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Two-dimensional arrays can be compared by a generalization of dynamic p r e  
gramming algorithms for string comparison. Earlier algorithms have computational 
complexity O(N6) for comparison of two N x N arrays. The computational com- 
plexity is reduced to O( N4) in g e n d  and O( Nz) algorithms arc pointed out for 
the range limited case. An example is given to illustrate the lack of knowledge of 
mathematical properties of these algorithms. The problem of finding an algorithm to 
compute the minimum number of insertions, deletions, and substitutions to trans- 
form one array into another remains opcn. 1985 ~uderm 'C Ras. Inc 

1. INTRODUCTION 

A dynamic programming algorithm for measuring distance between two 
strings was first proposed by Levenshtein [4] and has been rediscovered by 
several authors. Applications of the algorithm have been varied and include 
errorarrecting codes [12], spelling correction [14], geological stratigraphy 
[lo], comparison of DNA and protein sequences [7, 91, speech recognition 
[6], birdsong studies [l], and handwriting recognition [2]. A recent book 
edited by Sankoff and Kruskal [8] surveys the theory and practice of 
dynamic programming sequence comparison. 

It would be extremely useful to have a generalization of the one-dimen- 
sional Levenshtein (IDL) algorithm to allow comparison of two-dimen- 
sional arrays. Applications could include the handwriting recognition 
problem referred to above, for example. Two groups, Moore [5] in England 
and Tanaka and Kikuchi [13] in Japan, have independently proposed such 
an algorithm, which is referred to here as the 2DL algorithm. 

In this note, the computational complexity of the 2DL algorithm is 
reduced from O(N6)  to o ( N ~ )  for comparison of two N x N arrays. This . 
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reduction makes it practical to compare small arrays of interest. In addition, 
the mathematical properties of the 2DL algorithm are briefly considered. 
The algorithms proposed so far do not compute a metric, and work remains 
to be done on these interesting problems. 

2. STRING COMPARISON 

It is useful to recall the 1DL metric for comparing two strings x = xlx2 
. .-  x ,  and y =yly2 y ,  over some alphabet. The algorithm gives a 
minimum cost sequence for changing the string x into the string y. The cost 
of changing one letter into another, a substitution, is v, and the cost of 
inserting or deleting a letter is 6. More general cost functions are possible 
but this simple one wil l  satisfy our purposes. The distance between x and y 
is defined by 

d(x,y) = min{ k6 + Iv} 
where the mjnimum is over all possible ways of changing x into y, I is the 
number of substitutions, and k is the number of deletions and insertions. If 
each letter in the x sequence is displayed above the letter in the y sequence it 
is mapped into, we obtain a display of x + y or an alignment of x and y. 
For example woork and word might align by 

w o o r k  
w - o r d  

where - is inserted into “word” to indicate a deletion of the first o in 
woork. The alignment has one deletion and one substitution so its cost is 
6 + v. 
To understand the dynamic programming algorithm for computing d(x, y) 

set 
dij  = d(xlx2 - - * x i ,  y1y2 * * y j ) .  

Consider the various ways an alignment of xlx2 - - - xi and y1y2 * - - & can 
end. The top line can end with x i  or - and the bottom line can end with yj 
or -. Ending both with - is entirely uninteresting as it specifies the fate of 
either x i  or yj. Therefore the alignment can end in 22 - 1 = 3 ways: 

- X i  or . J” x i  or - 

At least one of these belongs to an alignment with cost di j  so 

dij  = m i ~ ~ ( d , - ~ , ~  + i3,di-l,j-l +  VI,^^,,-^ + a}, 

where I = 0 if x i  = y, and I = 1 if x i  # y,. This algorithm uses time 
O( N 2). 
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3. PICTURE COMPARISON 

Moore [5] and Tanaka and Kikuchi I131 have independently generalized 
4 the 1DL algorithm to two-dimensional picture comparison. Let x = 

{ x ( i ,  j ) :  1 s i ,  j s N}, and y = { y( i ,  j ) :  1 s i, j 5 N} be two-dimen- 
sional arrays. Moore writes an algorithm for comparing x and y while 
Tanaka and Kikuchi define 2DL distance to be the minimum cost of 
transforming x into y by deletions, insertions, and substitutions. Tanaka 
and Kikuchi go on to write an algorithm which they justify by relating it to 
an algorithm which is essentially that which Moore presents. We fist study 
the algorithm (as presented by Moore), which we call the 2DL algorithm for 
reasons that wil l  become clear. Then we will comment on implications of 
such an algorithm. 

Firstletx(i,J)= {x(k,l):l  < k s i , 1  ~ I s j } a n d y ( Z , Z ) =  { y ( k , l ) :  
1 s k s m, 1 I; I s n}. If we think of aligning rows (columns) of x with 
rows (columns) of y in the same way as substituting an “x”  row (column) 
with a “y” row (column), then there are several ways of ending an 
x ( i ,  j ) / y ( Z ,  i i )  alignment. The lower right edges of the alignment corre- 
spond to the right-hand letters for the case of alignment of two linear 
sequences. For further notation, following Tanaka and Kikuchi, let x ( i ,  J )  
denote x ( i ,  I), 1 s I s j .  We see that the edges can be composed of the 
various ways of matching and/or deleting four elements: x ( i ,  J )  and 
y(  m, E), the two rows, and x (  i, j )  and y(  E, n), the two columns. The only 
configuration that does not make sense is, as above, the one that involves 
matching two row deletions and two column deletions. Therefore an al- 
gorithm, which we call the 2DL algorithm, analogous to the 1DL algorithm 
will involve minimizing 24 - 1 = 15 terms. 

Let the 2DL cost between x( i ,  J )  and y(E, Z) be D(i, j ;  n, m). By the 
analogy presented above this term is the minimum of 

- 
l 

(1) D(i - 1, j ;  m, n) + d(x(i, J ) ,  -1 
(2) D(i ,  j - 1; m, n) + d ( x ( i ,  j ) ,  -) 
(3) D(i ,  j ;  m - 1, n) + d(y(m, E ) ,  -) 
(4) D(i ,  j ;  m, n - 1) + d ( y ( E ,  n), 
(5) D(i  - 1, j - 1; m, n) + d ( x ( i ,  j ) ,  -) + d(x(i  - 1, j ) , - )  
(6) D(i ,  j ;  m - 1, n - 1) + d(y(n,-Z) ,  -) + d ( y ( x ,  m), -) 
(7) 
(8) D(i  - 1, j ;  m, n - 1) + d(x(i, j ) ,  -) + d(y(%, n), -) 
(9) ~ ( i ,  j - 1; m - I, n) + d(x ( i ,  j ) ,  -1 + d(y(m, ii) ,  -) 

- 

- 1, j ;  m - 1, n) + d(x ( i ,  j ) ,  y(m, 5)) 

(10) ~ ( i ,  j - I; m, n - 1) + d(x ( i ,  j ) ,  y ! ~ ,  n)) 
(11) D(i  - I, j - 1; m - 1,n) + d(x ( i ,  j ) ,  y(m,  z)) + d ( x ( F i ,  j ) ,  

(12) D(i  - I, j - 1; m, n - 1) + d ( x ( i , j T ) ,  -) + 

5 

-1 
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d(x(i;  j ) , y ( = ,  n)) 

+d(y(m - 1, n), -) 

+ d ( y ( m , X ) ,  -1 

(13) D(i  - 1, j ;  m - 1, n - 1) + d ( x ( i ,  J ) ,  y ( m ,  E)) 

(14) D(i ,  j - 1; m - 1, n - 1) + d ( x ( i ,  j ) ,  y ( Z ,  n)) 

The computational complexity of this algorithm, for two N x N arrays, is 

N N N N  c c c (4im + 4jn + C) = o ( N ~ ) .  
i-1 j-1 m-1 n-1 

The cost from terms (11) through (15) raises the computation to N 6 ,  and 
each term comes from the comparison of two hear strings. Define 

From our discussion of string comparison above, we see that 

dl(i, j ;  m, n) = min{ d,(i - 1, j ;  m, n) + 6, 
d,(i  - 1, j ;  m - 1, n) + Y, 
d l ( i ,  j ;  m - 1,n) + 6} 

and 

d 2 ( i ,  j ;  m, n) = min{ d 2 ( i ,  j - 1; m, n) + 8 ,  
d2( i ,  j - 1; m, n - 1) + Y, 
d 2 ( i , j ; m , n  - 1) +a} .  

This simple device allows recursive computation of the string comparisons 
and the computational complexity of the improved 2DL algorithm is 

N N N N  c c c c ( C ) =  O(N4)- 
i-1 j-1 m-1 m-1 
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a a a b c  a a a b  
a a a c b  a a a b  
a a a b c  a a a b  
b c b c c  b b b b  
c b c c b  

X Y 

FIG. 1. Two arrays for comparison. 

It is clear that storage o(N’) is required to compute D ( N ,  N; N, N) while 
storage O(N4) is required to produce the correspondence between the 
arrays. 

4. DISCUSSION 

The algorithm requires that, if row or column deletions are not optimal, 
either bottom row or right columns are matched. This allowed Tanaka and 
Kikuchi to present an algorithm with six terms to minimize, as opposed to 
fifteen above. Their algorithm runs in O(N6)  steps and, as above, can be 
r e d u d  to O(N4). Range limited comparison of two arrays could be 
accomplished in O(N’)  steps. Instead of pursuing these further economies, 
we make some remarks about the properties of 2DL distance. 

The Tanaka and Kikuchi definition of distance is the minimum cost of 
insertions, deletions, and substitutions to change array x into array y. This 
desirable distance is not computed by our 2DL distance as can be seen by 
the example presented in Fig. 1. Let insertions and deletions cost 1 and 
substitutions cost 1.5. It is clear that y can be obtained from x by deletions 
of all letters equal to C, for a cost of 9. However, D(x,y) = 12. Our 2DL 
distance does not find array matchings which ends in a configuration which 
“weaves” outer rows and columns in this manner. Currently, no known 
algorithm computes the minimum number of insertions, deletions, and 
substitutions to map x into y. 

To summarize, computation of 2DL distance for two N X N arrays can 
be accomplished in O(N4) and, in the range limited case, O ( N z ) .  These 
efficiencies make this distance practical for some problems. If the most 
common regions between two arrays are desired, corresponding modifica- 
tion of an algorithm of Smith and Waterman [ll] is, with some careful 
effort, possible. Several related algorithms have been presented in Darling 
and Waterman [3] which studies the probability distribution of the volume 
of the largest matching square and rectangle between random d-dimensional 
arrays. The example of Fig. 1 raises several questions, however, as to the 
mathematical properties of 2DL distance. 

* 
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