
ADVANCBS IN APPLIED MATHEMATICS 6,129-134 (1985)

: Dynamic Programming Algorithms for Picture
Comparison

MICHAEL S. WATERMAN*

Departments of Mathematics and Biological Sciences, Univeniry of Southern California.
Lap Angela, Califomia 90089-1113

Two-dimensional arrays can be compared by a generalization of dynamic p r e
gramming algorithms for string comparison. Earlier algorithms have computational
complexity O(N6) for comparison of two N x N arrays. The computational com-
plexity is reduced to O(N4) in g e n d and O(Nz) algorithms arc pointed out for
the range limited case. An example is given to illustrate the lack of knowledge of
mathematical properties of these algorithms. The problem of finding an algorithm to
compute the minimum number of insertions, deletions, and substitutions to trans-
form one array into another remains opcn. 1985 ~uderm 'C Ras. Inc

1. INTRODUCTION

A dynamic programming algorithm for measuring distance between two
strings was first proposed by Levenshtein [4] and has been rediscovered by
several authors. Applications of the algorithm have been varied and include
errorarrecting codes [12], spelling correction [14], geological stratigraphy
[lo], comparison of DNA and protein sequences [7, 91, speech recognition
[6], birdsong studies [l], and handwriting recognition [2]. A recent book
edited by Sankoff and Kruskal [8] surveys the theory and practice of
dynamic programming sequence comparison.

It would be extremely useful to have a generalization of the one-dimen-
sional Levenshtein (IDL) algorithm to allow comparison of two-dimen-
sional arrays. Applications could include the handwriting recognition
problem referred to above, for example. Two groups, Moore [5] in England
and Tanaka and Kikuchi [13] in Japan, have independently proposed such
an algorithm, which is referred to here as the 2DL algorithm.

In this note, the computational complexity of the 2DL algorithm is
reduced from O(N6) to o (N ~) for comparison of two N x N arrays. This .

*This work was supported by a grant from System Development Foundation.

129
01%-8858/85 $7.50

Copyri&t Q 1985 by AcuIam 'C Ra* Iac.
fi&O Of rrprOdUd00 h M Y fot'lll KXfWd.

130 MICHAEL S. WATERMAN

reduction makes it practical to compare small arrays of interest. In addition,
the mathematical properties of the 2DL algorithm are briefly considered.
The algorithms proposed so far do not compute a metric, and work remains
to be done on these interesting problems.

2. STRING COMPARISON

It is useful to recall the 1DL metric for comparing two strings x = xlx2
. .- x , and y =yly2 y , over some alphabet. The algorithm gives a
minimum cost sequence for changing the string x into the string y. The cost
of changing one letter into another, a substitution, is v, and the cost of
inserting or deleting a letter is 6. More general cost functions are possible
but this simple one wil l satisfy our purposes. The distance between x and y
is defined by

d(x,y) = min{ k6 + Iv}
where the mjnimum is over all possible ways of changing x into y, I is the
number of substitutions, and k is the number of deletions and insertions. If
each letter in the x sequence is displayed above the letter in the y sequence it
is mapped into, we obtain a display of x + y or an alignment of x and y.
For example woork and word might align by

w o o r k
w - o r d

where - is inserted into “word” to indicate a deletion of the first o in
woork. The alignment has one deletion and one substitution so its cost is
6 + v.
To understand the dynamic programming algorithm for computing d(x, y)

set
dij = d(xlx2 - - * x i , y1y2 * * y j) .

Consider the various ways an alignment of xlx2 - - - xi and y1y2 * - - & can
end. The top line can end with x i or - and the bottom line can end with yj
or -. Ending both with - is entirely uninteresting as it specifies the fate of
either x i or yj. Therefore the alignment can end in 22 - 1 = 3 ways:

- X i or . J” x i or -

At least one of these belongs to an alignment with cost di j so

dij = m i ~ ~ (d , - ~ , ~ + i3,di-l,j-l + VI,^^,,-^ + a},

where I = 0 if x i = y, and I = 1 if x i # y,. This algorithm uses time
O(N 2).

PICTURE COMPARISON 131

3. PICTURE COMPARISON

Moore [5] and Tanaka and Kikuchi I131 have independently generalized
4 the 1DL algorithm to two-dimensional picture comparison. Let x =

{ x (i , j) : 1 s i , j s N}, and y = { y(i , j) : 1 s i, j 5 N} be two-dimen-
sional arrays. Moore writes an algorithm for comparing x and y while
Tanaka and Kikuchi define 2DL distance to be the minimum cost of
transforming x into y by deletions, insertions, and substitutions. Tanaka
and Kikuchi go on to write an algorithm which they justify by relating it to
an algorithm which is essentially that which Moore presents. We fist study
the algorithm (as presented by Moore), which we call the 2DL algorithm for
reasons that wil l become clear. Then we will comment on implications of
such an algorithm.

Firstletx(i,J)= {x(k,l):l < k s i , 1 ~ I s j } a n d y (Z , Z) = { y (k , l) :
1 s k s m, 1 I; I s n}. If we think of aligning rows (columns) of x with
rows (columns) of y in the same way as substituting an “x” row (column)
with a “y” row (column), then there are several ways of ending an
x (i , j) / y (Z , i i) alignment. The lower right edges of the alignment corre-
spond to the right-hand letters for the case of alignment of two linear
sequences. For further notation, following Tanaka and Kikuchi, let x (i , J)
denote x (i , I), 1 s I s j . We see that the edges can be composed of the
various ways of matching and/or deleting four elements: x (i , J) and
y(m, E), the two rows, and x (i, j) and y(E, n), the two columns. The only
configuration that does not make sense is, as above, the one that involves
matching two row deletions and two column deletions. Therefore an al-
gorithm, which we call the 2DL algorithm, analogous to the 1DL algorithm
will involve minimizing 24 - 1 = 15 terms.

Let the 2DL cost between x(i , J) and y(E, Z) be D(i, j ; n, m). By the
analogy presented above this term is the minimum of

-
l

(1) D(i - 1, j ; m, n) + d(x(i, J) , -1
(2) D(i , j - 1; m, n) + d (x (i , j) , -)
(3) D(i , j ; m - 1, n) + d(y(m, E) , -)
(4) D(i , j ; m, n - 1) + d (y (E , n),
(5) D(i - 1, j - 1; m, n) + d (x (i , j) , -) + d(x(i - 1, j) , -)
(6) D(i , j ; m - 1, n - 1) + d(y(n,-Z) , -) + d (y (x , m), -)
(7)
(8) D(i - 1, j ; m, n - 1) + d(x(i, j) , -) + d(y(%, n), -)
(9) ~ (i , j - 1; m - I, n) + d(x (i , j) , -1 + d(y(m, ii) , -)

-

- 1, j ; m - 1, n) + d(x (i , j) , y(m, 5))

(10) ~ (i , j - I; m, n - 1) + d(x (i , j) , y ! ~ , n))
(11) D(i - I, j - 1; m - 1,n) + d(x (i , j) , y(m, z)) + d (x (F i , j) ,

(12) D(i - I, j - 1; m, n - 1) + d (x (i , j T) , -) +

5

-1

132 MICHAEL S. WATERMAN

d(x(i; j) , y (= , n))

+d(y(m - 1, n), -)

+ d (y (m , X) , -1

(13) D(i - 1, j ; m - 1, n - 1) + d (x (i , J) , y (m , E))

(14) D(i , j - 1; m - 1, n - 1) + d (x (i , j) , y (Z , n))

The computational complexity of this algorithm, for two N x N arrays, is

N N N N c c c (4im + 4jn + C) = o (N ~) .
i-1 j-1 m-1 n-1

The cost from terms (11) through (15) raises the computation to N 6 , and
each term comes from the comparison of two hear strings. Define

From our discussion of string comparison above, we see that

dl(i, j ; m, n) = min{ d,(i - 1, j ; m, n) + 6,
d,(i - 1, j ; m - 1, n) + Y,
d l (i , j ; m - 1,n) + 6}

and

d 2 (i , j ; m, n) = min{ d 2 (i , j - 1; m, n) + 8 ,
d2(i , j - 1; m, n - 1) + Y,
d 2 (i , j ; m , n - 1) +a} .

This simple device allows recursive computation of the string comparisons
and the computational complexity of the improved 2DL algorithm is

N N N N c c c c (C) = O(N4)-
i-1 j-1 m-1 m-1

PICTURE COMPARISON 133

J

.

a a a b c a a a b
a a a c b a a a b
a a a b c a a a b
b c b c c b b b b
c b c c b

X Y

FIG. 1. Two arrays for comparison.

It is clear that storage o(N’) is required to compute D (N , N; N, N) while
storage O(N4) is required to produce the correspondence between the
arrays.

4. DISCUSSION

The algorithm requires that, if row or column deletions are not optimal,
either bottom row or right columns are matched. This allowed Tanaka and
Kikuchi to present an algorithm with six terms to minimize, as opposed to
fifteen above. Their algorithm runs in O(N6) steps and, as above, can be
r e d u d to O(N4). Range limited comparison of two arrays could be
accomplished in O(N’) steps. Instead of pursuing these further economies,
we make some remarks about the properties of 2DL distance.

The Tanaka and Kikuchi definition of distance is the minimum cost of
insertions, deletions, and substitutions to change array x into array y. This
desirable distance is not computed by our 2DL distance as can be seen by
the example presented in Fig. 1. Let insertions and deletions cost 1 and
substitutions cost 1.5. It is clear that y can be obtained from x by deletions
of all letters equal to C, for a cost of 9. However, D(x,y) = 12. Our 2DL
distance does not find array matchings which ends in a configuration which
“weaves” outer rows and columns in this manner. Currently, no known
algorithm computes the minimum number of insertions, deletions, and
substitutions to map x into y.

To summarize, computation of 2DL distance for two N X N arrays can
be accomplished in O(N4) and, in the range limited case, O (N z) . These
efficiencies make this distance practical for some problems. If the most
common regions between two arrays are desired, corresponding modifica-
tion of an algorithm of Smith and Waterman [ll] is, with some careful
effort, possible. Several related algorithms have been presented in Darling
and Waterman [3] which studies the probability distribution of the volume
of the largest matching square and rectangle between random d-dimensional
arrays. The example of Fig. 1 raises several questions, however, as to the
mathematical properties of 2DL distance.

*

134 MICHAEL S. WATERMAN

REFERENCES

1. E A. ARMSTRONG, “A Study of Bird Song,” 2nd ed., p. 206, Dover, New York, 1973.
2. D. J. BURR, Designing a handwriting reader, IEEE Trans. Pattern Anal. Machine

3. R. W. R. DARLING AND M. S. WATERMAN, Success runs in d-dimensions: Algorithms and

4. V. I. LEVENSIFIFIN, Binary codes with correction of deletions, insertions and substitutions

5. R. K. MOORE, A dynamic programming algorithm for the distance between two finite

6. H. WOE AND S. CHIBA, Dynamic-programming algorithm optimization for spoken word

7. D. SANKOFF, Matching sequences under deletion/insertion constraints, Proc. Nat. Acad.

8. D. SANKOFF AND J. B. KRUSML (Eds.), “Time Warps, String Edits, and Macromolecules:

9. P. H. SELLERS, On the theory and computation of evolutionary distances, SIAM J. Appl.

10. T. F. !~MITH AND M. S. WATERMAN, New stratigraphic correlation techniques, J. Geol. 88

11. T. F. SMITH AND M. S. WATERMAN, Identification of common molecular subseqenfes, J.

12. E TANAKA AND T. KASAI, Synchronization and substitution of error-correcting codes for

13. E. TANAKA AND Y. KIKUCHI, A metric between pictures, Systems-Comput. Controls 11,

14. R. A. Wagner and M. J. Fisher, The string to string correction problem, J . Assoc. Comput.

, Intelligence PAMI-5 (1983), 554-559.

laws of large numbers, A h . in Math. 55 (1985).

of symbols, Dokl. A M . Nauk. SSSR 163 (1%3), 845-848.

areas, IEEE Trans. Pattern Anal. Machine Intelligence PAMI-1, 1 (1979), 86-88.

recognition, IEEE Trans. Acouct. Speech Signal Process. ASSP-26 (1978), 43-49.

Sei. U.S. A . 69, No. 1 (1972). 4-6.

The The~ry and Practice of Sequence Comparison,” Addison-Wesley, London, 1983.

Math. 26 (1974), 787-793,

(1980), 451-457.

Molecular Eio. 147 (1981), 195-197.

the Levenshtein metric, IEEE Trans. Inform. Theory lT-22,2 (1976), 156-162.

NO. 6 (1980), 49-57.

Mach. 21 (1974), 168-173.

