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We give a generalization of the result of Erdijs and RBnyi on the length 
R,, of the longest head run in the first n tosses of a coin. Consider two 
independent sequences, X,X, . . .  X, and Y,Y2 . . .  Y,,. Suppose that 
X,, X,, .. . are i.i.d. p, and Y, ,  Y2, .. . are i.i.d. Y, where p and Y are possibly 
different distributions on a common finite alphabet S. Let p f'( X, = Y, ) E 

(0,l). The length of the longest matching consecutive subsequence is M,,,, ,, = 
max{k: X,+,= Y , + , f o r r = 1 t o k , f o r s o m e 0 1 i 1 r n - k , 0 1 J < n - k ) .  
For m and n + w with log(m)/log( mn) --* A E (0, I ) ,  our result is that  
there is a constant K E K ( p ,  Y, A) E (0, 13 such that P(lim M,, , ,J  
log,,,,( mn) = K ) = 1. The proof uses large deviation methods. The constant 
K is determined from a variational formula involving the Kullback- Liebler 
distance or relative entropy. A simple necessary and sufficient condition for 
K = 1 is given. For the case m = n ( A  = 1/2) and p = Y, K = 1. The set of 
( p, Y ,  A )  for which K = 1 has nonempty interior. The boundary of this set is 
the location of a phase transition. The results generalize to more than two 
sequences and to Markov chains. A strong law of large numbers is given for 
the proportion of letters within the longest matching word; the limiting 
proportion exhibits critical behavior, similar to that of K. 

1. Introduction. This paper gives a generalization of the result of Erdos and 
Renyi on the length of the longest run of heads in the first n tosses of a coin. Our 
motivation is the comparison of DNA sequences, which are sometimes modeled as 
sequences of i.i.d. letters, or as letters of a Markov chain, with different distribu- 
tions used for different sequences; see Smith, Waterman, and Sadler (1983). 

Consider two sequences of length n,  X,X2 . . . X, and YlY2 + + . Y,. The length 
of the longest consecutive match, without shifts, is 

(1) R ,  = max{m: Xi+k = x + k  fork = 1 to m, for some0 I i I n - m } .  

The length of the longest consecutive match, allowing shifts, is 

(2) 
M ,  = max{ m: Xc+k = T t k  for k = 1 to m, for some 0 I i ,  j I n - m} 

Suppose that the two sequences X,, X,, . . . and Y,,  Yz , .  . . are independent, 
with all letters chosen from a common finite alphabet S. Assume that X,, X,, . . . 
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are i.i.d. ( p ) ,  and Y,, Y, , .  . . are i.i.d. (v), where p and v are probability distribu- 
tions on S. Let p = P( X, = Yl )  = CaEs(p ,v , ) ,  and assume that p E (0,l). 

To compute the length R, of the longest match without shifts, the two 
sequences of letters may first be reduced to a single sequence of “heads” and 
“tails,” with a “head” reported for the ith toss when Xi = Y;:. Thus R, is the 
length of the longest head run in the first n tosses of a p-biased coin, described 
by the Erdos-Rbnyi law [Rbnyi (1970)l: 

P( lim R,Jlog,/,( n )  = 1) = 1. 
n+oo 

(3) 

For the length M, of the longest match with shifts, in the case p = v, it is 
shown in Arratia and Waterman (1985) that P(lim,,,M,Jlog,~,(n) = 2) = 1, 
so that 

(4) P( lim MJR, = 2) = 1. 
n +  w 

Loosely speaking, allowing shifts between two independent sequences with the 
same distribution doubles the length of the longest match. To see that Mn might 
grow like 2log,/,(n), note that a match of length m = I2log,/,(n)] starting 
from Xi and y /  occurs with probability p m  = n-, ,  which balances against = n2 
choices for (z ,  j). However, if p and v are not “close,” in a sense to be made 
precise later, then allowing shifts will not double the length of the longest match, 
i.e., (4) does not hold. 

For a class of examples in which we can explicitly determine when allowing 
shifts doubles the length of the longest match, let X,, X,, . . . be a sequence of 
fair coin tosses, and let Y,,&, ... be an independent sequence of biased coin 
tosses, with 8 = P(Yl = heads) E [0,1]. For all 8, p = f ,  so by (3), Rn grows like 
log,( n). In the case 8 = t ,  the two sequences have the same distribution, so that 
M, satisfies (4). In the case 8 = 1, the Y sequence is pure heads, so that M, = R, 
is the length of the longest head run in X,X, . X,, i.e., allowing shifts has no 
effect on the length of the longest match, and (4) does not hold. What happens 
for intermediate caw,  when one sequence represents a fair coin and the other 
sequence represents a biased but nondegenerate coin? Part of the answer, given 
by Theorem 1, is that (4) holds iff 8 E [ x ,  1 - XI, where x = 0.11002786.. . is the 
smaller solution of (x)log(x) + (1 - x)log(l - x )  = -(log2)/2. 

Theorem 1 states that if XI, X,, . . . is i.i.d. ( p )  and Y,, Y2, .  . . is i.i.d. (v),  with 
all letters independent and p = P( X, = Y,) E (0, l), then there exists a constant 
C = C ( p ,  v )  E [1,2] such that 

P( lim MJR, = C) = 1. 
n+ w 

[In the notation used in the summary and in Section 6, C ( p ,  v )  = 2K(p, v, 1/2).] 
Let a = a(p ,  v)  be the distribution on S corresponding to matching a single 

pair of letters: 

(6) a, = (pava)/p = P(X, = Yl = alX, = Y,). 
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A necessary and sufficient condition for C = 2 is that 

C ( ~1 uva/p )log( pa) 5 (log P )/2 

and C(P,va/P)log(v,) 5 (lOI3P)/2, 
(7) 

or equivalently, after a little manipulation, 

(7') H(a, v )  I (1/2)log(l/p) and H(a,  p )  I (1/2)lod1/p). 
Here H( , . ) is the relative entropy or Kullback-Leibler distance: H( a, v )  = 
Ca,log(aJv,) L 0, with H(a, v) = 0 iff a = v. 

Let H(a) = -Caalog(a,) L 0 be the entropy of a. Note that H(a, p )  + 
H( a, v )  = - H( a) + log(l/p), so that if H( a, p )  = H( a, v) (in particular if p = v )  
then H( a, p )  = H( a, v) = [ -H(  a) + log(l/p)]/2 I (1/2)log(l/p) so by (77, 
C(p, v )  = 2. Furthermore, if v = p and p is nontrivial, then a is nontrivial, so 
H(a) > 0, and H(a, p )  = H(a, v )  < (1/2)10g(l/p). I t  follows from (7') that for a 
fixed nontrivial distribution p ,  C(p, v )  = 2 for all distributions v in some neigh- 
borhood of p. 

2. Further discussion. For any distributions p and v, it is very easy to get 
an upper bound on M, - 2 log,/,,(n), as follows. For m = 1,2,. . . , define the 
event 

(8 )  Ai ,=  {Xi+, * e *  Xi+m= Y,+, - a *  q+m} 
that some "witness" to the event {M 2 m} appears a t  positions i in the X 
sequence and j in the Y sequence. Note that P ( A i j )  = pm for each choice of i 
and j. Thus if m = 2log,/,,n + b is an integer, so that pm = n-2pb, we have 
P(M 2 m) = P(U,,si,jsn-,,,Aij) < n 2 p m =  pb. Write 1x1 for the greatest in- 
teger I x ,  and write 1x1 for the least integer 2 x. Using M = [(2 + e)log,,,,n]. 
yields P(M,J(log,/,,n) > 2 + E )  < n-e,  and an argument using the Borel-Cantelli 
lemma along a skeleton of times nL 3 [p-kl  implies that  1 = 
P(limsup(M,J(log,/,n)) I 2). 

The idea behind the proof of Theorem 1 is contained in the following 
calculation, which shows directly how condition (7) arises. Let m = 12 log,/,,( n)]  , 
so that n2pm E (p ,  11. For each "word" w E S" let E, be the event that w 
appears within both XlX2 . . - X, and YIY, . . Y,: 
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Now with unions and sums taken over w E S", 

using p = C,(p,v,) to get the final equality. By the weak law of large numbers, 
most of the contribution to the sum at (12) comes from words w in which the 
proportions of letters are approximately those of the distribution a at (6). The 
condition (7) is that for words w with proportions a, both np"( w )  and nvm( w )  
are not larger than npm/2 E ( p'12, 13, so that the truncations " A 1 " in the line 
preceding (12) have a negligible effect on the sum. 

In the general case, C = C(p, v) E [l, 21 is defined by the requirement that 
with m = IClog,/,n], the sum in (11) is = 1, in the sense that 0 = 
limn - ,((l/m)log[C, ESmP( ICW)]). To show that MJR, + C in probability, 
only minor modification of the above calculation is needed. The upper bound on 
M, V E > 0 P(M,,/log,/,n > C + E) -, 0, is easily proved; it suffices to use m 
= I(C + t)log,/,n], and show that P(M 2 m) = P(UE,) I CP(Ew)  -, 0 as n 
--.) 00. To get the lower bound, V E > 0 P(MJlog,,n > C - E )  + 1, is more 
difficult; a bound on correlations is needed. For each word w E S" consider the 

- 

event G, that w appears at  a multiple of m within both X , X ,  X ,  and 
Y,Y2 * * Y,: 
(13) G,=  G, , ,= U { ~ = X i m + l  * . *  X(i+l)rn= Y , r n + ,  * * .  ? j + l p n } ,  

0 s  i, j s (  n / m ) -  1 

so that UWGW c {M 2 m}. For m = [(C - E)log,/,n], calculation shows that 
C,P(GW) + 00. For w # u E S", the events G, and G, are negatively correlated 
(Lemma l), so that ZP(GW) + 00 implies P(U,G,) + 1. 

3. Distinguishing matches by the proportions of letters involved. Let 
F'r(S) = {y E Rd: ya 2 0, Cy, = 1) be the set of probability measures on our 
finite alphabet S = {1,2,. . . , d}, and for m = 1,2,. . . , for any word w E S", let 
L( w) E pr(S) be the vector whose a t h  component is the proportion of letter a 
among the letters of w: 

fora E S, ~ ( w ) ,  = (l/m) l(wi = a) .  

For U c WS) define the length M,,v of the longest match between X ,  . . - X ,  
and Y, - - Y, with proportions in U. 

I s i s m  

M , , ~ =  max{m: Xi+l X i + " =  Y,+, Y,+,= w 

for some w with L( w )  E U, for some 0 I i, j 5 n - m}. (14) 
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Given p and v with p = Zpcl,v, E (0, l), for y, P E Pr(S) and c > 0 define (with 
the convention that log0 = - 00, but OlogO = 0) 

b(Y, P ,  c )  = (l/c)log(l/p) + CYal0gPa, 

(15) f ( Y , C )  = H(Y) + 0 A b ( y , p , c )  + 0 A b ( Y , V , C ) ,  

g ( y )  = inf{c: f ( y , c )  < O } .  

Informally, f (  y, c) represents l/m times the log of the contribution to the sum in 
the line before (12), from words w having L(w) near y, if rn = [clog,/,n]. Note 
that f ( y ,  0 )  is nonincreasing, and if H ( y )  > 0 and f ( y ,  c) = 0, then f ( y ,  .) is 
strictly decreasing in a neighborhood of c. Thus for nontrivial y E Pr(S), g( y )  is 
the unique value for c for which f ( y ,  c) = 0. If y = Sa is the point mass on the 
letter a E S and q = min(p,, v,) > 0, then g(y) = (logp)/(logq) E (0,2). 

The expressions for f and g in (15) allow a remarkable degree of simplification. 
Let f , ( Y ,  c )  = my); f , ( Y ,  c )  = W Y )  + W Y ,  p ,  c);  f 2 ( Y ,  c )  = H(Y) + b(Y, v, c) ;  and 
f3,cY, c )  = m y )  + W Y ,  p ,  c) + W Y ,  y ,  c); so that f = min( f,, f l ,  f 2 ,  f 3 ) .  For i = 

min, < i < 3gi(Y). Now 
1,2,3, define gi(y) by the requirement that fi(y, gi( y ) )  = 0, so that g ( y )  = 

f , ( Y , C )  = - CYJOgY, -(logP)/c + CYal0Wa = --H(Y,P) -(logP)/c, 

f 3 ( Y , C )  = - CYal0gYa - 2(logp)/c + CYalogPava 

= C Y a l o g ( P , ~ ~ (  PYA - (2 - c)(logp)/c 

= -%,a) 4 2  - .)(logp)/c, 
so that &(Y) = (2 hwP))/(log(l/P) + W Y ,  a)). Thus 

60 that gl(v> = log(l/p)/H(y, p )  and g2(v) = log(l/p)/H(y, v). Also 

 THEOREM^. I f X , , X ,  ,... arei.i.d.(p)andY,,Y, ,... arei.i.d.(v), withall 
btters independent and p = P( X ,  = Y,) E (0, l), then for any open U c Pr(S), 
Mn,u/(log,,pn) converges a.s .  to supy EUg(y). In  particular, 1 = 
P(limn,,MJlogl/pn = C(p, v)) where 

i log(l/p) log(l/p) 2log(l/p) 
H(Y,P) ’ H(u,v) ’ log(l/p) + H ( Y , a )  

c ( p , v )  = sup minj 
Y€Pr(S) 

and C(p, v )  = 2 if and only if both H(a, v), H(a, p )  I (1/2)10g(l/p). 

PROOF. 
First we prove the lower bound, that P( M,, , ,  > (c - E)log,/,,n eventually) = 1. 

If c = 0 (which occurs iff there is some letter a E S with a, = 0 and ya > 0 V 
y E U,)  then the lower bound is automatic. Assume that c > 0. Let E > 0 be 
given; we may assume that E < c. Fix a particular nontrivial P E U for which 
g( P )  > c - E. From the strict monotonicity of f (  P ,  . ) in a neighborhood of g( /I), 

Fix an open nonempty set U c Pr(S) and let c = sup,,(,g(y). 
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it follows that f (  8, c - E )  > 0. Let 6 = f (  8, c - E ) / &  Fix an open set V with 
/3 E V c U for which the final two terms in expression (15) for f (  * ,  c - E )  vary by 
a t  most 6 from their values a t  p, so that V y E V, 0 A b ( y , p , c  - E )  2 
0 A b( p, p,  c - E )  - 6, and similarly with Y in place of p. 

The number of words w of length rn with proportions L( w )  in V is a t  least 
exp( rn( H( p )  - S ) ) ,  if rn is sufficiently large, by Lemma 2. Let 

T = T(V,  n, rn) 3 1(Gw,,), 
w c s m :  L ( W ) € V  

so that with rn = I( c - E)log,/,n], 

w c s m :  L ( W ) € V  
P + O }  = u %,?I c {M,,v > ( c  - E)lOgl /pn) .  

Using Lemma 3, for sufficiently large n we have 

(l/m)log( ET) 2 H( p )  - 6 

4-0 A b ( p , p , c -  E )  - 6  + 0 A b ( P , v , C -  E )  - 6  - 6 

= f ( P , C -  E) - 4 6  = 6 > 0, 

so that ET > exp(rn6) for large n. Using Chebyshev's inequality and then 
Lemma 1 to get var(T) < ET, 

P( M,, v > ( c - ~)log,/,,n) 2 P( T f 0) 

> 1 - v ~ ( ~ ) / { ~ ( ~ ) } 2  

> 1 - l / E ( T )  

> 1 - exp( -ma) .  

A Borel-Cantelli argument along the skeleton of times nk = [ p P k ]  implies that 
1 = P(M,, > ( c  - e)log,/,n eventually). Hence 1 = P(M,,. > ( c  - E)log,/,n 
eventually). 

Now we prove the upper bound. For each y E U, c 2 g ( y )  implies f ( y ,  c + 
~ / 2 )  < 0. Hence a t  least one of the two terms b ( y ,  p ,  c + ~ / 2 ) ,  b(y ,  v, c + ~ / 2 )  is 
< 0, and not controlled by the truncation with 0. With 6 = (1/5)log(l/p) 
[ ( c  + ~/2 ) - l  - ( c  + E ) - ' ] ,  it follows that for all y E U ,  f ( y , c  + E) I -56 < 0. 

Each of the three terms in expression (15) for f is continuous, and Pr(S) is 
compact, so that we can pick a finite collection {y,, V,} such that U c U,V;, and 
for each z, y, E V,  C U, and for all y E V,, H(y) < H(y,) + 6,0 A b ( y ,  p, c + E )  < 
0 A b(y , ,  p, c + E) + 6, and 0 A b ( y ,  Y, c + E )  < 0 A b(y , ,  Y, c + E )  + 6. 

The number of words w E S" with proportions L ( w )  E V; is less than 
exp[m( H( y , )  + 26)], for sufficiently large rn, by Lemma 2. Let 

T, = T(V;, n, rn) = c E w ,  ,) 9 

w € S = :  L(W)€V(C)  

so that with rn = [ ( c  + E)log,/,n], {i&(,) 2 ( c  + E)log,,,n} c {TI # 0). Using 
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the upper bound on &E,,,) from Lemma 3, for large n we have 
(l/m)log(ET,) 5 H ( y i )  + 26 + b(yi,p,c + E) + 6 + b(yi,v,c + E )  + 6 

= f(y1,c + E) + 46 5 -6 < 0, 

so that ET, < exp( - ma) for large n. 
A Borel-Cantelli argument with nk = [p-kl implies that for each i, 0 = 

P(M,,v(i, > (c + e)log,,,n infinitely often). Hence 1 = P(M,, ,  < (c  + e)log,,,n 
eventually). 0 

LEMMA 1. Let XI, X,, . . . , Yl, Y,, .  . . be independent S-ualued variables, let 
integers m and n be fixed, and for any two distinct w,u E S", consider the 
events G, and G, defined in (13). The events G, and G, are negatively 
correlated. 

PROOF. Writing k = Ln/m], we have 

P ( ( G , ) ' n ( G , ) " )  = (1 - pm(w) - p " ( ~ ) ) ~ ( l  - P ( w )  - V " ( U ) ) ~  

5 (1 - p"(W)y(l - p"(u))k(l - v"(w)y(l - v"(U)y 

= P((Gw)c)P((G")c). 

LEMMA 2. Let S = { 1,2,. . . , d} and let U c Pr(S) be an  open subset of the 
set of probability measures on S. The number of words of length m with 
proportions in U grows like exp(m sup, E vH( y ) ) ,  i.e., 

PROOF. This result is contained in the theory of large deviations of sums of 
independent Rd-valued random vectors, as in Bahadur (1971). We present a 
simple proof, in order to prepare the way for Lemma 4 and to keep this paper 
self-contained. Now I{w E S": (L( w) E U}l = Zm!/(m,! . . . md!), where the 
sum is taken over integers m,, . .., md for which Cmi = m and y = 

(m,/m, . . . , m d m )  E U. From n logn - n + 1 < log(n!) < (n  + l)log(n + 1) - 
n it follows that 

~ ( y )  - m-'C(1 + log(m, + 1)) < m-'log(m!/[m,! md!]) 

< H ( y )  + m-'logm, 

where y = ( m,/m, . . . , mJm) E Pr(S). The lower bound on (l/m)log( I{ w E S"': 
L(w) E U}l)  is demonstrated by taking a single choice of (m,, . . . , md) with 
proportions y = (m,/m, . . . , mJm) whose entropy H ( y )  approximates 
sup, E ,H( y).  For the upper bound, note that the number of terms in the sum is 
I md, and (l/m)log(md) + 0 as rn + 00. 0 

LEMMA 3. Suppose X,, X,, . . . are i.i.d. ( p )  and Yl, Y,, .  . . are i.i.d. (v), 
with all letters independent. Let c > 0 and p E (0,l) be given and let m E 
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m(n, c) = I clog,/,n]. Let w E S" have proportions L( w) such that L( w,) = 0 
whenever paya = 0. Then the function f defined in (15) and the euents E,., and 

&fined in (9) and (13) satisfy 

f (L(w) , c )  - H ( L ( w ) )  - - E  < (l/m)logHGw,n) 
< (l/m)logP(E,,,) < f (L(w), 4 - f w w ) ) ,  

where E = (2/m)[log(4m) + log(l/p)/c] --$ 0 us n -+ m. 

4. A strong law of large numbers. Informally, Theorem 1 says that for 
the longest consecutive match between X,X2 - - ' X, and YIY, * - Yn with pro- 
portions near a given distribution y, the length relative to log,/,n tends almost 
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surely to g ( y ) .  Now the function g: Pr(s) -, [0,2] is continuous, and we will 
prove that g achieves its maximum C(p, v) a t  a unique distribution p. It then 
follows easily from Theorem 1 that for any neighborhood U of p, the longest 
match with proportions in U will be longer than the longest match with 
proportions not in U,  almost surely as n -, 00. Thus the proportions of all 
matching words of maximal length tend almost surely to p, as n + 00. 

Depending on p and v, the distribution a of letters in a simple match may or 
may not be the distribution p which maximizes g. For the coin tossing example 
discussed in Section 1, p = (0.5,0.5) and v = a = (1 - @,e), any case having 
0 < H( v) < (1/2)log 2 gives an example with p # a. 

THEOREM 2. In the setup of Theorem 1, there is a unique p E Pr(S) such 
that 

g(P)  = C(p , . )  = SUP g(v). 
Y E Pr( S )  

If C(p, v )  = 2 (in particular, if H ( a ,  p )  = H(a ,  v),), then /3 = a. As n -, 00, the 
proportions of letters, in all words of maximal length common to both X , X ,  . ' ' 
X,, and Y,Y, . . . Yn, tend almst surely to p: 

1 = P o = limsup{IP - L(W)I :  w = Xi+, . . .  X i + m  = q+l 0 . .  Y,+, ( n + m  

forsomeOI i , j s n - r n , w i t h m = M , , } ) .  

PROOF. To see that g achieves its maximum a t  a unique distribution p, 
consider the expression for g in (16): g = min, ~ ~ ,gi. Since g, and g, have no 
local maxima in the interior of Pr(S), g achieves its maximum either a t  a, where 
g, has its unique maximum, or else on one of the surfaces g ,  = gi. A maximum 
for g on the surface g, = g, is easily ruled out, since gl(y)  = g,(y)  = c > 0 
implies fl(y, c) = f , (y,  c) = 0 and thus f3(y, c) = - H ( y )  < 0, so that g3(y) < c. 

If g l (y)  = g3(y) = c > 0 then 0 = fl(y, c )  = f3(y, c) so that f2(v, c) = MY) > 0 
and hence g2( y ) > c so that g( y ) = c = g3( y).  On the surface { y :  gl( y )  = g3( y )} 
= {y: log(l/p) + H ( y ,  a) = 2H(y, p) } ,  g, is maximized by minimizing H ( y ,  a). I t  
follows from the strict convexity of H( , a) and of H( e ,  p )  that there is a unique 
y,, which achieves this. Similarly, there is a unique y,, which maximizes g( y ) given 
the constraint g, = g,. I t  remains to show that g(y,,) # g(y,). If g(y,,) = g(y,),  

The same argument yields H(a,  v) > (1/2)10g(l/p), which is impossible, since 
H(a,  p )  + H(a,  v) = - H ( a )  + log(l/p) I log(l/p). We have shown that there 
exist a distribution /3 such that g( p )  > g( y )  for all y # p. 

Since g ( y )  I (2 log(l/p))/(log(l/p) + WY, a)) by (161, and WY, a) 2 0 with 
equality iff y = a, it  follows that if C( p, v) = 2, then for y # a, g( y )  < 2 = g( a). 

Given E > 0, let U = {y E Pr(S): Jy - PI > E } .  Let 6 = (1/2) 
(g (p)  - supYEug(y)); 6 > 0 since Pr(S) is compact and g is continuous. By 
Theorem 1, there is a random N which is almost surely finite, such that for all 

then Y,, # a so 2 > g3(y,,) = gl(y,,) and hence W a ,  p )  2 WY,, p )  > (1/2)log(1/p). 
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5. Matching between two different Markov processes. In this section we 
generalize Theorem 1 to the situation in which X , X 2  . . X, and Y1Y2 * . . Y, are 
independent sequences of letters governed by two different Markov transition 
mechanisms on the finite alphabet S = {1,2,. . . , d } .  

It is necessary to keep track of the proportions of pairs of letters that appear 
in adjacent positions. Note that for any word w E S" and letter i E S, the 
number of adjacent pairs in w that begin with i is equal to the number of pairs 
that end in i ,  provided that the word is wrapped around a circle so that the pair 
(last letter, first letter) is counted as one of the m pairs. Thus we define: 

for w E s", L(w) i j  = (l/m) l(wkwk+l = G); i ,  j E S, 
l s k s r n  

with the understanding that w,,,+~ is evaluated as w,. Let 

q E Pr(S2):V i , j E  S ,q i j  > Oand qik = C qki ) ,  
keS kcS 

be the set of strictly positive balanced proportions of pairs, so that for any word 
w, L( w )  E B. For q, r E Pr(S2) define 

f i ( q )  E - C qijlog 
i ,  j c S  

and 

Note that if n and u are the marginals of q and r ,  respectively, so that 
vi = Ckqik and ui = Ckrik, then [qi j /ni]  is the stochastic matrix governing a 
Markov process, and if q E B then (ni) is the invariant measure: Cini(pij/7ri) = 

Ciq i ,  = 7rj. Also f i (q ,  r )  2 0, with equality iff q = r ,  since H ( 4 ,  r )  = 
Xini[H(qi( .,/ni, ri ( . ) /ui)] .  Note that R(q, r )  5 H ( q ,  r ) ,  with equality iff n = u, 
since &(q, r )  = H(q ,  r )  - H ( S ,  a). 

LEMMA 4. Let S = { 1,2,. . . , d }  and let U c Pr(S2) be open. The number of 
words of length m with "proportions of pairs" in U grows like 
exp(m SUPq E u n B f i ( Q ) ) ,  i.% 

lim (l /m)log(l{w E s": L ( w )  E V I [ )  = sup f i ( q ) .  
rn-w g c U n B  

PROOF. We give an elementary proof, but note that this result could also be 
proved by applying the large deviation theory in Donsker and Varadhan (1975) 
to the two-step Markov chain with state space S2 and transition probabilities 
P(i, j ) , ( / t , l )  = ('/d)'jk. 



1246 R. ARRATIA AND M. S. WATERMAN 

Let integers mi, > 1, i ,  j E S,  be given, with the property that for each i E S, 
Cimi, = C,mii. Let m = Ciimi, and let mi = C,mi,, for each i E S. Let qi, = 
mi,/m, for t ,  j E S, so that q E B. Elementary analysis of multinomial coeffi- 
cients, as in Lemma 2, will complete the proof, once it is shown that 

n ( (mi  - I)!/( mil! - * ( mi,i+l - I)! . mid!))  

- <l{w E s": L ( w )  = q } ( <  l ~ l f l ( m ~ ! / ( m ~ ~ !  
i c S  

mid!)) ,  
i c S  

with d + 1 identified as 1 in the lower bound. [The question of counting 
{ w E S": L( w )  = q }  exactly is a d d r d  in Billingsley (1961), Baum and Eagon 
(1966), and Zaman (1984).] A given word w E S" with Z(w) = q determines, for 
each i E S, a partition of the set {1,2,. . . , mi} into subsets Sil,. . . , Si& with 
lSi,l = m . . under the condition that k E Sic if the k th  appearance of letter i in 
the words  immediately followed by letter J .  The word can be reconstructed from 
its starting letter w1 and these partitions; this proves the upper bound. 

The lower bound is the number of words satisfying the additional conditions 
that the last appearance of letter 1 is followed by letter 2, the last appearance of 
2 is followed by a 3,, . . , with the word ending in letter d. Let ni, = mi, - ai, i +  

with the index d + 1 replaced by 1, so that ni = C,ni, = Cinji; i.e., [ni,] also 
satisfies the balance equations. Partition the set { 1,2,. . . , ni} into subsets 
Si, ,  . . . , Sid,  with lSi,l = nii. These partitions determine a word w with i( w )  = q, 
via the recipe: for k I ni, the kth appearance of letter i is followed by letter j, 
iff k E Sij .  The word begins with letter 1. When letter i appears for the 
(1 + ni)th time, all ni pairs ending in i have been used up, and we put down a 
letter i + 1 and then continue to follow the partitions. This happens first with 
letter 1, then letter 2,. . . , then letter d, at which point the word is completed. 0 

THEOREM 3. Let XlX2 . - and Y,Y2 . - be independent Markov chains on 
S = { 1,2, . . . , d} .  Let P = [pi,] and Q = [ qi,] be the transition mtrices govern- 
ing X and Y, respectively, with p i j  > 0 and qi, > 0 for all i ,  j E S. Let IT and o 
be the equilibrium distributions for X and Y, and &fine p and Y E B C Pr(S2) 
bY 

Consider the substochastic matrix R = [ ri,] = [ piiqi,], and let p ,  ( ri), and ( l i )  
be its principal eigenvalue and corresponding left and right positive eigenvectors, 
normalized so that Cliri = 1. Since [rij$/(pri)] is a stochastic matrix which 
governs a Markovprocess with equilibrium (liri), we define a! E B by 

Define g: Pr(S2) + [0,2], using (16) with H replaced by H. Then for any open 
U c Pr(S2), M,,, ,,/(log,/,n) converges a.s. to supv E ,, & y).  In particular, 
1 = P(lim -f M,,/log,/,n = C( P, Q)), where 

p . . = ~ . p . .  v . .=o .q . .  i , j E S .  
11 1 1 1 9  CJ I IJ '  

ai, = liri,q/p, i ,  j E S.  

C(P, Q) = SUP min{log(l/p)/fi(y, P), lod1/p)/H(y, v ) ,  
y E Pr(S2) n B 

(2 log(l/P)/(log(l/P) + f i ( Y  9 4) 1 9  
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and C( P, Q) = 2 if and only if both @a, v), H(a, p )  I (1/2)10g(l/p). Further- 
more, there is a unique p E B such that &?( 8) = C( P, Q) and 

forsome 0 5 i , j  5 n>t n, withrn = M , ) ) .  

If C( P, Q) = 2, then /3 = a. 

PROOF. The proof follows those of Theorems 1 and 2, with minor changes 
such as the substitution of Lemma 4 in place of Lemma 2. In place of the events 
G ,  involving nonoverlapping blocks of m letters, we apply Doeblin's method: Fix 
a letter a E S and consider blocks involving rn successive returns to letter a. 
Details of this method in the context of matching with shifts are given in Arratia 
and Waterman (1985). The remaining modifications are routine. 0 

6. Sequences with different lengths; more than two sequences. Com- 
parison of DNA sequences often involves two sequences with very different 
lengths, such as 200 and 4OOO. Consider the length M(m, n) of the longest 
consecutive matching between two sequences of lengths m and n, say X, * * X, 
and Y, . - - Y,. Even in the case where all m + n letters are i.i.d., the limit of the 
ratio (log m)/(log n) can have a critical role in determining first, whether or not 
M(m, n)  grows asymptotically like logl/,(mn), and second, the composition of 
the best matching word. 

Proceeding as in Section 3, we analyze M(m,  n)  according to the proportions 
L( w) of letters within the matching word w. Thus, for U c Pr(S) let 

M,(m,n) E max{t: xi+, xi+, = q+, ?+, = w 

forsomewwithL(w)E U , f o r s o m e O s i s r n -  t , O s j s n - t ) ,  

so that when U = F'r(S), M,(rn, n)  = M(m, n). 

THEOREM 4. Assume that X,, X , ,  . . . are i.i.d. ( p )  and Y,, Y,, . . . are i.i.d. 
(v), with all letters independent andp = P(Xl = Y,) E (0,l). Define a E Pr(S) 
by a, = pavJp. Assume that n andn 3 m, with (log rn)/(log(mn)) + A E (0,l). 
For A E (0,l) and y E Pr(S) define 

G(Y, A) = min{Alog(l/P)/~(YY p ) ,  (1 - ~)log(l/P)/H(Y, 4, 
log(l/P)/(log(l/P) + H ( Y 7 f f ) ) )  

(17) 

Then for any open U c PyS), Mu(m, n)/(log,/,(mn)) converges a.s. to 
sup,, E ,G( y ,  A). In particular, with K ( p ,  v, A )  = sup,, E pr(s)G(y, A )  E (0,13, we 
have 
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(18) K ( p , u , A )  = 1 iff bothH(a,p) I Alog(l/p) 

a d H ( a ,  u )  s (1 - A)log(l/p). 

PROOF. The proof is very similar to the proof of Theorem 1. In place of f and 
g as defined a t  (15), we now use 

with the idea that F(y, c, A )  represents l / t  times the log of the contribution to 
(nu'( w)) A 13, from words w E S t  having L( w) near y, when 
. Elementary manipulation shows that G(y, A )  = inf{c: 

F ( y ,  c, A )  < O}. The correspondence with the notation of Theorem 1 is that 
F(Y, c, f )  = f(v,2c), 2G(Y, f >  = g(v), and 2K(p, y ,  3 = C(p, v). 0 

In the special case p = u, Theorem 4 says that if (log m)/(log( m)) -, A E (0, l), 
then M(m, n) is asymptotic to log,/,(mn) iff A E [A,,, 1 - A,,], where A,, = 
H( a, p)/log(l/p) E [0, t). Note that in this case, with p = u,  the following are 
equivalent: A,, = 0; H(a, p )  = 0; a = p; p is the uniform distribution on S. 

If /3 = B(p ,  u, A )  is the unique distribution on S for which G(P, A )  = 
sup, E p,s,G( y, A), then as in Theorem 2, there is a strong law of large numbers 
for the composition of the best matching word: If m and n + 00 with (logm)/ 
(log( mn)) + A E (0, l), then with probability one, the proportions L( w) of letters 
within any longest matching word w common to X, . - - X ,  and Yl - - Yn tends 
to /3. There are examples in which /3 varies nontrivially with A,  even with p = v, 
such as any biased coin tossing example, with p = v = (1 - @ , e ) ,  and 8 # f. 

Theorem 1 can also be generalized to the case of r 2 2 independent sequences, 
allowing r different distributions and r different lengths. As in Theorem 3, all of 
this can also be done for r independent Markov chains, allowing r different 
transition matrices. In either the i.i.d. or the Markov case, the expressions 
corresponding to F and G in the statement of Theorem 4 become quite com- 
plicated-F becomes the sum of H ( y )  plus r terms, each involving relative 
entropy and truncation, and the formula corresponding to (16) and (17) expresses 
G as a minimum of 2" - 1 smooth terms. The one result which remains reason- 
ably simple is the necessary and sufficient condition for the length of the longest 
match to be asymptotic to log,/, of the number of positions in which such a 
match might occur. This result is given, for the i.i.d. case, in Theorem 5. 

THEOREM 5. Suppose that for j = 1 to r, the letters X[, Xi,. . . are i.i.d. 
(p,), where p, ,  . . . , p, are probability distributions on a finite alphabet S. Let 
p = E, E s p l ( a )  * * p,(a), and assume p E (0,l). Define a E Pr(S) by a( a) = 
p,(a)  * p,(a)/p. Define the length M = M(nl ,  . . . , n,) of the longest word 
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appearing, for j = 1 to r ,  within the first nj letters of the j t h  sequence: 

m: + z (l {w E s": x!+, x!+, = w ,  

forsome o I i I nj - m }  

j = l t o r  

Suppose that n , ,  . . . , n, + co with (lognj)/(log(n, n,)) + A j  > 0, for j = 1 

to r. Then there is a constant K 3 K(pl , .  . . , p , ;  A,, . . . A,) E (0,1] such that 

1 = P( M/log,,,( n, . . n, )  + K ) 
and 

K = 1 iff H( a, p j )  I Ajlog(l/p) forj  = 1 to r .  

PROOF. The argument is essentially the same as that for Theorems 1 
and 4. 0 
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