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ABSTRACT

All pairs of a large set of known vertebrate DNA sequences were

-searched by computer for most similar segments. Analysie of this data
shows that the coaputed similarity scores are distributed proportiocanally to
the logarithm of the product of the leagths of the sequences involved.
This distribution is closely related to recent results of Erdos and others
on the longest rua of heads ia coin tossing. A simple rule i{s derived for
determination of statistical significance of the similarity scores and to
assist iu relating statistical and biological significance.

INTRODUCTION
Identification and interpraetation of molecular sequance stailarities

is a fundamental problem in molecular bfology. An ilacreasing amount of
nucleic acid sequence data is becoaing available in such data bi-no as
GenBank in the U.S. and the EMBL data bank in Europe. A compendium of the
data has appeared as a supplement to Nucleic Acids Research (1). These
data can be analyzed for relationships, both functional and evolutionary,
by a variety of techaliques (briefly reviewed f{a (2)). The recent
identification (3) of a simian sarcoms viral onc gene with a human growth
factor is a good example of the utility of these data. Useful computer
methods have been developed for this analysis, where, among other
techniquil, dynaaic programming is employed to find best zatching (most
siailar) regions of sequences (4-%). Sequence comparison methods are
revieved in (7). What hﬁl‘bcen, until now, lacking in such analyses is &
completely valid test to assess the statistical significance of these
siamilarity scores observed between DNA sequences. Though the liiirucurc
abounds with sequence alignaments, and biological arguments based on those
alignments, there is very seldomw any estiumate provided of the statistical
significance (given the lengths and compositions ofhthn two sequences being
compared) of those alignments. This article addresses the need to provide
such an estimate. '
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Even if it were not possible to give a derivation of the statlstical
distribution of similarity scores from firet principles, the existing
nucleic acid sequence data are sufficient for an empirical investigation of
the distribution. Such an lnvestigation is important since all known
heuristic and ate Carlo techniques frequently assign statistical
significaace where unwarranted (8). The data can be divided into subgets
of sequences having similar functioa and taxonomic classification.
Different distributlions might be anticipated for these subsets. For
example, protein coding saquences might display higher similarity amoag
thin:clvco siaply due to their similar statistical properties (base
composition and nearest nefghbor frequencies (8)). Our subsets Include 204
vertebrate DNA protein coding sequences as well ag eukaryotic structural
RNA's, eukaryotic viruses, vertabrate non-coding sequences, and non-
vertebrate eukaryotic sequences from GenBank (1), Por example, we have
compared vertebate DNA sequences (and their complements) and eukaryotic
virus sequences to & set of 204 vertebrate DNA sequences.

We preseant both empirical evidence and theoretical justificatioan for a
specific statistical distribution of the similarity scores among
bilologically realized sequences. This leads to a simple rule for asssssing
gtatistical significance of similarities. The method developed in this
paper is not oanly of practical value for nucleic acid sequance analyses,
but is shown to be related to important rvecent developments in probabtlity
theory. '

METHOD

All sequence data were from GenBank (1), The alignment algoritham
employed in this study incorporates genetic transformations (base
substitutions and deletion/insertions) and finds the wost similar or
highest scoring segments between two sequences; this algorithm has been
described in detail previously (4). The similarity score of two aligned
segments {8 the number of matches alnus penalties for mismatches and
gaps. The algorithm finds the maximum of the scores of all such aligned
pairs of segments, therefore finding the best matching segments out of all
possibilities. The algorithm is a generalization of the dynamtic
programming algoritha introduced by Needleman and Wuasch (9), and was
designed for the specific nature of the data, vhich include many repeated
(e.g. Alu sequences) sad biologically velated (e.g. nRNA and genomic

sequences) seguments.
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A FORTRAN program was developed to implement the above similarity
algorithm on a CRAY-1 computer system. By utilizing the vector
architecture of this computer it is possible to investigate comparisons
among very large numbers of anucleic acid sequences in reasonable execution
time. All pairwise comparisons among 204 vertebrate sequences (including
the complement strands) were carried out in approximately 170 ainutes, at a
rate of over 240 sequence comparisons per minute with an average sequence
length of 800 nucleotides.

To simplify the problem of comparing these results, the algorithm
parameters were held coustant. While the ability to identify overall
sequence homology among a given set of sequences is dependent on the
algorithm parameters (10) and the statistical characteristics (3) of the
genetic domains involved, the identification of maximal segment homologies
appears to be less sensitive. The parametaer values used in this study --
matches equal 1.0, mismatches equal -0.90 and gaps (single base
deletion/insertions) equal ~2.0 -~ were chosan because they allow a high
proportion of the known segment homologies among hemoglobin protein coding
regions to be identified. 1In cases where previously ideatified hemoglohin
homologies were not reproduced exactly with these parameters, the
differences involved only a slight rearrangement of neighboring gaps. This
was true even for previously studied non-protein encoding sequences such as
the ribosomal RNAs (thus incraaiing confidence in the eaployn.utvof these
particular parameter values). The percentage of matched bases (including
gaps) and the ratio of implied transitions to transversions among the
aligned mismatches were also calculated. Among previously identified
homologies the percentage is generally greater than sixty-eight and the
ratio greater than two thirds.

The get of best similarity scores resulting from comparison of each
given sequence with all sequences in the vertebrate data set was used to
generate a frequency distribution. Representative examples of these
distributions appear i{m Figure 1. The sequence being compared with the
other sequences in a data set will be referrad to as the query ssquance.

Although similarity scores of 40 or larger are coansidered ocutliers and
are easily identified as statistically significant, assessment of lower
scores rcquirci a deeper analysis. It is natural to ask vhether these
frequency distributions, or some subset of them, nrc}nor-nlly distributed.

A lilliefor's test (1ll) of normality was run oa these distributions where
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Figure 1. A-E are similarity score histograms of observed maximum
sinilarities of a single query sequence to the mesbers of a reference set
of sequences. F contains two composite histograms. All values higher than
S0 wers vecorded at 50. A) Histogram obtained from the query of 204
vertebrate sequences using the chicken x-gene (32); AA represeats homology
with chicken ovalbumin (33) while AB represents the suspacted (10) homology
with the primate alpha-l antitrypsin. B) Histogram obtained from the query
of 423 eukaryotics and viral sequences using the mouse alpha hemoglobia
pseudogens (19); BA represents homologles with sevea other vertebrate alpha
globins; BB represents the least similar alpha globin, the human pseudogene
(34); BC~BD represent the other hemogloblus ranging from the X.laevis beta
globin (20) to the rabbit beta globins (35). C) Histograam obtained from
the query of 204 vertebrate sequences using one of the mouse Bl ubiquitous
repeat (21) sequences; CA~CB represent the other mouse Bl's (21), two
Chinese Hamster equivalents (36) and two human Alus (22) that neighbor the
epsilon globin and preproinsulin genes; CC represents mouse and hamster
RNAs (36), presunably arising from Bl-like repeat transcription; batween CC
and CD are all the other unequivocal Alu/Bl-like sequences including those
from rat, human, and mouse; CR includas a nuaber of apparently unrelated
short sequence similarities, but also includes the most distant previously
identified hamster Alu~like sequence, 250 close (36). D) Histograa
obtained from the query of 160 vertebrate protein coding (spliced)
sequences using the bovine growth hormone, presomatotropin (37); DA
represents four other somatotropin sequences from human (38) and rat (39);
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DB represents the next most similar sequence found in a mouse
immunoglobulin heavy chain constant region (40). E) Histogram from the
query of the vertebrate non-protein encoding sequences using the same
coding sequence for a query as in D above; ZA represeats the most similar
sequence within this data set, a rat tRNA cluster. F) thae sum of 423
eukaryotic similarity histograms, solid line; aand the sum of 100 similacity
higtograms for random sequences having nearest neighbor €frequencies
identical to those found in vertebrate coding regions (8), solid circles.

all similacity scores larger than 40 were trimmed from the di{stribution. A
oue perceat level test resulted in rejection of normality in 98 perceant of
the cases (see Fig. 1A for an example of one of the few distributions
passing this test). These results clearly {ndicste that statistical
significaace should not be assigned by standard normal distribution
techniques.

Earlier attempts to perform analysis of the distributioans of matches
for comparison of random sequeances have provided few results directly
useful for sequence analysis. Chvatal and Sankoff (12) began studies of
the distribution of the number of matches in random sequences where gaps
aad mismatches receive no penalty. Their problem, known as the longest
common subsequence problem, has attracted a good deal of attention but
nothing directly applicable to the more general problem of molecular
sequence comparison. The difficulty of this problem seems to leave little
hope for a complete distributioa theocy.

Deriving the probability distribution of the length of the longest rum
of heads in a sequence of n independent coln tossas is a problem with a
long history of solutions difficult to do computations with (13). In 1970,
however, Brdos and Renyl found the longest run of heads to be, in the limit
with probability one, log(n) where the logarithm is to base 1/p, p=P(Heads)
(14,15). The techaical statements of these agnd related rasults, known as
the Erdos-Renyl lavw, are involved and precise formulations appiar in the
raeferences (14,15).

The coin tossing problem {s related to sequence matching problems in
the following way. Two random sequences of length n are .aligned by

28y ay ... 2,

by by o0 by
He now convert the alignment to a sequence of W's and T's. If a; = by , an
"H* replacecs :1 ; otherwise a "T" does. This replaces the aligament by a
sequence of ha&d. and tails. The length of the lonzcit run of matches in
the aligonment is equal to the length of the longest run of heads in the
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associated coin tossing sequence, and therefore follows the Erdos-Renyi
law.

The algorithm employed in the present study gives the best matching
region for all possible alignments, motivating the following formulattloa.
Let Ry be the longest run of uninterrupted matches for the particular

aligament
8182 e ai aH,l cee an
by by ees buy41 o by
Here Ri < n-i+] and, for n-{ large, the Erdos-Renyi law holds for Ry. The

best of all these R; is R where
R = max Ri
-n<idn

It is possible to prove (18) that the limit law of R is equivalent to an
Erdos-Renyi law with a different constant, that {s, 2.0 multiplied by
log(n)/log(1/p), where p = P(Match) = pi+ p%+ p§+ pé. For sequences of
length n and n, the expected value of R, allowing k mismatches, is

E(R) = (log(nm) + k loglog(nm) + (k+1) log(l-p) - log(k!))/log(l/p)

+k+y/A-1
and the variance is
o2 2lenk 12

where Y = .577... 18 the Euler-Mascheroni constaat aad A = 1n(1/p). These
results, with a complete error analysis, appear in a paper by Arratia et
al. (16). Karlin et al. (17) announced a related result with k = 0 (no
wismatches allowed) and slightly different constants. Surprisingly, the
variance does not grow with a. There are mathematical reasons that lead
one to believe that this feature of essentially constant variance also
holds for a reasonabla number of mismatches, deletions, and insertioas
(18).

RESULTS AND DISCUSSION
To study these data frow this viewpoint, the similarity scores were

plotted versus the logaritha of the products of the sequence length, whare
log is again to the base l/p, p = P(Match). A strong linear trend is
observed, with essentially constant variance, and the data are shown in
Figure 2. The possible influence of the blological properties of the
sequences on these rasults was toqtod by coaparison with Mnte Carlo
siaulations of sequences with the same nearest ueighbor frequencies as the
biological sequences (8); this test resulted in linear trends with slopes
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Pigure 2. Similarity scores of vertebrate DNA sequences and their
complements and eukaryotic virus sequences (a total of 20,706 data points)
compared with a get of 204 vertebrate DNA sequences plotted against
log(nlnz) where n; and ny are sequence lengths and log is to the base

1/p, where p = P(Match). Points plotted on the upper horizontal axis
represeat slmilarity scores > 40.0. Each point represents the best
aimilarity score found {n compartng the corresponding quety sequence to the
204 vertebrate sequences.

close but not identical to the slopes resulting from the biological
sequences. -
We also studied the results of querying two clearly blologically
disjoint data sets — vertebrate protein coding and non-protein coding (see
examples in Fig. ID and IR). The general statistical properties of the
resulting frequency dilstributions for atlentiﬁy scores were quite close to
“each other and to those generated by querying the full vertebrate data
set. While thare was a slight (constant) increase in the distribution mean
when querying the protein coding data set with protein coding sequences (as
c&mpared to querying the non-protein coding data set with protein coding
sequences), the linear velationship was retained with approximately
identical slope. Sensitivity to the algorithm parameters was explored by
varying the algorithm weights as well as the form of the gap weights
(10). The linear trends parsist, with the slope decreasing as the amismatch
and gap penalties increase. ) ,
To estimate statistical significance, thers are two approaches. We
calculate how many standard deviations a similarity score is above the mean
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and judge it significant if it is more thaﬁ. say, 20 above the mean. It 1is
possible to take a much more cautious approach with Chebyshev's inequality
(13): The probability that a random variable exceeds its mean by more thaa
X is less than or equal to (a/k)z. Our ; = 1.5, calculated from the data
in Figure 2, so that a similarity score exceeds its (estimated) mean by
more than 4.5 with probability less than or equal 1/9 » .lll...., by more
than 6.0 with probability less than or equal 1/16 » 0.0625, etc. Both of
these procedures are useful and conservative. We use the first method and
calculate the number of ;'s a similarity score exceeds the mean.

A fit of the data displayed in Figure 2, using robust techniques for
handling outliers, resulted in the equation

S log(nm) -
[Eq. 1.1] § = 2.55 165‘(75? 8.99,

where S i3 the mean best similarity, n and m are the sequence lengths and p
= P(Match) = P: + P% + Pg + Pé . The estimate of g from the data 1is
(Eq. 1.2] o= 1.78.

These values are now used to examine certain comparisons.

These values for S and 0 can then be compared to the similarity score
for any actual alignment, and thus provide a criteriua for appraising
statistical significance. The following paragraphs provide sevaral
examples of the calculation of statistical significance. These exanples
also fllustrate the fact that statistical significance and biological

significance are closely related but not identical.

In many cases, alignments indicating high statistical significance are"

the result of comparing two sequences already known to be biologically
related (homologous). In Figure 1B a query of the data using a mouse alpha
hemoglobin (19) produced a wide spread in similarity scores. Since the
hemoglobins form a large and divergent fasily dating from before the
origins of the vertebrates, the nearly coatinuous range of obsgerved
similarities is not surprising. Even the distant beta globin of the
African toad, X. laevis (20), has a similarity score with the mouse alpha
globin corresponding to 6 ;'l above the mean, indicating statistical

significance. Since the mouse sequence has n = 1641, the toad sequence has -

m = 600, and p = .248, the mean was estimated by

2.55 1o g;"‘i"{( L41)) _ g.99 = 16.01.
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The score vas 27.00 so that 27.00 - 16.01 = 10.99 = (5.17)(1.78) = 6.17g.

Using a highly repetitive sequence such as mouse Bl (21) also
generates a wide spread of similarity scores (Fig. IC), but in this case
statistical and biological signifance can be confused. Similarity scores
between 15.5 and 20.0 are coatributed both by appareatly biologically
unrelated sequence segments and by a previocusly identifi{ed hamster Alu-like
repetitive segment (36). In such cases, statistically significant
similarity scores may not reflect true homology (clear biological function
or taxanomic relatedness), but merély compositional or pattern restrictions
common to the compared sequences. An extreme example is the CCRCC (R =
purine) repeat found in‘fhe winter flounder (P. americaaus) antifreeze
protein gene (23). This compositional restriction leads to high similarity
to other sequences with regioas rich in C (or complements of sequences rich
in G). Siamilarly, the (TC)y, region at the end of three rat tRNA genes
(24) matches the complement of the mouse immunogloblin y-1 introa (25),
which contains a (GAGAG) ¢ region, with a similarity score of 54.90. In
this last example the mean is estimated by

2.55 1o gént.).(zm)) - 8.99 = 18.42.

The similarity score, 54.90, exceeds the amean by 20.490

There are a few cases wliere similarities are equal to or greater than
four o's above the mean and for which no reasonable biological
justification yet exists. The best example observed in these data 1is
obtained from comparison (see Fig. 1E) of the 185 rRNA of X. laevis (26)
and an introa in the IE gene of Herpes simplex virus (27), which ylelded a
simnilarity score of 37.20. Here the mean is estimated by

2.55 138“9':8)“”) - 8.9 = 19.11.

S = 37.20 exceeds 19.11 by 10.160.

Numerous segment similarities can now be clearly identified as
statistically insignificant in spite of appearances. For exaaple the
algorithm aligns the following segments between the protein encoding
regions of yeast actin (28) and nouse alpha-fetoprotein (29).

GTTCTGGGATGETGCAAAGCTG
GTTCTGGTATG-TGTAAAGCGG

The expected score is

2.55 Lo (2212)(1750) - 8.99 = 18.83.
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The actual similarity score of 13.3 = 18.0(18 matches) ~ 2.7(3 wmismatches)
~ 2.0(1 deletion) therefore supports chance rather than biology, even
though there are 87 percent matches and two out of the three implied point
mutations are transitions. Note that the gap {8 not a2 multiple of three as
expected for homologous coding regions. -

Blological and/or expertmental iaformation can explain what might
otherwise by surprisingly significant alignments. Statistically
significant similaritles were often found when the query sequences were the
conplements of the 'sense' or published strands. As expected, the
similarity value dlstributions were on the average equivalent to those
generated by the original sequence. Structural rRNA's have the intaresting
property that they are more similar to their complements than to any other
complemented sequence. This is no doubt the result of the secoadary
structure motifs in these molecules. Unexpectedly, a few cDNA sequences
(from mRNA) were found to be highly self-complementary as well. For
example, cDNA from rat preprorelaxin mRNA (30) shows a weak imperfect
reflected repeat in the first and second thirds of the B peptide. An even
stronger example appears in the published cDNA sequence from the human
enkephalin precursor mRNA sequence (31). Here the Eirst 113 bases of the
presunptive uRNA leader are found repeated exactly as a reverse complement
some geven hundred bases dowastream. The fact that the vepest is perfect
and comprises one of the termini of the cONA suggests that it may have
arisen ag a reverse traascriptase error. The statistical significance of
the resulting limllattty'value draws our attention in this case to a
potential experimental complication rather than a historical biological
event .

In summary, Equations 1.1 and 1.2 provide a quick method of estimatiang.
the statistical significance of saquence alignments. For alignment
algorithas employing the weighting parameters used heve (match = 1.0,
missatch = =0.9, deletion = -2,0) the coastant values in these equations
are good as they stand; for alterunative parsweter weights, Eqs. 1.1 and 1.2
caa be rederived using s fitting procedure for data such as that ia Pig.

2. Finally, we stress that the affirmatioun (or negation) of the biological
significance of a given found similarity should be based in part, thouygh
not eantirely, on the statistical signiffcance.
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