closely connected with finding the maximum of independent ran 
variables and, not surprisingly, the extreme value distribution appears. If M,(k) e 
the length of the longest match with shifts, then it can be proved that 

E ( M , , ( ~ ) )  = log, ,,(n’) + ;ii. - + r l ( n )  + o ( l ) ,  

and 

Var(M,,(k)) = n2/6i’ + -;? + r l (n)  + o( 1) , 

where 9 = 1 - p ,  ;’ = 0.577.. . is the Euler-Mascheroni constant, and where r l ( n )  
r2(tr) are small. The striking feature of the variance being approximately constant w 
I I  is related to the extreme value distribution. 

Generalizations of these results exist. Different sequence lengths, differently di 
uted sequences, the case of Markov chains, and the case of more than two seque 
have been studied; see [ 291. These probability distributions will have an important 
in pattern recognition. 

7. Conclusion 

Obviously biology can be enriched with mathematical ideas, but Stanislaw UI 
argued that the converse is also true. In his opening remarks in a lecture gi 
Rockefeller University in 1983 he put the idea to a group of biologists with the 
parody: “Ask not what mathematics can do for you; ask what you can 
mathematics.” 

A biologist who thinks of mathematics strictly as a technical tool with kola 
scientific applications and that his discipline is fundamentally nonmathematicd, 
implying that, on the whole, biology is beyond the abilities of humans to consist 
describe its logic. Ulam’s remark suggest the opposite, that biology is a de 
complicated subject which is a rich source of mathematical problems. Its 
structure is a challenge to mathematical ingenuity. The biological contribution 
are an attempt to get at this logical structure. This mathematical subject deser 
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studied in its own right. And yet, mathematicians who study biology usually focus 
principally on properties which supply answers to specific biological questions. A bolder 
approach would be to study these problems with a view to finding theorems which 
answer questions which have not yet been asked - to look for and discover properties 
which have not been suspected. Ultimately this can mean not merely better answers to 
known biological questions, but new insights into biology itself, not to mention 
mathematics and other fields of application. 

References 

1. 
2. 

3. 

4. 

5. 

’ 6. 
7. 

8. 

9. 
IO. 

I I .  

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

Von Neumann, J., Theory of Self-Reproduiing Automata, Univ. of Illinois Press, Urbana, 1966. 
Ulam, S. M., ‘Random Processes and Transformations’, Proc. International Congress of Mathematicians, 
Cambridge. MA. 1950. Vol. 2, pp. 264-275, 1952. 
Ulam, S. M., ‘On Some Mathematical Problems Connected with Patterns of Growth of Figures’, hoc. 
S p p .  Appl. Math. 14, 215-224 (1962); also in A. W. Burks (ed.), Cellular Automata, Univ. of Illinois 
Press, Urbana, 1970, pp. 219-231. 
Schrandt, R. G. and Ulam, S. M., ‘On Recursively Defined Geometrical Objects and Patterns of 
Growth’, Los Alamos Scientific Laboratory, LA-3762, 19 pp., 1967, also in A. W. Burks (ed.), Cellular 
Automata, Univ. of Illinois Press, Urbana, 1970, pp. 232-243. 
Butler, J. T. and Ntafos, S. C., ‘The Vector String Descriptor as a Tool in the Analysis of Cellular 
Automata Systems’, Math. Biosci. 35. 55-84 (1977). 
Moore, E. F., ‘Machine Models of Self Reproduction’, Proc. Symp. Appl. Math. 14 (1962). 
Farmer, D., Toffoli. T., and Wolfram, S .  (eds.), Cellular Automata. Proceedings of an Interdisciplinary 
Workshop, Los Alamos, New Mexico, USA. ,  North-Holland, Amsterdam, 1983. 
Hawkins, D. and Ulam, S. M., ‘Theory of Multiplicative Processes’, Los Alamos Scientific Laboratory, 
LA-171, 1944, declass. 1946; 
Everett, C. J. and Ulam, S. M., ‘Multiplicative Systems. Part I.’,Proc. Nut. Acad. Sci. 34,403-405 (1948); 
Everett, C. J. and Ulam, S. M., ‘Multiplicative Systems in Several Variables’, Los Alamos Scientific 
Laboratory, Part 1, LA-683, 1948, Part XI, LA-690, 1948, Part 111, LA-707, 1948. 
Harris, T. E., The Theory of Branching Processes, Springer-Verlag, Berlin, 1963. 
Ulam, S. M., ‘How to Formulate Mathematically Problems of the Rate of Evolution’, in Mathematical 
Challenges to the Neo-Darwinian Interpretation of Evolution, A Wistar Institute Monograph No. 5, 21-33 
(1967). 
Schradt, R. and Ulam, S. M., ‘Some Elementary Attempts at Numerical Modeling of Problems 
Concerning Rates of Evolutionary Processes’, Los Alamos Scientific Laboratory, LA-4573-MS. 1971. 
Beyer, W., Smith, T. F., Stein, M. L., and Ulam, S. M., ‘A Molecular Sequence Metric and Evolutionary 
Trees’, Math. Biosci. 19, 9-25 (1974). 
Beyer, W. A., Smith, T. F., Stein, M. L., and Ulam, S. M., ‘Metrics in Biology, An Introduction’, Los 
Alamos Scientific Laboratory, LA-4973, 1972. 
Ulam, S. M., ‘On the Operations of Pair Production, Transmutations and Generalized Random Walks’, 
Adv. Appl. Math. 1, 7-21 (1980). 
Mycielski, J. and Ulam, S. M., ‘On the Pairing Process and the Notion of Genealogical Distance’, J. 
Comb. Theory 6,227-234 (1969). 
Kahane, J. and Marr, R., ‘On a Class of Stochastic Pairing Processes and the Mycielski-Ulam Notions 
of Genealogical Distance’, J. Comb. Theory A13, 383-400 (1973). 
Menzel, M., Stein, P. R.. and Ulam, S. M., ‘Quadratic Transformations, Part I’, Los Alamos Scientific 
Laboratory, LA-2503, 158 pp. (1959). 
Stein, P. R. and Ulam, S. M., “on-Linear Transformation Studies on Electronic Computers’, Los 
Alamos Scientific Laboratory, LA-DC 5688, 128 pp., 1963, also in Rozprawy Mathematyczne (Warsaw) 
39, 1-66, (1964) and in A. W. Burks(ed.), Cellular Auromata, Univ. of Illinois Press, Urbana, 1970, 

Fermi, E., Pasta, J., and Ulam, S. M., ‘Studies of Non-Linear Problems’, Los Alamos Scientific 
Pp. 244-263. 



242 WILLIAM A. BEYER E 

Laboratory, LA-1940,20 pp., 1955, also in Enrico Fermi CollectedPapers, Univ. OfChicago Press, 11 
1965, pp. 978-988. 

20. Lamb. G. L., Jr., Elements of Soliton Theory, Wiley, New York, 1980. 
21. Scott, A. C., ‘Solitons in Biological Molecules’, to appear. 
22. Pohl, H. A., ‘Do Cells in a Reproductial State Exhibit a Fermi-Pasta-Ulam-Frohlich Resonance and 

Limit Electromagnetic Radiation’, J. Biol. Phys. 8, 45-75. 
23. Uam, S. M., ‘Speculations About the Mechanisms of Recognition and Discrimination’, Los 

National Laboratory, Preprint, LA-UR 82-62, 1981. 
24. Ulam, S. M., ‘Reflexions on the Brain’s Attempts to Understand ItselT, Gamow Memorid haure, 

Univ. of Colorado, 3 October 1982, Preprint. 
25. Ulam, S. M., ‘Some Ideas and Prospects in Biomathematics’, Ann. Rev. Biophys. Biwng. 1, 

(1972). 
26. Ulam S, M., ‘Some Combinatorial Problems Studied Experimentally on Computing Machina’. 

S. K. Zaremba (ed.), Applications ofNumber Theory to Numerical Analysis. Academic Press, New y& 

27. Needleman, S. B. and Wunsch, C. D., ‘A General Method Applicable to the Search for Similarities in 

28. Sellers, P. H., ‘An Algorithm for the Distance Between Two Finite Sequences’, J .  Comb. Theory. 16, 

29. Waterman, M. S., ‘General Methods of Sequence Comparison’, Bull. Math. Biologv 46,473-500 (1984). 
30. Sellers, P. H., T h e  Theory and Computation of Evolutionary Distances: Pattern Recognition’,J. Algor. 

31. Chvatal, V. and Sankoff, D.,‘Longest Common Subsequence ofTwo Random Sequences’,J. App. Rob. 

32. Deken, J., ‘Some Limit Results for Longest Common Subsequences’, Discrete Math. 26, 17-31 (1979). 
33. Steele, M. J., ‘Long Common Subsequences and the Proximity of Two Random Strings’, SIAM J. ApN. 

Math. 42, 731-737 (1982). 
34. Erdos, P. and Renyi, A., ‘On a New Law of Large Numbers’, J.  Anal. Math. 22, 103-111 (1970). 

Reprinted in Selected Papers o/Aljied Renyi. Vol. 3, Akademiai Kiado, Budapest, 1976; pp. 1962-1970. 

1972, pp. 1-10. 

the Amino Acid Sequences of Two Proteins’, J .  Mol. Biol. 48,443-453 (1970). 

253-258 (1974). 

1, 359-373 (1980). 

12, 306-315 (1975). 

1 


