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ABSTRACT 

Just after he introduced dynamic programming, Richard Bellman with R. Kalaba in 
1960 gave a method for finding Kth best policies. Their method has been modified since 
then, but it is still not practical for many problems. This paper describes a new technique 
which modifies the usual backtracking procedure and lists all near-optimal policies. This 
practical algorithm is very much in the spirit of the original formulation of dynamic 
programming. An application to matching biological sequences is given. 

INTRODUCTION 

Finding near-optimal policies for dynamic programming models is usually 
stated in terms of searching for the first, second,. . . , Kth shortest paths 
between a specified origin and destination through a directed, acyclic net- 
work. A near-optimal solution is such a path whose length is within a 
specified distance or neighborhood of the optimum. Thus, the set of near- 
optimal paths includes the optimal path(s), whereas a set of paths generated 
from heuristic or approximate methods may not. Recently we presented a 
new algorithm for finding all  paths from an origin to a destination whose 
length is within a specified distance of the shortest path(s) [2]. Details of 
implementation and comparison with Kth shortest path methods will also be 
given here. 

This algorithm was motivated by a study of the evolutionary distance 
problem in molecular biology. In this context, dynamic programming meth- 
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ods are used to investigate evolutionary relationships between two DNA 
sequences [20]. Analysis by Kth shortest path methods was not practical. 
This application is discussed below. 

Pollack [16,17] and Dreyfus [4] provide surveys of currently available Kth 
shortest path methods for directed, acylic networks. Bellman and Kalaba [l], 
later modified by Fan and Wang [7], use forward dynamic programming to 
find Kth best paths. Dreyfus [4] modifies the minimum tree technique of 
Hoffman and Pavley [12] to yield a new algorithm. Dreyfus also demon- 
strates its superiority to the algorithm of Bellman and Kalaba. The algorithm 
is essentially a forward dynamic approach and uses both node labels and arc 
labels to find K best paths. Fox [9-111 and Lawler [13] present slight 
improvements of the Hoffman-Pavley-Dreyfus algorithm for certain net- 
works by suggesting the use of special data structures called heaps in order to 
increase computational efficiency. Elmaghraby [6] presents another dynamic 
programming formulation, which is reviewed by Yen [23]. Minieka and Shier 
[14] develop, and Shier [18,19] refines, a path algebra approach. Neither 
algorithm is as good as that of Hoffman and Pavley (or its modification) in 
terms of computational and storage requirements. 

The new algorithm described in this paper is at least as fast as any 
previously described method and requires much less storage. It is, in fact, the 
first practical algorithm for these problems. The importance of this new 
algorithm is to allow sensitivity analysis, robustness studies, or simple ap- 
proximations to complex solutions to actually be obtained. This has not 
previously been possible. 

ALGORITHM 

The object of the “shortest path problem” is to locate the shortest path 
from node 1 to node N in an acylic network of N nodes and A arcs. Each 
arc ( i ,  j )  has an associated weight t ( i ,  J). Dynamic programming, as de- 
scribed in Dreyfus and Law [5] and Denardo [3], solves this problem by 
recursively solving many optimization problems. Nodes i are labeled with 
f (  i), the length of the shortest path from node i to node N. Bellman’s insight 
was his famous principle of optirnality: “subpaths of optimal paths are 
themselves optimal.” This is embodied in the recursion 

f (  i) = min{ t (  i, j )  +f(  j )  : ( i ,  j )  an arc}. 

The idea is that to reach i from N, the last step is from some node j .  The 
node j must be reached in an optimal manner if j is on an optimal path 
from N to i. It only remains to note that f ( N )  = 0 is required to start the 
recursion. The subject of this paper is to give a new algorithm for near-opti- 
mal paths. 
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Whereas previous algorithms find K shortest paths, the new algorithm 
requires some percentage corresponding to an interval e above the optimal 
length f(1) from the user. If a p% class of near-optimal paths is desired, then 
e is equal to (p/100)f(l). All paths less than or equal to quantity f(l)+ e 
are then found by the algorithm. This is convenient in problems where the 
corresponding K is unknown and/or large. 

While recursively calculating the node labels f ( i ) ,  no “pointer” or deci- 
sion information needs to be kept. These node labels are found by working 
backwards from node N until node 1 is labelled. The new algorithm then 
performs a depth-first search with stacking, starting at node 1 and continuing 
until all near-optimal paths are output. 

Consider a node x not equal to the destination. Some path P with 
cumulative distance d has led us to node x from node 1. The test for entry of 
the arc ( x ,  y) and distance d onto the stack now takes the general form, for 
all ( x ,  y )  E A ,  

where d is the cumulative distance to node x from node 1 by path P (not 
necessarily by shortest path), t ( x ,  y) is the distance from node x to node y, 
and f(y) is the optimal remaining distance to node N from node y. 

The algorithm eventually constructs a path P of length d from node 1 to 
node N. Then P and d are output and the stack is examined to see if other 
near-optimal paths exist. Hence the algorithm performs a last in, first out or 
depth-first search. 

To justify the algorithm, suppose the algorithm has generated a path P of 
length d from node 1 to node x .  The arc (x, y) added to path P is on at 
least one near-optimal path if and only if d + t ( x , y ) + f ( y )  ~ f ( l ) +  e, since 
the best path from y to N has length f(y). 

Note that ties in path lengths present no special problems. It is important 
to see that an arc is not stacked unless it lies on some near-optimal path. 
Also, the test (*) is never performed more than once for each node on any 
particular near-optimal path. 

EXAMPLE 
>’ Consider the acyclic network given in Figure 1 with arc lengths t (  i, j )  and 

nodes A through I, where nodes A and I represent origin and destination. 
Numbers above each node [ f( i ) ]  represent the shortest length from that node 
to node I .  Suppose the user requests all paths within 20% of the optimal path 
length 13, which is the node label at node A. This percentage implies an 
upper bound of 15.6 The ordered path array P contains the nodes of the 
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FIG. 1. 

near-optimal path currently being traced out, and is initialized with node A. 
An element of the stack contains three items of information: 

#1: The current node. 
#2: The next node. 
#3: The distance d from the origin (node A )  to the node in #2. 

The algorithm proceeds as follows: 

Step 1. At node A,  d = 0. 

t (  A ,  B )  + f( B )  = 14; 
t(  A ,  C) +f( C) = 13; 

PUSH element to stack. 
PUSH element to stack. 

Stack contains: 

#1 # 2  #3  
A B 2 
A C 0 

c 
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Step 2.  POP last element of stack and put “next node” stored in # 2  into P 
array = (A ,  C). At node C ,  d equals the distance stored in # 3  or 
d = 0. 

d + t (  C ,  E )  +f( E )  =16;  
d + t ( C , F ) + f ( F ) = 1 3 ;  PUSHelement. 

no action taken. 

Stack contains: 

# 1  #2  #3 
A B 2 
C F 3 

Step 3. POP last element. P = (A ,  C ,  F). At node F, d = 3. 

d + f( F ,  H )  + f( H )  = 1 3 ;  PUSH element. 

Stack contains: 

#1 #2  # 3  

A B 2 
F H 7 

Step 4. POP last element. P = ( A ,  C ,  F, H ) .  At node H, d = 7 .  

d + f( H ,  I )  +f( I )  = 13; PUSH element. 

Stack contains: 

# I  #2 # 3  
A B 2 
H I 13 

Step 5.  POP last element. P = (A ,  C ,  F, H ,  I ) .  Node I has been reached, so 
path P with d = 13 is output. Stack now contains: 

# 1  # 2  # 3  
A B 2 

Step 6 .  POP element. P = (A,  B ) ,  d = 2. 

d + t( B ,  D)+f( D )  =14;  PUSH element. 

d + t (  B ,  E )  +f( E )  = 16; no action taken. 
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Stack contains: 

#1 #2 #3 
B D 4 

Step 7. POP element. P = ( A ,  B ,  D), d = 4. 

d + t (  D, G) + f( G) = 14; PUSH element. 

Stack contains: 

#1 # 2  #3 
D G 9 

Step 8. POP element. P = (A,  B ,  D, G), d = 9. 

d + t (  G, I )  + f( I) = 14; PUSH element. 

Stack contains: 

#1 # 2  # 3  

G I 14 

Step 9. 
so path P with d = 14 is output. Stack is empty, so terminate. 

POP element. P = (A,  B ,  D, G,  I). Node I has been reached, 

To summarize, the near-optimal paths from node A to node I are: 

A + C + F + H + I ,  length13, 
A + B + D + G -, I, length 14. 

DISTANCE BETWEEN BIOLOGICAL SEQUENCES 

Dynamic programming methods to compare macromolecular sequences 
started with Needleman and Wunsch [15], who introduced a similarity 
measure. Subsequently many modifications and advances have been made. A 
recent review by Waterman [22] discusses these methods as well as several 
which are not based on dynamic programming. The basic problem is to find 
the minimum weighted sum of substitutions and insertion/deletions to 
change the sequence x = x1x2.. . x,  into y = yly2.. . y,,,. Let d( x, y)  denote 
the distance between the letter x and the letter y ;  d ( x , y )  can also be 
considered to be the weight associated with a substitution of y for x. Also let 
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w( k )  be the weight associated with a deletion (or insertion) of k consecutive 
letters. 

Let p(x,y) denote the distance between x and y. Define 

The utility of dynamic programming for sequence comparisons is that it 
allows recursive calculation of pi,,: 

p .  . = min{ min { p k . j  + w( i - k ) }  , 
1.J  I c k c i - l  

Since pfl,m = p(x,y), it can be seen that p(x,y) can be found in 0(n3) steps 
when n = m. If w ( k )  = ak + b,  the computation can be reduced to O ( n 2 )  
steps. 

The biologically correct values for d( -) and w( .) are not precisely known, 
although there are attempts to infer them from data. In addition, unknown 
biological constraints frequently act so that a " nonoptimal" sequence align- 
ment is the biologically correct alignment. The algorithm described in this 
paper was developed to help with these difficulties. 

As above, the algorithm is to find all alignments within e of p,,,, the 
optimal alignment. It is possible to view p,,, as the length of the shortest 
path from (0,O) to (n, m). The algorithm described above solves this problem 
and was first presented with a specific application [21]. 

Fitch and Smith [8] studied sensitivity of alignments to the weighting 
functions. The example they used was taken from chicken hemoglobin 
mRNA sequences, 57 bases from the B chain and 39 bases from the a chain. 
A correct alignment is known here from analysis of many amino acid 
sequences for which these mRNA sequences code. 

With a mismatch weight of 1 [that is, d ( x y )  = 1  if x # y]  and w ( k )  = 
2.5+ k ,  the correct alignment is found in the list of 14 optimal alignments. 
Here 14 alignments are in 0% of the optimum, 14 alignments in 1%, 35 
alignments in 2%, 157 alignments in 38, 579 alignments in 48, and 1317 
alignments in 5%. 

With a mismatch weight of 1 and w( k )  = 2.5 + OSk, the correct alignment 
is not one of the two optimal alignments. Not until the list of 31 alignments 
within 4% of the optimum is examined is the correct alignment found. 
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TABLE 1 

Computational and Storage Requirements for 
Stages or Columns of Nodes, 

States or Rows of Nodes, 
and R Decisions or Arcs/Node 

~ 

Computations Storage 

HP O ( R N +  K R N ” )  O ( N +  K N o 5 +  K )  
HPD without heaps O( RN + K R N o 5 )  O ( N +  K N o 5 + R N )  
HPD with heaps O ( R K +  KNo510gR O ( R N )  
New algorithm O ( R N +  K R N ” )  O ( N +  K )  

Not only does this example illustrate the sensitivity of alignments to 
weighting functions; it also shows the need for the new method. The problem 
described here has a network of 2200 nodes and 110,OOO arcs. Analysis by 
Kth shortest path techniques is not practical. 

COMPARISON OF METHODS 

Table 1 summarizes the computational and storage requirements of the 
Hoffman-Pavley (HP)) algorithm, the Hoffman-Pavley-Dreyfus (HPD) 
without heaps, HPD with heaps, and the new algorithm. For comparative 
purposes only, the requirements are given for a square, acylic network of N 
nodes and RN arcs, where the average number of arcs emanating from each 
node is denoted by R and each path contains nodes. Columns and rows 
of nodes can be viewed as dynamic programming stages and states, respec- 
tively. The set of paths within the specified percentage of the optimal length 
has exactly K members. 

Computational requirements are estimates of the number of additions and 
comparisons necessary to find the K shortest paths. Storage requirements are 
estimates of the number of computer words needed, not including storage of 
the network itself. 

Each estimate of computation appearing in Table 1 contains a term RN 
for computing the original node labels. As suggested by Dreyfus (personal 
communication), the published estimates for HPD in Fox [ll] have been 
revised for the special case of a specified origin and destination. Only the 

nodes along each of the K near-optimal paths are updated during each 
iteration. As K becomes large, the heaps allow the algorithm to become more 
efficient than HP and HPD without heaps. 

In estimating the new algorithm’s requirements, a worst case situation has 
been assumed-none of the K paths use the same beginning arc. The K 
paths leave node 1 in K distinct directions, requiring the search to continue 
for all nodes of each path. This situation occurs in the simple path 
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problem of the previous section, but is unlikely to occur in most networks. If 
some of the K paths begin on the same arc or set or arcs, the requirements 
for the new algorithm are considerably less. Even in the worst case, the new 
algorithm remains computationally competitive to HPD with heaps and at 
least as good as HP and HPD without heaps. 

The new algorithm requires significantly less storage than HP or either 
implementation of HPD. HP must store the original node labels, an ordered 
list of unused deviations, and the actual K paths (each of length N o  5 ) .  HPD 
without heaps must store a set of arc labels, the original node labels, and any 
additional node labels along each path of NO5 nodes. HPD with heaps must 
store the arc labels and a heap of size R at each node N. 

The new algorithm stores the original node labels and may require a stack 
of height K. The stack could become as large as the product of the average 
number of arcs in a path and the average number of arcs emanating from a 
node. This maximum height would only occur if K is greater than this 
product, a situation which is highly unlikely. For reasonable K, the stack 
length is neghgible in comparison with storing the original node labels. In 
addition, since some near-optimal paths usually share beginning arcs, the 
requirements are considerably less. The key feature of the new algorithm 
remains its minimal storage requirements. 

CONCLUSION 

- 

The new algorithm is easy to understand and install, which increases the 
likelihood of successful implementation and subsequent user acceptance. 
Only the backtracking or traceback procedure of a previously installed 
shortest path problem need be modified, leaving the major component of the 
model unaffected. As described in the introduction, Kth best path methods 
are inadequate to solve most practical problems, while the new technique is 
practical for many of these problems. 

Although the set of near-optimal solutions can be very large, it may 
contain information that is of interest. Frequently, the algorithm gives a 
sequence of paths where the (structural) differences between adjacent paths is 
small. In this situation, only every Mth path, say, need output to the user. In 
some situations, it will be possible to only produce every Mth path and 
reduce the running time accordingly. These problems can only be resolved in 
specific cases by careful consideration of the dynamic programming problem 
and the corresponding space of near-optimal solutions. 
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