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For each point of the integer lattice Zd, let X and Y be independent identically 
distributed random variables with P(X = Y) = p  E (0, 1). Let S(n) be the volume of 
the largest d-dimensional cube in ( I ,  ..., n t d  with the property that X = Y at every 
point of the cube; R ( n )  is similarly defined to be the maximum volume of perfectly 
matching rectangles. It is proved that, if all possible shifts of the X lattice relative 
to the Y lattice are allowed, P(limm-,m S(n)/log n = limn+m R(n)/ log n = 2 4  = 1, 
where log is to base (l/p). The corresponding limit without shifts is d. Algorithms 
to find largest squares and rectangles, with and without shifts, are also given. 
@ 198s Academic P n s .  Inc. 

1. INTRODUCTION 

The length of the longest head run in a sequence of coin tosses is a 
random variable of much interest in probability theory. In addition to the 
obvious appeal of problems like runs of red in roulette, this random variable 
has been repeatedly suggested by other important, if somewhat less colorful, 
applications. Mosteller [ 91 recommends a test for randomness which is based 
On the length of the longest head run and is included in Gibbons [5]. 
NaUS [lo, 111, in his studies of the birthday problem, mentions and gives 
approximations for several related problems. His papers have a number of 
interesting references with topics ranging from vision (Glatz [6]) to uranium 
Prospecting (Conover et al. [ 21). In a recent paper, Schwager [ 13 1 mentions 
applications to DNA sequencing, psychology, sociology, ecology, and radar 
astronomy. 

A new approach was made to this problem by Erdos and Renyi [3]. Let 
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R(n)  be the length of the longest head run in n independent tosses of a coin 
with P (Heads) = p  E (0, 1). Among other results they show that 

P( n lim -+m R(n)/log,,,,(n) = 1) = 1. (1.1) 

Later Erdos and Rivesz (41 give more precise results, and Guibas and 
Odlyzko [ 71 obtain even more careful estimates. 

Motivated by DNA sequence comparison, Arratia and Waterman [ 11 
consider a related problem: Let X,, X, ,..., Y , ,  Y, ,..., be independent and 
identically distributed with P(Xi = Y j )  = p  E (0, 1). If all possible shifts of 
one sequence relative to the other are allowed, the relevant random variable 
is 

’ 

M(n)  = max {m: Xi+k = Yj+k for k = 1,2, ..., m; m < n - i; rn < n - j } .  
O<i .JCn  

Then the result corresponding to (1.1 ) is 

P(  lim M(n)/log,,,(n) = 2) = 1. (1.2) 
n - a ,  

Two random sequences of length n, not allowing shifts, have a longest match 
length which behaves like R (n) above. Allowing shifts involves the random 
variables M ( n )  and effectively doubles the length of the longest match. 

There are also results for two dimensions. At ( i , j ) ,  where i and j are 
positive integers, let P(X, = 1) = p  E (0, 1) and P(Xi j  = 0) = 1 - p. Revesz 
proved that the area S ( n )  of the largest square of all 1’s satisfies 

P( lim S(n)/log,,,(n) = 2) = 1. (1.3) 
n-m 

Allowing rectangles greatly increases the number of elements to be 
maximized, but Nemetz and Kusolitsch [ 121 show that R(n) ,  the maximum 
area of the rectangles of all l’s, also satisfies 

P(  lim R(n)/log,,;(n) = 2) = 1. (1.4) 
n-m 

In this paper, we give algorithms to find the largest square and rectangle 
of 1’s in an n x n lattice, each in time U(n’). In addition, we find O(n4) 
algorithms for the largest matching square and rectangle between two 
lattices. These algorithms are of interest in their own right since they provide 
practical means of computer calculation of the random variables S ( n )  and 
R(n) .  The algorithms are generalized to the case of finding squares and 
rectangles of “mostly” 1’s. 

The last part of the paper generalizes the results of Erdos, Renyi, Revesz, 
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Nemetz, and Kusolitsch to d-dimensions, and allows shifts. The counterpart 
of (1.2) is that 

P( lim S(n)/log,,,(n) = lim R(n)/log,,,(n) = 2d) = 1, 
n - w  n-oo 

where S ( n )  and R ( n )  denote ddimensional volume. If shifts are not allowed, 
the Nemetz and Kusolitsch result generalizes to show that the above limit 
becomes d, so that shifting, just as for d = 1, simply doubles the limiting 
volume. 

2. ALGORITHMS 

For xi, E (0, 1 }, 1 Q i, j < n, algorithms are presented to find maximum 
area squares and rectangles composed entirely or mostly of 1’s. The case of 
squares is simpler than that of rectangles and will be treated first. We will 
consider the position (i, j )  = (1, 1) to be the upper, left-hand corner of the 
n X n array. 

2.1. Largest Square of 1’s 
The length of the (horizontal) run of 1’s in the row beginning with xi, and 

extending left is hi,; vi, is the length of the (vertical) run of 1’s beginning at 
xi, and extending up the column; si, is the side length of the largest square of 
1’s with lower right corner at xi,. More formally, 

hi ,=max(m:x,,=l for I Q j - m +  l < r < j } ,  

~ ~ , = m a x ( m : x , , = l  for l < i - m + l & k < i } ,  

and 

sij = max{m: xk, = 1 for all i - m + 1 

Q k <  i and j - m  + 1 < 1 Gj}.  

The row run of 1’s ending at xiJ-, is extended by one at xl, if and only if 
Xi j=  1. This observation justifies the equations 

hi,=xij(hi,j-, + l), 

vi, = Xi,(%- 1J + 1). 

and 

The side of the maximum square with lower right comer at (i, j) can be no 
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Therefore “f“ in the above equation can be replaced by a random variable Y, 
equal to the length of 1’s run in thej th  column (ending at (i , j)) .  The Y is a 
truncated geometric random variable with expectation bounded by a 
constant; therefore expected running time is seen to be O(n’). 

2.3. Largest Figures with z Zeros 

more than z zeros. It is necessary to introduce more notation: Let 
Now consider the problem of finding the maximum area square with no 

larger than s I - l J - l  + 1. The side is that large if and only if the row and 
column run of 1’s are at least + 1. Therefore 

su= min{si-lJ-l + 1, h,, vu}. 

The number of steps indicated by this algorithm is O(n’). The area of the 
largest square is of course 

AS = ( max si/)’, 
I < i J < n  

2.2. Largest Rectangle of 1’s 

Let h,j and uU be as above. In addition define 

rijk = max(m: xp ,  = 1 for j -  m + 1 Q r Qj and i -  k + 1 Q q Q i } .  

which is the “width” of the largest rectangle of 1’s with lower right corner at 
(i,  j )  and “depth” k. Reasoning as above yields 

rijk = min { - 1 J , k -  1, hIj 

The largest area of all rectangles with lower right comer at ( i , j )  is given 
by 

I, = max (krijk} 
k 

and the largest area rectangle is 

A R =  max I , .  
1 < i J < n  

The running time calculation for the indicated algorithm appears to be 
I ”  
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To recursively compute h, 

h(i, j ;  k, I )  = z(i, j ;  k, I)(h(i, j - 1 ;  k, 1 - 1) + 1). 

Similar equations convert the recursions for v and other quantities above. 

3. LAWS OF LARGE NUMBERS 

For ease of exposition, we present our results for d = 2, in the case of 
matching with shifts. The proofs for d-dimensions present notational 
difficulties only. Denote logarithms to the base l / p  simply by log. 

THEOREM A (Largest matching rectangle). Let Xi,, 1 Q i, j < 00, and 
Yu ,  1 ,< i, j < m, be independent, identically distributed random variables 
such that 0 < p 3 P(X, , = Y, ,) < 1. Let M = M(n)  be the area of the largest 
matching rectangle between the finite lattices (Xu: 1 Q i, j Q n )  and (Yij: 1 < 
i, j Q n), allowing for shifts, i.e., 

M(n)=max(A =ab:X,+rJ+S= Yk t r , l t s , r=Otoa-  l , s = O t o b -  1, 

Then as n-. 00 

f o r s o m e l < i , k Q n - a +  1 ,  l < j , l < n - b -  1 ) .  

Remark. For simplicity of exposition, we state Theorem A for the case 
of random variables on the lattice Z2. The corresponding result for the lattice 
Z", d 2 1 ,  is that if M is the volume of the largest matching rectangular box, 
allowing for shifts, then M/log n - t ' . ' .  (2d). If shifts are not allowed, the 
result is that M/log n d (see [ 12) for d = 2). Our methods are closely 
related to [ 1 ] and [ 12). 

THEOREM B. (Largest matching square). With the notation qf 
Theorem A, let L EE L(n)  be the area of the largest matching square, allowing 
for shifts, i.e., 

L(n)= max(a': X i + r j + s  = Y k + r , l + r ,  r = 0 to a - 1, s = 0 to a - 1, 
for  some 1 Q i, j ,  k, 1 Q n - a + 1 }. 

Then as n + m, 

L(n)/Iog(n) 4. ( 3 4  

\ 
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Proof of Theorem A (assuming Theorem B). 
Evidently M(n) 2 L(n),  so (3.2) implies 

P(lim (M(n)/log n) > 4) = 1. 
n 

Hence it suffices to prove 

P(lim (M(n)/lag n) Q 4) = 1. (3 .3)  
n 

Define 

Q(a, n. i. k )  = max {b:  Xi+r.jts  = Y k + r , l + s r  r = 0 to a - 1, s = 0 to b - 1, 
some 1 Q j , l Q n - b +  11. 

In other words, Q(a, n, i, k )  is the maximum height of a matching rectangle 
of base a, starting at x coordinate i among the X array and x coordinate k 
among the Y array. Fix a constant 0 < E < 1, and define 

(3.4) 

LEMMA. For all integers a, 

P ( B a . n , i - k )  Q n12-4E 
and 

p ( B a . n , i , k )  Q n - 6  if a > 8 log n. 

Proof: For any integer m, 
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Let m = [(4(1 + E )  log n)/a]  + 1 ,  where [XI denotes the greatest integer <x. 
Then m > (4( 1 + E )  log n)/a and 

* 

so 
P(Q(a, n, i, k )  > 4(1 + E )  log n/a)  < (n - m - 1)' n-4-4E; 

which implies 

p(Ba+n, i ,k )  4 n - 2 - 4 e *  

On the other hand, if a > 8 log n, then 

m = [(4(1 + E )  log n) /a]  + 1 = 1 ,  

p a m  = p a  = ( l / p ) - a  < (l /p)-' logn = n- ' ;  

so using (3.5) 

P ( B a , n , i , k )  = P(Q(a, n, i ,  k) > 4(1 + E) log n/a )  < n - 6 ,  

and the lemma is proved. 

Continuing from (3.4), 

8 t o g n  n - a + I  n - a +  I 

G n =  u u B a , n , i , k )  " ( 6 u ' a . n . i , k )  . ( a = l  i , k = l  a = l l o g n t I  i . k = I  

The lemma now implies 
8 log n P(G,) < - + n-' ,  n4 E 

which implies 
Q) c P(G(*rn)) < 00. 

m=O 

From this inequality, we can deduce, by means of the Borel-Cantelli lemma, 

Since this holds for all E > 0, 

, 
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and we have proved that 

P(lim sup (L(n)/log n )  < 4) = 1. 
n 

Step 11. We now prove that P(lim inf, (L(n)/log n )  2 4) = 1. This time, 
define 

E q(n, b )  [ (4 log n - 6 log log n)'l2 1. 

Consider matches between squares of side q, whose top left corners have 
coordinates which are multiples of q: more precisely, let 

Cijrs= (Xqi+ l ,d+u=Y9,+f ,9s+ufor f=Otoq-1 ,andu=0  t o q -  1). 

Let D be the sum of the indicators of these events: 

Note that 

{L(n)  < q 2 }  c { D  = 0). 

Also note that 

pf9') 2 r 1 - ~ ( l o g  n)6, 4-' 2 (1/16)(log n ) - 2  

and 

ED - ( t ~ / q ) ~ p " ' )  2 ( 4 ~ ) ~  n-'(I~g n)6 .  

This implies 

ED 2 &(log n)4  

so that ED+ 00 as n + 00. 

In the expansion of Var(D) as a sum of covariances of indicator functions, 
there are - ( r ~ / q ) ~  diagonal terms, whose combined contribution is less than 
ED, and there are -(n/q)' terms which are all zero, corresponding to the 
independent pairs of events CiJrs and Cklfu with ( i , j )  # (k, I) and 
(r, s) # (t, u). Finally there are --2(n/q)6 nontrivial terms from pairs of 
events such as CUrs and Cut,, with (r, s) # ( I ,  u), or Cljrs and Cklrs with 
( i , j )  f (k, I). Let { p ,  ,p2, . . . ,}  be the weights of the atoms in the common 
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and 
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follows as desired. 
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