CRITICAL PHENOMENA IN SEQUENCE MATCHING

By Richard Arratia and Michael S. Waterman ${ }^{2}$
University of Southern California
Dedicated to the memory of Mark Kac.

We give a generalization of the result of Erdös and Rényi on the length R_{n} of the longest head run in the first n tosses of a coin. Consider two independent sequences, $X_{1} X_{2} \cdots X_{m}$ and $Y_{1} Y_{2} \cdots Y_{n}$. Suppose that X_{1}, X_{2}, \ldots are i.i.d. μ, and Y_{1}, Y_{2}, \ldots are i.i.d. ν, where μ and ν are possibly different distributions on a common finite alphabet S. Let $p \equiv P\left(X_{1}=Y_{1}\right) \in$ $(0,1)$. The length of the longest matching consecutive subsequence is $M_{m, n} \equiv$ $\max \left\{k: X_{i+r}=Y_{j+r}\right.$ for $r=1$ to k, for some $\left.0 \leq i \leq m-k, 0 \leq j \leq n-k\right\}$. For m and $n \rightarrow \infty$ with $\log (m) / \log (m n) \rightarrow \lambda \in(0,1)$, our result is that there is a constant $K \equiv K(\mu, \nu, \lambda) \in(0,1]$ such that $P\left(\lim M_{m, n} /\right.$ $\left.\log _{1 / p}(m n)=K\right)=1$. The proof uses large deviation methods. The constant K is determined from a variational formula involving the Kullback-Liebler distance or relative entropy. A simple necessary and sufficient condition for $K=1$ is given. For the case $m=n(\lambda=1 / 2)$ and $\mu=\nu, K=1$. The set of (μ, ν, λ) for which $K=1$ has nonempty interior. The boundary of this set is the location of a phase transition. The results generalize to more than two sequences and to Markov chains. A strong law of large numbers is given for the proportion of letters within the longest matching word; the limiting proportion exhibits critical behavior, similar to that of K.

1. Introduction. This paper gives a generalization of the result of Erdös and Renyi on the length of the longest run of heads in the first n tosses of a coin. Our motivation is the comparison of DNA sequences, which are sometimes modeled as sequences of i.i.d. letters, or as letters of a Markov chain, with different distributions used for different sequences; see Smith, Waterman, and Sadler (1983).

Consider two sequences of length $n, X_{1} X_{2} \cdots X_{n}$ and $Y_{1} Y_{2} \cdots Y_{n}$. The length of the longest consecutive match, without shifts, is

$$
\begin{equation*}
R_{n} \equiv \max \left\{m: X_{i+k}=Y_{i+k} \text { for } k=1 \text { to } m, \text { for some } 0 \leq i \leq n-m\right\} . \tag{1}
\end{equation*}
$$

The length of the longest consecutive match, allowing shifts, is

$$
\begin{equation*}
M_{n} \equiv \max \left\{m: X_{i+k}=Y_{j+k} \text { for } k=1 \text { to } m, \text { for some } 0 \leq i, j \leq n-m\right\} . \tag{2}
\end{equation*}
$$

Suppose that the two sequences X_{1}, X_{2}, \ldots and Y_{1}, Y_{2}, \ldots are independent, with all letters chosen from a common finite alphabet S. Assume that X_{1}, X_{2}, \ldots

Received March 1984; revised December 1984.
'Supported by NSF Grant MCS-8301960.
${ }^{2}$ Supported by a grant from the System Development Foundation.
AMS 1980 subject classifications. Primary 60J10; secondary 68G10, 94A17.
Key words and phrases. Entropy, Kullback-Liebler distance, large deviations, sequence matching.
are i.i.d. (μ), and Y_{1}, Y_{2}, \ldots are i.i.d. (ν), where μ and ν are probability distributions on S. Let $p \equiv P\left(X_{1}=Y_{1}\right)=\Sigma_{a \in S}\left(\mu_{a} \nu_{a}\right)$, and assume that $p \in(0,1)$.

To compute the length R_{n} of the longest match without shifts, the two sequences of letters may first be reduced to a single sequence of "heads" and "tails," with a "head" reported for the i th toss when $X_{i}=Y_{i}$. Thus R_{n} is the length of the longest head run in the first n tosses of a p-biased coin, described by the Erdös-Rényi law [Rényi (1970)]:

$$
\begin{equation*}
P\left(\lim _{n \rightarrow \infty} R_{n} / \log _{1 / p}(n)=1\right)=1 \tag{3}
\end{equation*}
$$

For the length M_{n} of the longest match with shifts, in the case $\mu=\nu$, it is shown in Arratia and Waterman (1985) that $P\left(\lim _{n \rightarrow \infty} M_{n} / \log _{1 / p}(n)=2\right)=1$, so that

$$
\begin{equation*}
P\left(\lim _{n \rightarrow \infty} M_{n} / R_{n}=2\right)=1 \tag{4}
\end{equation*}
$$

Loosely speaking, allowing shifts between two independent sequences with the same distribution doubles the length of the longest match. To see that M_{n} might grow like $2 \log _{1 / p}(n)$, note that a match of length $m=\left[2 \log _{1 / p}(n) \mid\right.$ starting from X_{i} and Y_{j} occurs with probability $p^{m} \approx n^{-2}$, which balances against $\approx n^{2}$ choices for (i, j). However, if μ and ν are not "close," in a sense to be made precise later, then allowing shifts will not double the length of the longest match, i.e., (4) does not hold.

For a class of examples in which we can explicitly determine when allowing shifts doubles the length of the longest match, let X_{1}, X_{2}, \ldots be a sequence of fair coin tosses, and let Y_{1}, Y_{2}, \ldots be an independent sequence of biased coin tosses, with $\theta=P\left(Y_{1}=\right.$ heads $) \in[0,1]$. For all $\theta, p=\frac{1}{2}$, so by (3), R_{n} grows like $\log _{2}(n)$. In the case $\theta=\frac{1}{2}$, the two sequences have the same distribution, so that M_{n} satisfies (4). In the case $\theta=1$, the Y sequence is pure heads, so that $M_{n} \equiv R_{n}$ is the length of the longest head run in $X_{1} X_{2} \cdots X_{n}$, i.e., allowing shifts has no effect on the length of the longest match, and (4) does not hold. What happens for intermediate cases, when one sequence represents a fair coin and the other sequence represents a biased but nondegenerate coin? Part of the answer, given by Theorem 1, is that (4) holds iff $\theta \in[x, 1-x]$, where $x=0.11002786 \ldots$ is the smaller solution of $(x) \log (x)+(1-x) \log (1-x)=-(\log 2) / 2$.

Theorem 1 states that if X_{1}, X_{2}, \ldots is i.i.d. (μ) and Y_{1}, Y_{2}, \ldots is i.i.d. (ν), with all letters independent and $p=P\left(X_{1}=Y_{1}\right) \in(0,1)$, then there exists a constant $C=C(\mu, \nu) \in[1,2]$ such that

$$
\begin{equation*}
P\left(\lim _{n \rightarrow \infty} M_{n} / R_{n}=C\right)=1 \tag{5}
\end{equation*}
$$

[In the notation used in the summary and in Section 6, $C(\mu, \nu) \equiv 2 K(\mu, \nu, 1 / 2)$.]
Let $\alpha \equiv \alpha(\mu, \nu)$ be the distribution on S corresponding to matching a single pair of letters:

$$
\begin{equation*}
\alpha_{a} \equiv\left(\mu_{a} \nu_{a}\right) / p=P\left(X_{1}=Y_{1}=a \mid X_{1}=Y_{1}\right) . \tag{6}
\end{equation*}
$$

A necessary and sufficient condition for $C=2$ is that

$$
\begin{align*}
& \sum\left(\mu_{a} \nu_{a} / p\right) \log \left(\mu_{a}\right) \leq(\log p) / 2 \\
& \text { and } \quad \sum\left(\mu_{a} \nu_{a} / p\right) \log \left(\nu_{a}\right) \leq(\log p) / 2, \tag{7}
\end{align*}
$$

or equivalently, after a little manipulation,

$$
H(\alpha, \nu) \leq(1 / 2) \log (1 / p) \quad \text { and } \quad H(\alpha, \mu) \leq(1 / 2) \log (1 / p)
$$

Here $H(\cdot, \cdot)$ is the relative entropy or Kullback-Leibler distance: $H(\alpha, \nu) \equiv$ $\sum \alpha_{a} \log \left(\alpha_{a} / \nu_{a}\right) \geq 0$, with $H(\alpha, \nu)=0$ iff $\alpha=\nu$.

Let $H(\alpha) \equiv-\sum \alpha_{a} \log \left(\alpha_{a}\right) \geq 0$ be the entropy of α. Note that $H(\alpha, \mu)+$ $H(\alpha, \nu)=-H(\alpha)+\log (1 / p)$, so that if $H(\alpha, \mu)=H(\alpha, \nu)$ (in particular if $\mu=\nu$) then $H(\alpha, \mu)=H(\alpha, \nu)=[-H(\alpha)+\log (1 / p)] / 2 \leq(1 / 2) \log (1 / p)$ so by (7^{\prime}), $C(\mu, \nu)=2$. Furthermore, if $\nu=\mu$ and μ is nontrivial, then α is nontrivial, so $H(\alpha)>0$, and $H(\alpha, \mu)=H(\alpha, \nu)<(1 / 2) \log (1 / p)$. It follows from (7^{\prime}) that for a fixed nontrivial distribution $\mu, C(\mu, \nu)=2$ for all distributions ν in some neighborhood of μ.
2. Further discussion. For any distributions μ and ν, it is very easy to get an upper bound on $M_{n}-2 \log _{1 / p}(n)$, as follows. For $m=1,2, \ldots$, define the event

$$
\begin{equation*}
A_{i j} \equiv\left\{X_{i+1} \cdots X_{i+m}=Y_{j+1} \cdots Y_{j+m}\right\} \tag{8}
\end{equation*}
$$

that some "witness" to the event $\{M \geq m\}$ appears at positions i in the X sequence and j in the Y sequence. Note that $P\left(A_{i j}\right)=p^{m}$ for each choice of i and j. Thus if $m=2 \log _{1 / p} n+b$ is an integer, so that $p^{m}=n^{-2} p^{b}$, we have $P(M \geq m)=P\left(\cup_{0 \leq i, j \leq n-m} A_{i j}\right)<n^{2} p^{m}=p^{b}$. Write $\lfloor x\rfloor$ for the greatest integer $\leq x$, and write $\lceil x\rceil$ for the least integer $\geq x$. Using $m=\left\lceil(2+\varepsilon) \log _{1 / p} n\right\rceil$ yields $P\left(M_{n} /\left(\log _{1 / p} n\right)>2+\varepsilon\right)<n^{-\varepsilon}$, and an argument using the Borel-Cantelli lemma along a skeleton of times $n_{k} \equiv\left\lceil p^{-k}\right\rceil$ implies that $1=$ $P\left(\lim \sup \left(M_{n} /\left(\log _{1 / p} n\right)\right) \leq 2\right)$.

The idea behind the proof of Theorem 1 is contained in the following calculation, which shows directly how condition (7) arises. Let $m=\left\lceil 2 \log _{1 / p}(n)\right\rceil$, so that $n^{2} p^{m} \in(p, 1]$. For each "word" $w \in S^{m}$ let E_{w} be the event that w appears within both $X_{1} X_{2} \cdots X_{n}$ and $Y_{1} Y_{2} \cdots Y_{n}$:

$$
\begin{align*}
E_{w} & \equiv E_{w, n} \\
& \equiv\left\{w=X_{i+1} \cdots X_{i+m}=Y_{j+1} \cdots Y_{j+m} \text { for some } 0 \leq i, j \leq n-m\right\} . \tag{9}
\end{align*}
$$

From the independence of the two sequences,

$$
\begin{align*}
& P\left(E_{w}\right) \\
& \quad=P\left(\bigcup_{0 \leq i \leq n-m}\left\{w=X_{i+1} \cdots X_{i+m}\right\}\right) P\left(\bigcup_{0 \leq j \leq n-m}\left\{w=Y_{j+1} \cdots Y_{j+m}\right\}\right) \tag{10}\\
& \quad<\left[\left(n \mu^{m}(w)\right) \wedge 1\right]\left[\left(n \nu^{m}(w)\right) \wedge 1\right] .
\end{align*}
$$

Now with unions and sums taken over $w \in S^{m}$,

$$
\begin{align*}
P(M \geq m) & =P\left(\bigcup_{w} E_{w}\right) \leq \sum_{w} P\left(E_{w}\right) \tag{11}\\
& <\sum_{w}\left[\left(n \mu^{m}(w)\right) \wedge 1\right]\left[\left(n \nu^{m}(w)\right) \wedge 1\right] \\
& \leq \sum_{w} n \mu^{m}(w) n \nu^{m}(w) \tag{12}\\
& =n^{2} p^{m} \in(p, 1],
\end{align*}
$$

using $p=\Sigma_{a}\left(\mu_{a} \nu_{a}\right)$ to get the final equality. By the weak law of large numbers, most of the contribution to the sum at (12) comes from words w in which the proportions of letters are approximately those of the distribution α at (6). The condition (7) is that for words w with proportions α, both $n \mu^{m}(w)$ and $n \nu^{m}(w)$ are not larger than $n p^{m / 2} \in\left(p^{1 / 2}, 1\right]$, so that the truncations " $\wedge 1$ " in the line preceding (12) have a negligible effect on the sum.

In the general case, $C=C(\mu, \nu) \in[1,2]$ is defined by the requirement that with $m=\left\lceil C \log _{1 / p} n\right\rceil$, the sum in (11) is ≈ 1, in the sense that $0=$ $\lim _{n \rightarrow \infty}\left((1 / m) \log \left[\sum_{w \in S^{m}} P\left(E_{w}\right)\right]\right)$. To show that $M_{n} / R_{n} \rightarrow C$ in probability, only minor modification of the above calculation is needed. The upper bound on $M, \forall \varepsilon>0 P\left(M_{n} / \log _{1 / p} n>C+\varepsilon\right) \rightarrow 0$, is easily proved; it suffices to use m $=\left|(C+\varepsilon) \log _{1 / p} n\right|$, and show that $P(M \geq m)=P\left(\cup E_{w}\right) \leq \Sigma P\left(E_{w}\right) \rightarrow 0$ as n $\rightarrow \infty$. To get the lower bound, $\forall \varepsilon>0 P\left(M_{n} / \log _{1 / p} n>C-\varepsilon\right) \rightarrow 1$, is more difficult; a bound on correlations is needed. For each word $w \in S^{m}$ consider the event G_{w} that w appears at a multiple of m within both $X_{1} X_{2} \cdots X_{n}$ and $Y_{1} Y_{2} \cdots Y_{n}:$

$$
\text { (13) } \quad G_{w} \equiv G_{w, n} \equiv \bigcup_{0 \leq i, j \leq(n / m)-1}\left\{w=X_{i m+1} \cdots X_{(i+1) m}=Y_{j m+1} \cdots Y_{(j+1) m}\right\},
$$

so that $\cup_{w} G_{w} \subset\{M \geq m\}$. For $m=\left\lceil(C-\varepsilon) \log _{1 / p} n\right]$, calculation shows that $\sum_{w} P\left(G_{w}\right) \rightarrow \infty$. For $w \neq v \in S^{m}$, the events G_{w} and G_{v} are negatively correlated (Lemma 1), so that $\sum P\left(G_{w}\right) \rightarrow \infty$ implies $P\left(\mathrm{U}_{w} G_{w}\right) \rightarrow 1$.
3. Distinguishing matches by the proportions of letters involved. Let $\operatorname{Pr}(S)=\left\{\gamma \in R^{d}: \gamma_{a} \geq 0, \Sigma \gamma_{a}=1\right\}$ be the set of probability measures on our finite alphabet $S \equiv\{1,2, \ldots, d\}$, and for $m=1,2, \ldots$, for any word $w \in S^{m}$, let $L(w) \in \operatorname{Pr}(S)$ be the vector whose a th component is the proportion of letter a among the letters of w :

$$
\text { for } a \in S, \quad L(w)_{a} \equiv(1 / m) \sum_{1 \leq i \leq m} 1\left(w_{i}=a\right)
$$

For $U \subset \operatorname{Pr}(S)$ define the length $M_{n, U}$ of the longest match between $X_{1} \cdots X_{n}$ and $Y_{1} \cdots Y_{n}$ with proportions in U :

$$
\begin{align*}
& M_{n, U} \equiv \max \left\{m: X_{i+1} \cdots X_{i+m}=Y_{j+1} \cdots Y_{j+m}=w\right. \tag{14}\\
& \quad \text { for some } w \text { with } L(w) \in U, \text { for some } 0 \leq i, j \leq n-m\} .
\end{align*}
$$

Given μ and ν with $p \equiv \sum \mu_{a} \nu_{a} \in(0,1)$, for $\gamma, \beta \in \operatorname{Pr}(S)$ and $c>0$ define (with the convention that $\log 0=-\infty$, but $0 \log 0=0$)

$$
\begin{align*}
b(\gamma, \beta, c) & \equiv(1 / c) \log (1 / p)+\sum \gamma_{a} \log \beta_{a} \\
f(\gamma, c) & \equiv H(\gamma)+0 \wedge b(\gamma, \mu, c)+0 \wedge b(\gamma, \nu, c) \tag{15}\\
g(\gamma) & \equiv \inf \{c: f(\gamma, c)<0\}
\end{align*}
$$

Informally, $f(\gamma, c)$ represents $1 / m$ times the log of the contribution to the sum in the line before (12), from words w having $L(w)$ near γ, if $m=\left\lceil c \log _{1 / p} n\right\rceil$. Note that $f(\gamma, \cdot)$ is nonincreasing, and if $H(\gamma)>0$ and $f(\gamma, c)=0$, then $f(\gamma, \cdot)$ is strictly decreasing in a neighborhood of c. Thus for nontrivial $\gamma \in \operatorname{Pr}(S), g(\gamma)$ is the unique value for c for which $f(\gamma, c)=0$. If $\gamma=\delta_{a}$ is the point mass on the letter $a \in S$ and $q \equiv \min \left(\mu_{a}, \nu_{a}\right)>0$, then $g(\gamma)=(\log p) /(\log q) \in(0,2)$.

The expressions for f and g in (15) allow a remarkable degree of simplification. Let $f_{0}(\gamma, c) \equiv H(\gamma) ; f_{1}(\gamma, c) \equiv H(\gamma)+b(\gamma, \mu, c) ; f_{2}(\gamma, c) \equiv H(\gamma)+b(\gamma, \nu, c)$; and $f_{3}(\gamma, c) \equiv H(\gamma)+b(\gamma, \mu, c)+b(\gamma, \nu, c)$; so that $f \equiv \min \left(f_{0}, f_{1}, f_{2}, f_{3}\right)$. For $i=$ $1,2,3$, define $g_{i}(\gamma)$ by the requirement that $f_{i}\left(\gamma, g_{i}(\gamma)\right)=0$, so that $g(\gamma)=$ $\min _{1 \leq i \leq 3} g_{i}(\gamma)$. Now

$$
f_{1}(\gamma, c) \equiv-\sum \gamma_{a} \log \gamma_{a}-(\log p) / c+\sum \gamma_{a} \log \mu_{a}=-H(\gamma, \mu)-(\log p) / c
$$

so that $g_{1}(\gamma)=\log (1 / p) / H(\gamma, \mu)$ and $g_{2}(\gamma)=\log (1 / p) / H(\gamma, \nu)$. Also

$$
\begin{aligned}
f_{3}(\gamma, c) & \equiv-\sum \gamma_{a} \log \gamma_{a}-2(\log p) / c+\sum \gamma_{a} \log \mu_{a} \nu_{a} \\
& =\sum \gamma_{a} \log \left(\mu_{a} \nu_{a} /\left(p \gamma_{a}\right)\right)-(2-c)(\log p) / c \\
& =-H(\gamma, \alpha)-(2-c)(\log p) / c
\end{aligned}
$$

so that $g_{3}(\gamma)=(2 \log (1 / p)) /(\log (1 / p)+H(\gamma, \alpha))$. Thus

$$
\begin{equation*}
g(\gamma)=\min \left\{\frac{\log (1 / p)}{H(\gamma, \mu)}, \frac{\log (1 / p)}{H(\gamma, \nu)}, \frac{2 \log (1 / p)}{\log (1 / p)+H(\gamma, \alpha)}\right\} \tag{16}
\end{equation*}
$$

Theorem 1. If X_{1}, X_{2}, \ldots are i.i.d. (μ) and Y_{1}, Y_{2}, \ldots are i.i.d. (ν), with all letters independent and $p=P\left(X_{1}=Y_{1}\right) \in(0,1)$, then for any open $U \subset \operatorname{Pr}(S)$, $M_{n, U} /\left(\log _{1 / p} n\right)$ converges a.s. to $\sup _{\gamma \in U} g(\gamma)$. In particular, $1=$ $P\left(\lim _{n \rightarrow \infty} M_{n} / \log _{1 / p} n=C(\mu, \nu)\right)$ where

$$
C(\mu, \nu)=\sup _{\gamma \in \operatorname{Pr}(S)} \min \left\{\frac{\log (1 / p)}{H(\gamma, \mu)}, \frac{\log (1 / p)}{H(\gamma, \nu)}, \frac{2 \log (1 / p)}{\log (1 / p)+H(\gamma, \alpha)}\right\}
$$

and $C(\mu, \nu)=2$ if and only if both $H(\alpha, \nu), H(\alpha, \mu) \leq(1 / 2) \log (1 / p)$.
Proof. Fix an open nonempty set $U \subset \operatorname{Pr}(S)$ and let $c=\sup _{\gamma \in U} g(\gamma)$.
First we prove the lower bound, that $P\left(M_{n, U}>(c-\varepsilon) \log _{1 / p} n\right.$ eventually $)=1$. If $c=0$ (which occurs iff there is some letter $a \in S$ with $\alpha_{a}=0$ and $\gamma_{a}>0 \forall$ $\gamma \in U$,) then the lower bound is automatic. Assume that $c>0$. Let $\varepsilon>0$ be given; we may assume that $\varepsilon<c$. Fix a particular nontrivial $\beta \in U$ for which $g(\beta)>c-\varepsilon$. From the strict monotonicity of $f(\beta, \cdot)$ in a neighborhood of $g(\beta)$,
it follows that $f(\beta, c-\varepsilon)>0$. Let $\delta=f(\beta, c-\varepsilon) / 5$. Fix an open set V with $\beta \in V \subset U$ for which the final two terms in expression (15) for $f(\cdot, c-\varepsilon)$ vary by at most δ from their values at β, so that $\forall \gamma \in V, 0 \wedge b(\gamma, \mu, c-\varepsilon) \geq$ $0 \wedge b(\beta, \mu, c-\varepsilon)-\delta$, and similarly with ν in place of μ.

The number of words w of length m with proportions $L(w)$ in V is at least $\exp (m(H(\beta)-\delta))$, if m is sufficiently large, by Lemma 2. Let

$$
T \equiv T(V, n, m) \equiv \sum_{w \in S^{m}: L(w) \in V} 1\left(G_{w, n}\right),
$$

so that with $m=\left\lceil(c-\varepsilon) \log _{1 / p} n\right\rceil$,

$$
\{T \neq 0\}=\bigcup_{w \in S^{m}: L(w) \in V} G_{w, n} \subset\left\{M_{n, V}>(c-\varepsilon) \log _{1 / p} n\right\} .
$$

Using Lemma 3 , for sufficiently large n we have

$$
\begin{aligned}
(1 / m) \log (E T) \geq & H(\beta)-\delta \\
& +0 \wedge b(\beta, \mu, c-\varepsilon)-\delta+0 \wedge b(\beta, \nu, c-\varepsilon)-\delta-\delta \\
= & f(\beta, c-\varepsilon)-4 \delta=\delta>0,
\end{aligned}
$$

so that $E T>\exp (m \delta)$ for large n. Using Chebyshev's inequality and then Lemma 1 to get $\operatorname{var}(T)<E T$,

$$
\begin{aligned}
P\left(M_{n, V}>(c-\varepsilon) \log _{1 / p} n\right) & \geq P(T \neq 0) \\
& >1-\operatorname{var}(T) /\{E(T)\}^{2} \\
& >1-1 / E(T) \\
& >1-\exp (-m \delta) .
\end{aligned}
$$

A Borel-Cantelli argument along the skeleton of times $n_{k} \equiv\left\lceil p^{-k}\right\rceil$ implies that $1=P\left(M_{n, V}>(c-\varepsilon) \log _{1 / p} n\right.$ eventually). Hence $1=P\left(M_{n, U}>(c-\varepsilon) \log _{1 / p} n\right.$ eventually).

Now we prove the upper bound. For each $\gamma \in U, c \geq g(\gamma)$ implies $f(\gamma, c+$ $\varepsilon / 2)<0$. Hence at least one of the two terms $b(\gamma, \mu, c+\varepsilon / 2), b(\gamma, \nu, c+\varepsilon / 2)$ is <0, and not controlled by the truncation with 0 . With $\delta=(1 / 5) \log (1 / p)$ $\left[(c+\varepsilon / 2)^{-1}-(c+\varepsilon)^{-1}\right]$, it follows that for all $\gamma \in U, f(\gamma, c+\varepsilon) \leq-5 \delta<0$.

Each of the three terms in expression (15) for f is continuous, and $\operatorname{Pr}(S)$ is compact, so that we can pick a finite collection $\left\{\gamma_{i}, V_{i}\right\}$ such that $U \subset \bigcup_{i} V_{i}$, and for each $i, \gamma_{i} \in V_{i} \subset U$, and for all $\gamma \in V_{i}, H(\gamma)<H\left(\gamma_{i}\right)+\delta, 0 \wedge b(\gamma, \mu, c+\varepsilon)<$ $0 \wedge b\left(\gamma_{i}, \mu, c+\varepsilon\right)+\delta$, and $0 \wedge b(\gamma, \nu, c+\varepsilon)<0 \wedge b\left(\gamma_{i}, \nu, c+\varepsilon\right)+\delta$.

The number of words $w \in S^{m}$ with proportions $L(w) \in V_{i}$ is less than $\exp \left[m\left(H\left(\gamma_{i}\right)+2 \delta\right)\right]$, for sufficiently large m, by Lemma 2 . Let

$$
T_{i} \equiv T\left(V_{i}, n, m\right) \equiv \sum_{w \in S^{m}: L(w) \in V(i)} 1\left(E_{w, n}\right),
$$

so that with $m=\left\lceil(c+\varepsilon) \log _{1 / p} n\right\rceil,\left\{M_{n, V(i)} \geq(c+\varepsilon) \log _{1 / p} n\right\} \subset\left\{T_{i} \neq 0\right\}$. Using
the upper bound on $P\left(E_{\omega, n}\right)$ from Lemma 3, for large n we have

$$
\begin{aligned}
(1 / m) \log \left(E T_{i}\right) & \leq H\left(\gamma_{i}\right)+2 \delta+b\left(\gamma_{i}, \mu, c+\varepsilon\right)+\delta+b\left(\gamma_{i}, \nu, c+\varepsilon\right)+\delta \\
& =f\left(\gamma_{i}, c+\varepsilon\right)+4 \delta \leq-\delta<0
\end{aligned}
$$

so that $E T_{i}<\exp (-m \delta)$ for large n.
A Borel-Cantelli argument with $n_{k} \equiv\left\lceil p^{-k}\right\rceil$ implies that for each $i, 0=$ $P\left(M_{n, V(i)}>(c+\varepsilon) \log _{1 / p} n\right.$ infinitely often $)$. Hence $1=P\left(M_{n, U}<(c+\varepsilon) \log _{1 / p} n\right.$ eventually).

Lemma 1. Let $X_{1}, X_{2}, \ldots, Y_{1}, Y_{2}, \ldots$ be independent S-valued variables, let integers m and n be fixed, and for any two distinct $w, v \in S^{m}$, consider the events G_{w} and G_{v} defined in (13). The events G_{w} and G_{v} are negatively correlated.

Proof. Writing $k \equiv\lfloor n / m\rfloor$, we have

$$
\begin{aligned}
P\left(\left(G_{w}\right)^{c} \cap\left(G_{v}\right)^{c}\right) & =\left(1-\mu^{m}(w)-\mu^{m}(v)\right)^{k}\left(1-\nu^{m}(w)-\nu^{m}(v)\right)^{k} \\
& \leq\left(1-\mu^{m}(w)\right)^{k}\left(1-\mu^{m}(v)\right)^{k}\left(1-\nu^{m}(w)\right)^{k}\left(1-\nu^{m}(v)\right)^{k} \\
& =P\left(\left(G_{w}\right)^{c}\right) P\left(\left(G_{v}\right)^{c}\right)
\end{aligned}
$$

Lemma 2. Let $S=\{1,2, \ldots, d\}$ and let $U \subset \operatorname{Pr}(S)$ be an open subset of the set of probability measures on S. The number of words of length m with proportions in U grows like $\exp \left(m \sup _{\gamma \in U} H(\gamma)\right)$, i.e.,

$$
\lim _{m \rightarrow \infty}(1 / m) \log \left(\left|\left\{w \in S^{m}: L(w) \in U\right\}\right|\right)=\sup _{\gamma \in U} H(\gamma)
$$

Proof. This result is contained in the theory of large deviations of sums of independent R^{d}-valued random vectors, as in Bahadur (1971). We present a simple proof, in order to prepare the way for Lemma 4 and to keep this paper self-contained. Now $\mid\left\{w \in S^{m}:(L(w) \in U\} \mid=\sum m!/\left(m_{1}!\cdots m_{d}!\right)\right.$, where the sum is taken over integers m_{1}, \ldots, m_{d} for which $\Sigma m_{i}=m$ and $\gamma=$ $\left(m_{1} / m, \ldots, m_{d} / m\right) \in U$. From $n \log n-n+1<\log (n!)<(n+1) \log (n+1)-$ n it follows that

$$
\begin{aligned}
H(\gamma)-m^{-1} \sum\left(1+\log \left(m_{i}+1\right)\right) & <m^{-1} \log \left(m!/\left[m_{1}!\cdots m_{d}!\right]\right) \\
& <H(\gamma)+m^{-1} \log m
\end{aligned}
$$

where $\gamma=\left(m_{1} / m, \ldots, m_{d} / m\right) \in \operatorname{Pr}(S)$. The lower bound on $(1 / m) \log \left(\mid\left\{w \in S^{m}\right.\right.$: $L(w) \in U\} \mid)$ is demonstrated by taking a single choice of $\left(m_{1}, \ldots, m_{d}\right)$ with proportions $\gamma=\left(m_{1} / m, \ldots, m_{d} / m\right)$ whose entropy $H(\gamma)$ approximates $\sup _{\gamma \in U} H(\gamma)$. For the upper bound, note that the number of terms in the sum is $\leq m^{d}$, and $(1 / m) \log \left(m^{d}\right) \rightarrow 0$ as $m \rightarrow \infty$.

Lemma 3. Suppose X_{1}, X_{2}, \ldots are i.i.d. (μ) and Y_{1}, Y_{2}, \ldots are i.i.d. (ν), with all letters independent. Let $c>0$ and $p \in(0,1)$ be given and let $m \equiv$
$m(n, c) \equiv\left[c \log _{1 / p} n\right]$. Let $w \in S^{m}$ have proportions $L(w)$ such that $L\left(w_{a}\right)=0$ whenever $\mu_{a} \nu_{a}=0$. Then the function f defined in (15) and the events $E_{w, n}$ and $G_{w, n}$ defined in (9) and (13) satisfy

$$
\begin{aligned}
f(L(w), c)-H(L(w))-\varepsilon & <(1 / m) \log P\left(G_{w, n}\right) \\
< & (1 / m) \log P\left(E_{w, n}\right)<f(L(w), c)-H(L(w)),
\end{aligned}
$$

where $\varepsilon=(2 / m)[\log (4 m)+\log (1 / p) / c] \rightarrow 0$ as $n \rightarrow \infty$.
Proof. To see the upper bound note that

$$
(1 / m)(\log n) \leq 1 /\left(c \log _{1 / p} n\right)(\log n)=\log (1 / p) / c
$$

and

$$
(1 / m) \log \left(\mu^{m}(w)\right)=(1 / m) \sum_{1 \leq i \leq m} \log \left(\mu_{w(i)}\right)=\sum_{a \in S} L(w)_{a} \log \left(\mu_{a}\right),
$$

so that

$$
(1 / m) \log \left[1 \wedge\left(n \mu^{m}(w)\right)\right] \leq 0 \wedge b(L(w), \mu, c)
$$

Thus

$$
\begin{aligned}
P\left(E_{w}\right) & =P\left(\bigcup_{0 \leq i \leq n-m}\left\{w=X_{i+1} \cdots X_{i+m}\right\}\right) P\left(\bigcup_{0 \leq j \leq n-m}\left\{w=Y_{j+1} \cdots Y_{j+m}\right\}\right) \\
& <\left[\left(n \mu^{m}(w)\right) \wedge 1\right]\left[\left(n \nu^{m}(w)\right) \wedge 1\right]
\end{aligned}
$$

and hence $(1 / m) \log P\left(E_{w, n}\right)<0 \wedge b(L(w), \mu, c)+0 \wedge b(L(w), \nu, c)=$ $f(L(w), c)-H(L(w))$.

For the lower bound, by independence

$$
\begin{aligned}
P\left(G_{w}\right)= & P\left(\bigcup_{0 \leq i \leq n / m-1}\left\{w=X_{m i+1} \cdots X_{m i+m}\right\}\right) \\
& \cdot P\left(\bigcup_{0 \leq j \leq n / m-1}\left\{w=Y_{m j+1} \cdots Y_{m j+m}\right\}\right) \\
= & {\left[1-\left(1-\mu^{m}(w)\right)^{\lfloor n / m\rfloor}\right]\left[1-\left(1-\nu^{m}(w)\right)^{\lfloor n / m\rfloor}\right] . }
\end{aligned}
$$

For all $z \in[0,1]$ and $n=0,1,2, \ldots, 1-(1-z)^{n} \geq(1 / 2)(n z \wedge 1)$, so that

$$
\begin{aligned}
P\left(G_{w}\right) & \geq(1 / 4)\left(|n / m| \mu^{m}(w) \wedge 1\right)\left(|n / m| \nu^{m}(w) \wedge 1\right) \\
& \geq 1 /\left(4 m^{2}\right)\left(n \mu^{m}(w) \wedge 1\right)\left(n \nu^{m}(w) \wedge 1\right)
\end{aligned}
$$

Since $m-1 \leq c \log _{1 / p} n,(1 / m) \log (n) \geq \log (1 / p) / c-\log (1 / p) /(m c)$. Thus for all n and w,

$$
(1 / m) \log P\left(G_{w}\right) \geq f(L(w), c)-H(L(w))-(2 / m)[\log (2 m)+\log (1 / p) / c]
$$

4. A strong law of large numbers. Informally, Theorem 1 says that for the longest consecutive match between $X_{1} X_{2} \cdots X_{n}$ and $Y_{1} Y_{2} \cdots Y_{n}$ with proportions near a given distribution γ, the length relative to $\log _{1 / p} n$ tends almost
surely to $g(\gamma)$. Now the function $g: \operatorname{Pr}(s) \rightarrow[0,2]$ is continuous, and we will prove that g achieves its maximum $C(\mu, \nu)$ at a unique distribution β. It then follows easily from Theorem 1 that for any neighborhood U of β, the longest match with proportions in U will be longer than the longest match with proportions not in U, almost surely as $n \rightarrow \infty$. Thus the proportions of all matching words of maximal length tend almost surely to β, as $n \rightarrow \infty$.

Depending on μ and ν, the distribution α of letters in a simple match may or may not be the distribution β which maximizes g. For the coin tossing example discussed in Section $1, \mu=(0.5,0.5)$ and $\nu=\alpha=(1-\theta, \theta)$, any case having $0<H(\nu)<(1 / 2) \log 2$ gives an example with $\beta \neq \alpha$.

Theorem 2. In the setup of Theorem 1, there is a unique $\beta \in \operatorname{Pr}(S)$ such that

$$
g(\beta)=C(\mu, \nu)=\sup _{\gamma \in \operatorname{Pr}(S)} g(\gamma)
$$

If $C(\mu, \nu)=2$ (in particular, if $H(\alpha, \mu)=H(\alpha, \nu)$), then $\beta=\alpha$. As $n \rightarrow \infty$, the proportions of letters, in all words of maximal length common to both $X_{1} X_{2} \cdots$ X_{n} and $Y_{1} Y_{2} \cdots Y_{n}$, tend almost surely to β :

$$
1=P\left(0=\underset{n \rightarrow \infty}{\limsup }\left\{|\beta-L(w)|: w=X_{i+1} \cdots X_{i+m}=Y_{j+1} \cdots Y_{j+m}\right.\right.
$$

$$
\text { for some } \left.\left.0 \leq i, j \leq n-m, \text { with } m=M_{n}\right\}\right) \text {). }
$$

Proof. To see that g achieves its maximum at a unique distribution β, consider the expression for g in (16): $g=\min _{1 \leq i \leq 3} g_{i}$. Since g_{1} and g_{2} have no local maxima in the interior of $\operatorname{Pr}(S)$, g achieves its maximum either at α, where g_{3} has its unique maximum, or else on one of the surfaces $g_{i}=g_{j}$. A maximum for g on the surface $g_{1}=g_{2}$ is easily ruled out, since $g_{1}(\gamma)=g_{2}(\gamma)=c>0$ implies $f_{1}(\gamma, c)=f_{2}(\gamma, c)=0$ and thus $f_{3}(\gamma, c)=-H(\gamma)<0$, so that $g_{3}(\gamma)<c$.

If $g_{1}(\gamma)=g_{3}(\gamma)=c>0$ then $0=f_{1}(\gamma, c)=f_{3}(\gamma, c)$ so that $f_{2}(\gamma, c)=H(\gamma)>0$ and hence $g_{2}(\gamma)>c$ so that $g(\gamma)=c=g_{3}(\gamma)$. On the surface $\left\{\gamma: g_{1}(\gamma)=g_{3}(\gamma)\right\}$ $\equiv\{\gamma: \log (1 / p)+H(\gamma, \alpha)=2 H(\gamma, \mu)\}, g_{3}$ is maximized by minimizing $H(\gamma, \alpha)$. It follows from the strict convexity of $H(\cdot, \alpha)$ and of $H(\cdot, \mu)$ that there is a unique γ_{μ} which achieves this. Similarly, there is a unique γ_{ν} which maximizes $g(\gamma)$ given the constraint $g_{2}=g_{3}$. It remains to show that $g\left(\gamma_{\mu}\right) \neq g\left(\gamma_{\nu}\right)$. If $g\left(\gamma_{\mu}\right)=g\left(\gamma_{\nu}\right)$, then $\gamma_{\mu} \neq \alpha$ so $2>g_{3}\left(\gamma_{\mu}\right)=g_{1}\left(\gamma_{\mu}\right)$ and hence $H(\alpha, \mu) \geq H\left(\gamma_{\mu}, \mu\right)>(1 / 2) \log (1 / p)$. The same argument yields $H(\alpha, \nu)>(1 / 2) \log (1 / p)$, which is impossible, since $H(\alpha, \mu)+H(\alpha, \nu)=-H(\alpha)+\log (1 / p) \leq \log (1 / p)$. We have shown that there exist a distribution β such that $g(\beta)>g(\gamma)$ for all $\gamma \neq \beta$.

Since $g(\gamma) \leq(2 \log (1 / p)) /(\log (1 / p)+H(\gamma, \alpha))$ by (16), and $H(\gamma, \alpha) \geq 0$ with equality iff $\gamma=\alpha$, it follows that if $C(\mu, \nu)=2$, then for $\gamma \neq \alpha, g(\gamma)<2=g(\alpha)$.

Given $\varepsilon>0$, let $U=\{\gamma \in \operatorname{Pr}(S)$: $|\gamma-\beta|>\varepsilon\}$. Let $\delta=(1 / 2)$ $\left(g(\beta)-\sup _{\gamma \in U} g(\gamma)\right) ; \delta>0$ since $\operatorname{Pr}(S)$ is compact and g is continuous. By Theorem 1 , there is a random N which is almost surely finite, such that for all
$n>N, M_{n} / \log _{1 / p} n>g(\beta)-\delta$ and $M_{n, U} / \log _{1 / p} n<\sup _{\gamma \in U} g(\gamma)+\delta=g(\beta)-$ δ. Thus $n>N$ implies that $|\beta-L(w)| \leq \varepsilon$, for all w with $w=X_{i+1} \cdots X_{i+m}=$ $Y_{j+1} \cdots Y_{j+m}$ for some $0 \leq i, j \leq n-m$, with $m=M_{n}$.
5. Matching between two different Markov processes. In this section we generalize Theorem 1 to the situation in which $X_{1} X_{2} \cdots X_{n}$ and $Y_{1} Y_{2} \cdots Y_{n}$ are independent sequences of letters governed by two different Markov transition mechanisms on the finite alphabet $S=\{1,2, \ldots, d\}$.

It is necessary to keep track of the proportions of pairs of letters that appear in adjacent positions. Note that for any word $w \in S^{m}$ and letter $i \in S$, the number of adjacent pairs in w that begin with i is equal to the number of pairs that end in i, provided that the word is wrapped around a circle so that the pair (last letter, first letter) is counted as one of the m pairs. Thus we define:

$$
\text { for } w \in S^{m}, \quad \tilde{L}(w)_{i j}=(1 / m) \sum_{1 \leq k \leq m} 1\left(w_{k} w_{k+1}=i j\right) ; \quad i, j \in S,
$$

with the understanding that w_{m+1} is evaluated as w_{1}. Let

$$
B \equiv\left\{q \in \operatorname{Pr}\left(S^{2}\right): \forall i, j \in S, q_{i j}>0 \text { and } \sum_{k \in S} q_{i k}=\sum_{k \in S} q_{k i}\right\},
$$

be the set of strictly positive balanced proportions of pairs, so that for any word $w, \tilde{L}(w) \in \bar{B}$. For $q, r \in \operatorname{Pr}\left(S^{2}\right)$ define

$$
\tilde{H}(q) \equiv-\sum_{i, j \in S} q_{i j} \log \left(q_{i j} /\left(\sum_{k \in S} q_{i k}\right)\right)
$$

and

$$
\tilde{H}(q, r) \equiv \sum_{i, j} q_{i j} \log \left(\left(q_{i j} /\left(\sum_{k} q_{i k}\right)\right) /\left(r_{i j} /\left(\sum_{k} r_{i k}\right)\right)\right) .
$$

Note that if π and σ are the marginals of q and r, respectively, so that $\pi_{i}=\sum_{k} q_{i k}$ and $\sigma_{i}=\sum_{k} r_{i k}$, then $\left[q_{i j} / \pi_{i}\right]$ is the stochastic matrix governing a Markov process, and if $q \in B$ then (π_{i}) is the invariant measure: $\Sigma_{i} \pi_{i}\left(q_{i j} / \pi_{i}\right)=$ $\sum_{i} q_{i j}=\pi_{j}$. Also $\tilde{H}(q, r) \geq 0$, with equality iff $q=r$, since $\tilde{H}(q, r)=$ $\Sigma_{i} \pi_{i}\left[H\left(q_{i(\cdot)} / \pi_{i}, r_{i(\cdot)} / \sigma_{i}\right)\right]$. Note that $\tilde{H}(q, r) \leq H(q, r)$, with equality iff $\pi=\sigma$, since $\tilde{H}(q, r)=H(q, r)-H(\pi, \sigma)$.

Lemma 4. Let $S=\{1,2, \ldots, d\}$ and let $U \subset \operatorname{Pr}\left(S^{2}\right)$ be open. The number of words of length m with "proportions of pairs" in U grows like $\exp \left(m \sup _{q \in U \cap B} \tilde{H}(q)\right)$, i.e.,

$$
\lim _{m \rightarrow \infty}(1 / m) \log \left(\left|\left\{w \in S^{m}: \tilde{L}(w) \in U\right\}\right|\right)=\sup _{q \in U \cap B} \tilde{H}(q)
$$

Proof. We give an elementary proof, but note that this result could also be proved by applying the large deviation theory in Donsker and Varadhan (1975) to the two-step Markov chain with state space S^{2} and transition probabilities $p_{(i, j),(k, l)}=(1 / d) \delta_{j k}$.

Let integers $m_{i j}>1, i, j \in S$, be given, with the property that for each $i \in S$, $\Sigma_{j} m_{i j}=\sum_{j} m_{j i}$. Let $m=\sum_{i j} m_{i j}$ and let $m_{i}=\Sigma_{j} m_{i j}$, for each $i \in S$. Let $q_{i j}=$ $m_{i j} / m$, for $i, j \in S$, so that $q \in B$. Elementary analysis of multinomial coefficients, as in Lemma 2, will complete the proof, once it is shown that

$$
\begin{aligned}
& \prod_{i \in S}\left(\left(m_{i}-1\right)!/\left(m_{i 1}!\cdots\left(m_{i, i+1}-1\right)!\cdots m_{i d}!\right)\right) \\
& \quad \leq\left|\left\{w \in S^{m}: \tilde{L}(w)=q\right\}\right| \leq|S| \prod_{i \in S}\left(m_{i}!/\left(m_{i 1}!\cdots m_{i d}!\right)\right)
\end{aligned}
$$

with $d+1$ identified as 1 in the lower bound. [The question of counting $\left\{w \in S^{m}: \tilde{L}(w)=q\right\}$ exactly is addressed in Billingsley (1961), Baum and Eagon (1966), and Zaman (1984).] A given word $w \in S^{m}$ with $\tilde{L}(w)=q$ determines, for each $i \in S$, a partition of the set $\left\{1,2, \ldots, m_{i}\right\}$ into subsets $S_{i 1}, \ldots, S_{i d}$, with $\left|S_{i j}\right|=m_{i j}$ under the condition that $k \in S_{i j}$ if the k th appearance of letter i in the word is immediately followed by letter j. The word can be reconstructed from its starting letter w_{1} and these partitions; this proves the upper bound.

The lower bound is the number of words satisfying the additional conditions that the last appearance of letter 1 is followed by letter 2 , the last appearance of 2 is followed by a $3, \ldots$, with the word ending in letter d. Let $n_{i j}=m_{i j}-\delta_{i, i+1}$, with the index $d+1$ replaced by 1 , so that $n_{i} \equiv \sum_{j} n_{i j}=\Sigma_{j} n_{j i}$ i.e., $\left[n_{i j}\right]$ also satisfies the balance equations. Partition the set $\left\{1,2, \ldots, n_{i}\right\}$ into subsets $S_{i 1}, \ldots, S_{i d}$, with $\left|S_{i j}\right|=n_{i j}$. These partitions determine a word w with $\tilde{L}(w)=q$, via the recipe: for $k \leq n_{i}$, the k th appearance of letter i is followed by letter j, iff $k \in S_{i j}$. The word begins with letter 1 . When letter i appears for the $\left(1+n_{i}\right)$ th time, all n_{i} pairs ending in i have been used up, and we put down a letter $i+1$ and then continue to follow the partitions. This happens first with letter 1 , then letter $2, \ldots$, then letter d, at which point the word is completed.

Theorem 3. Let $X_{1} X_{2} \cdots$ and $Y_{1} Y_{2} \cdots$ be independent Markov chains on $S=\{1,2, \ldots, d\}$. Let $P=\left[p_{i j}\right]$ and $Q=\left[q_{i j}\right]$ be the transition matrices governing X and Y, respectively, with $p_{i j}>0$ and $q_{i j}>0$ for all $i, j \in S$. Let π and σ be the equilibrium distributions for X and Y, and define μ and $\nu \in B \subset \operatorname{Pr}\left(S^{2}\right)$ by

$$
\mu_{i j}=\pi_{i} p_{i j}, \quad \nu_{i j}=\sigma_{i} q_{i j}, \quad i, j \in S .
$$

Consider the substochastic matrix $R=\left[r_{i j}\right] \equiv\left[p_{i j} q_{i j}\right]$, and let $p,\left(r_{i}\right)$, and $\left(l_{i}\right)$ be its principal eigenvalue and corresponding left and right positive eigenvectors, normalized so that $\sum l_{i} r_{i}=1$. Since $\left[r_{i j} r_{j} /\left(p r_{i}\right)\right]$ is a stochastic matrix which governs a Markov process with equilibrium ($l_{i} r_{i}$), we define $\alpha \in B$ by

$$
\alpha_{i j}=l_{i} r_{i j} r_{j} / p, \quad i, j \in S
$$

Define $\tilde{g}: \operatorname{Pr}\left(S^{2}\right) \rightarrow[0,2]$, using (16) with H replaced by \tilde{H}. Then for any open $U \subset \operatorname{Pr}\left(S^{2}\right), M_{n, U} /\left(\log _{1 / p} n\right)$ converges a.s. to $\sup _{\gamma \in U \cap B} \tilde{E}(\gamma)$. In particular, $1=P\left(\lim _{n \rightarrow \infty} M_{n} / \log _{1 / p} n=C(P, Q)\right)$, where

$$
C(P, Q)=\sup _{\left.\gamma \in \operatorname{Pr} S^{2}\right) \cap B} \min \{\log (1 / p) / \tilde{H}(\gamma, \mu), \log (1 / p) / \tilde{H}(\gamma, \nu),
$$

$$
(2 \log (1 / p) /(\log (1 / p)+\tilde{H}(\gamma, \alpha))\}
$$

and $C(P, Q)=2$ if and only if both $\tilde{H}(\alpha, \nu), \tilde{H}(\alpha, \mu) \leq(1 / 2) \log (1 / p)$. Furthermore, there is a unique $\beta \in B$ such that $\tilde{g}(\beta)=C(P, Q)$ and

$$
1=P\left(0=\underset{n \rightarrow \infty}{\limsup }\left\{|\beta-\tilde{L}(w)|: w=X_{i+1} \cdots X_{i+m}=Y_{j+1} \cdots Y_{j+m}\right.\right.
$$

$$
\text { for some } \left.\left.0 \leq i, j \leq n \nprec m, \text { with } m=M_{n}\right\}\right) \text {. }
$$

If $C(P, Q)=2$, then $\beta=\alpha$.

Proof. The proof follows those of Theorems 1 and 2, with minor changes such as the substitution of Lemma 4 in place of Lemma 2. In place of the events G_{w} involving nonoverlapping blocks of m letters, we apply Doeblin's method: Fix a letter $a \in S$ and consider blocks involving m successive returns to letter a. Details of this method in the context of matching with shifts are given in Arratia and Waterman (1985). The remaining modifications are routine.
6. Sequences with different lengths; more than two sequences. Comparison of DNA sequences often involves two sequences with very different lengths, such as 200 and 4000 . Consider the length $M(m, n)$ of the longest consecutive matching between two sequences of lengths m and n, say $X_{1} \cdots X_{m}$ and $Y_{1} \cdots Y_{n}$. Even in the case where all $m+n$ letters are i.i.d., the limit of the ratio $(\log m) /(\log n)$ can have a critical role in determining first, whether or not $M(m, n)$ grows asymptotically like $\log _{1 / p}(m n)$, and second, the composition of the best matching word.

Proceeding as in Section 3, we analyze $M(m, n)$ according to the proportions $L(w)$ of letters within the matching word w. Thus, for $U \subset \operatorname{Pr}(S)$ let
$M_{U}(m, n) \equiv \max \left\{t: X_{i+1} \cdots X_{i+t}=Y_{j+1} \cdots Y_{j+t}=\omega\right.$
for some w with $L(w) \in U$, for some $0 \leq i \leq m-t, 0 \leq j \leq n-t\}$,
so that when $U=\operatorname{Pr}(S), M_{U}(m, n) \equiv M(m, n)$.
Theorem 4. Assume that X_{1}, X_{2}, \ldots are i.i.d. (μ) and Y_{1}, Y_{2}, \ldots are i.i.d. (ν), with all letters independent and $p=P\left(X_{1}=Y_{1}\right) \in(0,1)$. Define $\alpha \in \operatorname{Pr}(S)$ by $\alpha_{a}=\mu_{a} \nu_{a} / p$. Assume that m and $n \rightarrow \infty$, with $(\log m) /(\log (m n)) \rightarrow \lambda \in(0,1)$. For $\lambda \in(0,1)$ and $\gamma \in \operatorname{Pr}(S)$ define

$$
\begin{gather*}
G(\gamma, \lambda) \equiv \min \{\lambda \log (1 / p) / H(\gamma, \mu),(1-\lambda) \log (1 / p) / H(\gamma, \nu), \\
\log (1 / p) /(\log (1 / p)+H(\gamma, \alpha))\} . \tag{17}
\end{gather*}
$$

Then for any open $U \subset \operatorname{Pr}(S), M_{U}(m, n) /\left(\log _{1 / p}(m n)\right)$ converges a.s. to $\sup _{\gamma \in U} G(\gamma, \lambda)$. In particular, with $K(\mu, \nu, \lambda) \equiv \sup _{\gamma \in \operatorname{Pr}(S)} G(\gamma, \lambda) \in(0,1]$, we have

$$
\begin{equation*}
K(\mu, \nu, \lambda)=1 \text { iff both } H(\alpha, \mu) \leq \lambda \log (1 / p) \tag{18}
\end{equation*}
$$

$$
\text { and } H(\alpha, \nu) \leq(1-\lambda) \log (1 / p) .
$$

Proof. The proof is very similar to the proof of Theorem 1. In place of f and g as defined at (15), we now use

$$
F(\gamma, c, \lambda) \equiv H(\gamma)+0 \wedge b(\gamma, \mu, c / \lambda)+0 \wedge b(\gamma, \nu, c /(1-\lambda)
$$

with the idea that $F(\gamma, c, \lambda)$ represents $1 / t$ times the \log of the contribution to $\Sigma_{w}\left[\left(m \mu^{t}(w)\right) \wedge 1\right]\left[\left(n \nu^{t}(w)\right) \wedge 1\right]$, from words $w \in S^{t}$ having $L(w)$ near γ, when $t=\left\{c \log _{1 / p}(m n) \mid\right.$. Elementary manipulation shows that $G(\gamma, \lambda)=\inf \{c$: $F(\gamma, c, \lambda)<0\}$. The correspondence with the notation of Theorem 1 is that $F\left(\gamma, c, \frac{1}{2}\right)=f(\gamma, 2 c), 2 G\left(\gamma, \frac{1}{2}\right)=g(\gamma)$, and $2 K\left(\mu, \nu, \frac{1}{2}\right)=C(\mu, \nu)$.

In the special case $\mu=\nu$, Theorem 4 says that if $(\log m) /(\log (m n)) \rightarrow \lambda \in(0,1)$, then $M(m, n)$ is asymptotic to $\log _{1 / p}(m n)$ iff $\lambda \in\left[\lambda_{c r}, 1-\lambda_{c r}\right]$, where $\lambda_{c r} \equiv$ $H(\alpha, \mu) / \log (1 / p) \in\left[0, \frac{1}{2}\right)$. Note that in this case, with $\mu=\nu$, the following are equivalent: $\lambda_{\mathrm{cr}}=0 ; H(\alpha, \mu)=0 ; \alpha=\mu ; \mu$ is the uniform distribution on S.

If $\beta \equiv \beta(\mu, \nu, \lambda)$ is the unique distribution on S for which $G(\beta, \lambda)=$ $\sup _{\gamma \in \operatorname{Pr}(S)} \boldsymbol{G}(\gamma, \lambda)$, then as in Theorem 2, there is a strong law of large numbers for the composition of the best matching word: If m and $n \rightarrow \infty$ with $(\log m)$ / $(\log (m n)) \rightarrow \lambda \in(0,1)$, then with probability one, the proportions $L(w)$ of letters within any longest matching word w common to $X_{1} \cdots X_{m}$ and $Y_{1} \cdots Y_{n}$ tends to β. There are examples in which β varies nontrivially with λ, even with $\mu=\nu$, such as any biased coin tossing example, with $\mu=\nu=(1-\theta, \theta)$, and $\theta \neq \frac{1}{2}$.

Theorem 1 can also be generalized to the case of $r \geq 2$ independent sequences, allowing r different distributions and r different lengths. As in Theorem 3, all of this can also be done for r independent Markov chains, allowing r different transition matrices. In either the i.i.d. or the Markov case, the expressions corresponding to F and G in the statement of Theorem 4 become quite com-plicated- F becomes the sum of $H(\gamma)$ plus r terms, each involving relative entropy and truncation, and the formula corresponding to (16) and (17) expresses G as a minimum of $2^{r}-1$ smooth terms. The one result which remains reasonably simple is the necessary and sufficient condition for the length of the longest match to be asymptotic to $\log _{1 / p}$ of the number of positions in which such a match might occur. This result is given, for the i.i.d. case, in Theorem 5.

Theorem 5. Suppose that for $j=1$ to r, the letters $X_{1}^{j}, X_{2}^{j}, \ldots$ are i.i.d. $\left(\mu_{j}\right)$, where μ_{1}, \ldots, μ_{r} are probability distributions on a finite alphabet S. Let $p \equiv \sum_{a \in S} \mu_{1}(a) \cdots \mu_{r}(a)$, and assume $p \in(0,1)$. Define $\alpha \in \operatorname{Pr}(S)$ by $\alpha(a)=$ $\mu_{1}(a) \cdots \mu_{r}(a) / p$. Define the length $M \equiv M\left(n_{1}, \ldots, n_{r}\right)$ of the longest word
appearing, for $j=1$ to r, within the first n_{j} letters of the j th sequence:

$$
\begin{gathered}
M \equiv \max \left\{m: \phi \neq \bigcap_{j=1 \text { to } r}\left\{w \in S^{m}: X_{i+1}^{j} \cdots X_{i+m}^{j}=w\right.\right. \\
\text { for some } \left.\left.0 \leq i \leq n_{j}-m\right\}\right\}
\end{gathered}
$$

Suppose that $n_{1}, \ldots, n_{r} \rightarrow \infty$ with $\left(\log n_{j}\right) /\left(\log \left(n_{1} \cdots n_{r}\right)\right) \rightarrow \lambda_{j}>0$, for $j=1$
to r. Then there is a constant $K \equiv K\left(\mu_{1}, \ldots, \mu_{r} ; \lambda_{1}, \ldots \lambda_{r}\right) \in(0,1]$ such that

$$
1=P\left(M / \log _{1 / p}\left(n_{1} \cdots n_{r}\right) \rightarrow K\right)
$$

and

$$
K=1 \quad \text { iff } \quad H\left(\alpha, \mu_{j}\right) \leq \lambda_{j} \log (1 / p) \text { for } j=1 \text { to } r
$$

Proof. The argument is essentially the same as that for Theorems 1 and 4.

Acknowledgment. Guidance and motivation for this paper came from the work of Donsker and Varadhan (1975 and 1983).

REFERENCES

Arratia, R. and Waterman, M. S. (1985). An Erdös-Rényi law with shifts. Adv. in Math. 55 13-23.
Bahadur, R. R. (1971). Some Limit Theorems in Statistics. SIAM, Philadelphia.
Baum, L. E. and Eagon, J. A. (1966). The number of circular patterns compatible with a pseudosymmetric connected graph. Canad. J. Math. 18 237-239.
Billingsley, P. (1961). Statistical methods in Markov chains. Ann. Math. Statist. 31 12-40.
Donsker, M. D. and Varadhan, S. R. S. (1975). Asymptotic evaluation for certain Markov process expectations for large time, I. Comm. Pure Appl. Math. 28 1-47.
Donsker, M. D. and Varadhan, S. R. S. (1983). Asymptotic evaluation for certain Markov process expectations for large time, IV. Comm. Pure Appl. Math. 36 183-212.
Renyi, A. (1970). Foundations of Probability. Holden-Day, San Francisco.
Smith, T. F., Waterman, M. S. and Sadler, J. R. (1983). Statistical characterization of nucleic acid sequence functional domains. Nucleic Acids Res. 11 2205-2220.
Zaman, A. (1984). Urn models for Markov exchangeability. Ann. Probab. 12 223-229.
Department of Mathematics
University of Southern California
Los Angeles, California 90089-1113

