The statistical distribution of nucielc acid similarities

Temple F.Smith ${ }^{1}$, Michael S.Waterman ${ }^{2}$ and Christian Burks ${ }^{3}$
${ }^{2}$ Dept. Biostatistics, Harvard Med. Sch., Harvard Univ., 44 Binney Street, Boston, MA 02115, ${ }^{2}$ Depts. Mathematics and Biol. Sciences, Univ. Southern California, Los Angeles, CA 90089, and 'Theoret. Biol. and Biophysics Group, Los Alamos Nat. Lab., Los Alamos, NM 87545, USA

Received 5 June 1984; Revised 23 October 1984; Accepted 11 December 1984

Abstract

All pairs of a large set of known vertebrate DNA sequences were searched by computer for most similar segnents. Analysis of this data shows that the coaputed similarity scores are distributed proportionslly to the logarithm of the product of the lengths of the sequences involved. This distribution is closely related to recent results of Erdos and others on the longest run of heads in coin tossing. A simple rule is derived for determination of statistical aigaificance of the siailarity acores and to assist in relating statistical and biological significance.

\section*{IIIREODUCTIOA}

Identification and interpretation of molecular sequance staliarities 1s a fundamental problea in molecular biology. An increating amount of nucleic acid eequence data is becoaing available in such data beses as GenBank in the U.S. and the erBL data bank in Europe. A compendium of the data has appeared as a supplement to Nucleic Acids Research (1). These data can be analyzed for relationships, both functional and evolutionary, by a variety of techaiques (briefly reviewed in (2)). The recent idencification (3) of a sinian sarcome viral onc gene with a human growth factor is a good example of the utility of these data. Useful computer methode have been developed for this analyais, where, among other techaiques, dynamic programaing is enployed to find best zatching (nost siailar) regions of sequences (4-5). Sequence comparison methods are reviewed in (7). What has been, until now, lacking in such analysee ls a completely valid test to assess the statistical significance of these siailarity scores observed between DMA sequences. Though the ilterature abounds with sequence alignaents, and biological arguasats based on those alignments, there is very seldow any eatiaate provided of the statistical significance (given the lengthe and compositions of the two sequences being coapared) of those alignments. This article addresses the need to provide such an estimate.

Even if it were not possible to give a derivation of the statistical distribution of similarity scores from first principles, the existing nucleic acid sequence data are sufficient for an empirical investigation of the distribution. Such an investigation is important since all known heuristic and Mate Carlo techniques frequently assign statistical significance where unwarranted (8). The data can be divided into subsets of sequences heving sinilar function and taxonoric classification. Different distributions right be anticipated for these subsets. For example, protein coding sequences might display higher siailarity among thenselven simply due to their similar statistical properties (base composition and nearest neighbor frequencies (3)). Our subsets Include 204 vertebrate DNA protein coding sequences as well as eukaryotic structural RNA's, eukaryotic viruses, vertebrate non-coding sequences, and nonvertebrate eukaryotic sequences from GenBank (1). Por example, we have compared vertebate DNA sequences (and their complements) and eukaryotic virus sequences to a set of 204 vertabrate DNA sequences.

We present both empirical evidence and theoretical justification for a specific atatistical distribution of the sinilarity acores among biologically realized sequences. This leads to a siaple rule for assessing. statiatical significance of similarities. The method developer in this paper is not only of practical value for nucletc acid sequence analyaes, but is shown to be related to iaportant recent developments in probability theory.

METHOD

All sequence data were from GanBank (i). The alignaent algorithe employed in this study incorporates genetic transformatlons (base substitutions and deletion/insertions) and finds the most sinilar or highest scoring segments between two sequences; this algoritha has been described in detail previously (4). The similarity score of two aligned segmenta is the number of matches ainus penalties for mismatches and gaps. The algorithm finde the maximum of the acores of all such aligned pairs of segments, therefore finding the best watching segrents out of all possibilities. The algoritha is a generalization of the dynante programing algorithe introduced by Needleman and Wunsch (9), and was designed for the epecifle nature of the data, which include many repeated (e.g. Alu sequences) and biologically related (a.g. GRMA and genomic sequences) segments.
A FORTRAN program was developed to implement the above similarity algorithm on a CRAY-1 computer system. By utilizing the vector architecture of this computer it is possible to investigate comparisons among very large numbers of nucleic acid sequences in reasonable execution time. All pairwise comparisons among 204 vertebrate sequences (including the complement strands) were carried out in approximately 170 ainutes, at a rate of over 240 sequence comparisons per minute with an average sequence length of 800 nucleotides.
To simplify the problen of comparing these results, the algorithm parameters were held constant. While the ability to identify overall sequence homology among a given set of sequences is dependent on the algorithu parameters (10) and the statistical characteristica (8) of the genetic domains involved, the identification of meximal segment homologies appears to be less sensitive. The parameter values used in this study matches equal 1.0, mismatches equal -0.90 and gaps (single base delecion/insertions) equal -2.0 were chosen because they allow a high proportion of the known segment homologies anong henoglobin protein coding regions to be identified. In cases where previously identified hesogiobin homologies were not reproduced exactly with these parameters, the differences involved only a sight rearrangement of neighboring gaps. This was true even for previousiy studied non-protein encoding sequences auch as the ribosomal RNAs (thus increasing confidence in the exployment of these particular parameter values). The percentege of asthed beses (including gaps) and the ratio of implied transitions to transversfons among the aligned aismatches were also calculated. Among previousiy identified homologies the percentage is generally greater than sixty-eight and the ratio greater than two thirds.
The set of best siailarity scores resulting from comparison of each given sequence with all sequences in the vertebrate data set was used to generate a frequency distribution. Representative exanples of these distribution appear in Figure 1 . The sequance being compared with the other sequences in a data set will be referred to se the quary sequance.
Although ainilarity ecores of 40 or larger are considered outliers and are easily identified as statistically significant, assessment of lower scores requires a deeper analysis. It is natural to ask wether these frequency distributions, or son subset of them, are normelly distributed. A Lilliefor's test (11) of normality was run on these distributions where

Figure 1. A-E are siailarity ecore histograms of observed aaxinum similarities of aingle query sequence to the menbers of a reference set of sequences. F contains two composite histograns. All values higher than 50 were recorded at 30 . A) Histograa obtained from the query of 204 vertebrate sequences using the chicken x-gene (32); M represents homology with chicken ovalbumin (33) while AB represente the suspected (10) homology with the priante alpha-i antitrypin. B) Histogran obtained froa the query of 423 eukaryotics and viral sequences using the mouse alpha henoglobia pseudogene (19); BA represents homologies with seven other vertebrate alpha globins; BB represents the least slailar alpha globin, the human pseudogene (34); BC-BD represent the other heaogloblas ranging fron the X.leevis beta globin (20) to the rabbit beta globins (35). C) Mistograa obtained from the query of 204 vertebrate sequences using one of the nouse Bl ubiquitous repeat (21) sequences; CA-CB represent the other souse B1's (21), two Chinese hamster equivalents (36) and two human Alus (22) that neighbor the epailon globin and preproinsulin genes; CC represents mouse and hanster RNAs (36), presumably arising from Bl-1ike repeat tranecription; batween CC and CD are all the other unequivocal Alu/B1-like sequences including those from rat, human, and mouse; CE includes a number of apparently unrelated short sequence siailarities, but also includes the most distant previously identified hataster Alu-like sequence, 250 close (36). D) Histogram obtained from the query of 160 vertebrate protein coding (apliced) sequences using the bovine growth hormone, presomatotropin (37); DA represents four other somatotropin sequences from husan (38) and rat (39);

DB represents the next most similar sequence found in a mouse immonoglobulin heavy chain constant region (40). E) Histogram from the query of the vertebrate non-protein encoding sequences using the same coding sequence for a quary as in D above; $\mathbb{B A}$ represents the most similar sequence within this data set, a rat tRNA cluster. F) the sum of 423 eukaryotic siailarity histograms, solid line; and the sum of 100 similarity histograms Eor random sequences having nearest neighbor frequencies identical to those found in vertebrate coding regions (3), solid circles.
all similacity scores larger than 40 wepe trimmed from the distribution. A one percent level test resulted in rejection of normality in 98 percent of the cases (see Fig. IA for an example of one of the few distributions passing this test). These results clearly indicate that statistical significance should not be assigned by standard normal distribution techniques.

Earlier attempts to perform analysis of the distributions of matches for comparison of random sequences have provided few results directly useful for sequence analysis. Chvatal and Sankoff (12) began studies of the distribution of the number of matches in randon sequences where gaps and nismatches receive no penalty. Their problea, known as the longest coman subsequence problen, has attracted a good deal of attention but nothing directly applicable to the more general problem of molecular sequence compsrison. The difficulty of this problen seess to leave little hope for a complete distribution theory.

Deriving the probability distribution of the length of the longest run of heads in a sequence of n independent coin tosses is a problem with a long history of solutions difficult to do computations with (13). In 1970, however, Erdos and Renyi found the longeat run of heads to be, in the liatt with probability one, $\log (n)$ where the logarithm is to base $1 / p, p=$ (Heads) (14,15). The techaical statenents of these and related results, known as the Erios-Renyi lau, are involved and precise formulations appear in the references (14,15).

The coin tossing problen is related to sequence matching problems in the tollowing way. Two random sequences of length a are aligned by

$$
\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{n} \\
b_{1} & b_{2} & \ldots & b_{n}
\end{array}
$$

We now convert the alignment to sequence of q's $^{\prime}$ and $T^{\prime} s$. If $a_{1}=b_{1}$, an " H^{\prime} replaces a_{i}; otherwise a " $T^{\prime \prime}$ does. This replaces the alignment by a sequence of heade and tails. The length of the lougeit run of antches in the alignment is equal to the leagth of the longest run of heads in the
associated coin tossing sequence, and therefore follows the Erdos-Renyi law.

The algorithm employed in the present tudy givea the best watching region for all possible alignments, motivating the following formulation. Let R_{L} be the longest run of uninterrupted matches for the particular alignment

$$
\begin{array}{rllll}
a_{1} a_{2} & \cdots & a_{1} & a_{1+1} & \cdots \\
b_{1} & a_{n} & \cdots & b_{n-1+1} & \cdots
\end{array} b_{n}
$$

Here $R_{1} \leqslant n-1+1$ and, for $n-1$ large, the Erdos-Renyi law holds for R_{1}. The best of all these R_{1} is R where

$$
\begin{aligned}
R & =\max R_{1} \\
& -n<1<n
\end{aligned}
$$

It is possible to prove (18) that the limit law of R is equivalent to an Erdos-Renyi law with a different constant, that is, 2.0 multiplied by $\log (n) / \log (1 / p)$, where $p=P(M A c h)=p_{A}^{2}+p_{T}^{2}+p_{G}^{2}+p_{C}^{2}$. For sequances of length n and n, the expected value of R, allowing k aisatches, is $E(R)=(\log (n m)+k \log \log (n m)+(k+1) \log (1-p)-\log (k!)) / \log (1 / p)$ $+k+\gamma / \lambda-1 / 2$
and the variance is

$$
\sigma^{2}=\pi^{2} / 6 \lambda^{2}+1 / 12
$$

where $\gamma=.577 \ldots$ Ls the Euler-Mascheroni constant and $\lambda=\ln (1 / p)$. These results, with a complete error analysis, appear in a paper by Arratia et al. (16). Karlin et al. (17) announced a related result with $k=0$ (no nisaatches allowed) and slightly different constants. Surprisingly, the variance does not grow with a. There are nathematical reasons that lead one to belisve that this feature of essentially constant variance also holds for reasonable number of misatches, deletions, and insertions (18).

ESSULTS AND DTSCUSSION

To study these data from this viewpoint, the siailarity scores were plotted versus the logaritha of the products of the sequence leagth, where log is again to the base $1 / P, p=P(M a t c h)$. A atrong inear tread is observed, with essentially constant variance, and the data are shom in Figure 2. The possible influence of the biological properties of the sequeaces on these rasults was tested by comparison with Monte Carlo sinulations of sequences with the sane naarest neighbor frequencias as the biological sequences (8); this test resulted in linear trends with slopes

Figure 2. Similarity scores of vertebrate DNA sequences and their complements and eukaryotic virus sequences (a total of 20,706 data points) compared with a set of 204 vertebrate DNA sequences plotted against $\log \left(n_{1} n_{2}\right)$ where n_{1} and n_{2} are sequence lengths and \log is to the base $1 / p$, where $p=P($ Match). Points plotted on the upper horizontal axis reprasent siailarity scores ≥ 40.0. Each point represents the best siailarity score found in comparing the corresponding query sequance to the 204 vertebrate sequences.
close but not identical to the slopes resulting from the biological sequences.

We also studied the results of querying two clearly biologicaliy disjoint data seta - vertebrate protein coding and non-protein coding (sea examples in Fig. $1 D$ and IR). The general statistical properties of the resulting frequency distributions for sinilarity scores were quite close to each other and to those generated by querying the full vertebrate data set. While there was a silght (constant) increase in the distribution mesn when querying the protein coding data set with protein coding sequences (as compared to querying the non-protein coding data set with protein coilig sequences), the linear relationship was retained with approximetely identical slope. Sensitivity to the algoritha parameters was explored by varying the algoritha weight: as well as the form of the gap weights (10). The linear trends parsist, with the slope decreasing as the mismatch and gap penalties increase.

To estimate statistical significance, thare are two approaches. We calculate how many standard deviations a siailarity score is above the mean
and judge it significant if it is more than, say, 2σ sbove the mean. It is possible to take a much more cautious approach with Chebyshev's inequality (13): The probability that a randor variable exceeds its mean by more than λ is less than or equal to $(\sigma / \lambda)^{2}$. Our $\dot{\sigma} * 1.5$, calculated from the data in Figure 2, so that a similarity score exceeds its (estimated) mean by more than 4.5 with probability less than or equal $1 / 9 * .111 . \ldots$, by more than 6.0 with probability less than or equal $1 / 16 \approx 0.0625$, etc. Both of these procedures are useful and conservative. We use the first method and calculate the number of $\hat{\sigma}$'s a similarity score exceeds the mean.

A fit of the data displayed in Pigure 2, using robust techniques for handilug outliers, resulted in the equation
[Eq. 1.1]

$$
\hat{S}=2.55 \frac{\log (n m)}{\log (1 / p)}-8.99
$$

where \hat{S} is the mean best similarity, n and r are the sequence lengths and p $=P($ Match $)=P_{A}^{2}+P_{T}^{2}+P_{C}^{2}+P_{G}^{2}$. The estimate of σ from the data is

〔Eq. 1.2〕

$$
\hat{\sigma}=1.78 .
$$

These values are now used to examine certain comparisons.
These values for \hat{S} and $\hat{\sigma}$ can then be compared to the similarity score for any actual alignment, and thus provide a criteriun for appraising statistical significance. The following paragraphs provide several examples of the calculation of statistical significance. These axanples also illustrate the fact that statiatical significance and biological significance are closely related but not identical.

In many cases, alignments indicating high statistical significance are the result of comparing two sequences already known to be biologically related (homologous). In Figure iB a query of the data using a mouse alpha hemoglobin (19) produced a wide spread in ainilarity scores. Since the hemoglobins form a large and divergent fantly dating from betore the origins of the vertebrates, the nearly continuous range of observed similarities is not surpeising. Even the distant beta globin of the African toad, X. laevis (20), has a siwilarity score with the mouse alpha globin corresponding to $6 \hat{\sigma}^{\prime}$ a above the mean, indicating statistical significance. Since the mouse sequence has $n=1441$, the toad sequence has . $n=600$, and $p=.248$, the mean was estimated by

$$
2.55 \frac{\log ((600)(1441))}{\log (1 / .248)}-8.99=16.01
$$

: The score was 27.00 so that $27.00-16.01=10.99=(5.17)(1.78)=6.17 \hat{\sigma}$.
Using a highly repetitive sequence such as nouse $B 1$ (21) also generates a wide spread of similarity scores (Fig. 1C), but in this case statistical and biological signifance can be confused. Similarity scores between 16.5 and 20.0 are contributed both by apparently biologically unrelated sequence segments and by a previously identified hamster Alu-like repetitive segment (36). In such cases, statistically significant similarity scores may not reflect true homology (clear biological function or taxanomic relatedness), but merely compositional or pattern restrictions common to the compared sequences. An extreme example is the CCRCC ($\mathrm{B}=$ purine) repeat found in the winter flounder (P. anericanus) antifreeze protein gene (23). This compositional restriction leads to high stallarity to other sequences with regions rich in C (or complements of sequences rich in G). Siallarly, the (IC) 24 region at the end of three rat tRNA genes (24) matches the complement of the mouse famunogloblin $\gamma-1$ intron (25), which contains a (GAGAG) ${ }_{15}$ region, with a siailarity score of 54.90 . In this last example the mean is estimated by

$$
2.55 \frac{\log ((764)(2109))}{\log (1 / .265)}-8.99=18.42 .
$$

The similarity score, 54.90 , exceeds the mean by $20.49 \hat{\sigma}$.
There are a few cases where similarities are equal to or greater than four σ 's above the mean and for which no reasonable blological justification yet exists. The best example observed in these data is obtained from comparison (see Fig. IE) of the 18S rRM of X. laevis (26) and an intron in the IE gene of Herpes simplex virus (27), which yielded a similarity score of $\mathbf{3 7 . 2 0}$. Here the mean is estinated by

$$
2.55 \frac{\log (2948)(431)}{\log (1 / .279)}-8.99=19.11 .
$$

$S=37.20$ exceeds 19.11 by 10.16σ.
Numerous aegment sinilarities can now be clearly identified as statistically insignificant in spite of appearances. For example the algorithm aligne the following segments between the protein encoding regions of yeast actin (28) and nouse alpha-fetoprotein (29).

GTTCTGGEXATGTGCAMGCTG
gTtctgeitat-tgTanagceg
The expected score is

$$
2.55 \frac{\log (2012)(1750)}{\log (17.251)}-8.99=18.83
$$

The actual sinilarity score of $13.3=18.0(18$ matches) $-2.7(3$ alsatches) - 2.0(1 deletion) therefore supports chance rather than biology, even though there are 87 percent ratches and two out of the three implied point mutations are transitions. Note that the gap is not multiple of three as expected for homologous coding regions.

Biological and/or expertmental information can explain what might otherwise by aurprisingly significant alignments. Statistically significant siailarities were often found when the query sequences were the complements of the 'sense' or published strands. As expected, the sinilarity value dletributions were on the average equivalent to those generated by the original sequence. Structural rRNA's have the interesting property that they are more siallar to their complements than to any other complemented sequence. This is no doubt the result of the secondary structure motifs in these molecules. Unexpectedly, few cDNA sequences (from wint) were found to be highly self-complementary as well. For example, cDNA from rat preprorelaxin mRNA (30) shows a weak inperfect reflected repeat in the first and second thirds of the B peptide. An even stronger example appears in the published CDNA sequence frow the huran enkephalin precursor mRNA sequence (31). Here the first 113 bases of the presumptive wRNA leader are found repeated exactly as a reverse complement some seven hundred bases downstreas. The fact that the repat is perfect and comprises one of the termini of the cDNA suggests that it may have arisen as a reverse cranscriptase error. The statisticsi significance of the resulting aimilarity value draw our attention in this case to a potential experimental complication rather than a historical biological. event.

In sumary, Equations 1.1 and 1.2 provide a quick method of estimating. the statistical significance of sequence alignments. For ailgneent algorithoe employing the weighting parancters used here (astch = 1.n, nismatch $=-0.9$, deletion $=-2.0$) the constant values in these equations are good as they stand; for alternative parameter weighte, Eqs. 1.1 and 1.2 can be rederived using a fitting procedure for data such ee thet in Pig. 2. Finally, we stress that the affirmation (or negation) of the biological significance of a given found siailarity should be besed in pert, though not entirely, on the statistical significance.

ACRNOHLEDGE FEMTS

The authors T.F.S. and M.S.W. were supported by a grant from the System Development Foundation, and C.B. was supported under the auspices of
the U.S. Department of Energy. Computer support was provided through Los Alamos National Laboratory. GenBank is funded by NIP contract NO1-G14-22127 with joint support from the NIGMS, the NCI, the NIAID, the RRR of the NIH , the NSF , the DOE and the DOD. We are grateful for the graphical expertise of B. Atencio.

REPEREMCES

1. Andersen, J.S., Anderson, J., Atencio, E., Bergman, B.E., Bilofsky, H.S., Brown, L., Burks, C., Cameron, G.N., Channin, D.S., Elbe, U., England, C., Fickett, J., Goad, W., Hama, G.H., मayter, J.A., Kay, L., Kanehisa, M., Koile, K., Lennon, G., Linder, R., Lewitter, P.I., MeLeod, M., Melone, D.L., Myers, G., Nelson, B., Nelson, D., Nial, J.L., Perry, H.M., Rindone, W.P., Rudloff, A., Simon, S., Snith, T.r., Stoesser, G., Stueber, K. (1984). Nucleotide sequences 1984, IRL Press, Oxford.
2. Smith, T.F. and Burks, C. (1983) Nature 301, 194
3. Doolittle, R.F., Hunkapiller, M.W., Hood, L.E., Devare, S.G., Robbins, K.C., Aaronson, S.A. and Antoniades, H.N. (1983) Science 221, 275-276
4. Smith, T.F. and Wateraan, M.S. (1981) J. Mbl. Biol. 141, 195-197
5. Wilbur, W. and Lipaan, D. (1983) PNAS (USA) 80, 726-730
6. Goad, W.B. and Kanehisa, M. (1982) Nucl. Acids Res. 10, 247-264
7. Wateraan, M.S. (1984) Bulletin Math. Biol.
B. Smith, T.F., Waterman, M.S. and Saller, J.R. (1983) Nucl. Acide Res. 11, 2205-2220
8. Needleman, S.B. and Kunsch, C.D. (1970) J. M1. Biol. 48, 443-453
9. Fitch, W.M. and Smith, T.F. (1983) PNAS (ISSA) 80, 1392-1386
10. Lilliefors, h.W. (1967) J. Amer. Statist. Assoc. 62, 399-402
11. Chvatal, V. and Sankoff, D. (1975) J. Appl. Prob. 12, 3n6-315
12. reller, W. (1968) An Introduction to Probability Theory and ita Applications, 3rd Ed., New York
13. Erdos, P. and Renyi, A. (1970) J. Analyse Math. 22, 103-111
14. Erdos, P. and Revesz, P. (1975) Topics in Infornation Theory, Math. Soc. J. Bolyal 16, Pp. 219-228
15. Arratia, R., Gordon, L., and Waterman, M.S. (1984). Manuscript.
16. Karlin, S., Ghandour, G., Ost, F., Tavare, S. and Korn, L.J. (1993) PNAS (USA) 80, 5660-5664
17. Arratia, R. and Waterwan, M.S. (1994) Adv. Math., in press
18. Vanin, E.F. and Goldberg, G.I., Tucker, P.W., Snithies, O. (1980) Nature 286, 222-226
19. Willians, J.G., Kay, R.M. and Patient, R.R. (1980) Nacl. Actis Res. 8, 4247-4258
20. Krayev, A.S., Kramerov, D.A., Skryabin, R.G., Ryskov, A.P., Bayev, A.A. and Georgiev, G.P. (1980) Nucl. Acids Res. 8, 1201-1215
21. Pan, J., Elder, J.T., Duncan, C.R. and Heissinan, M.S. (1981) Nuc1. Acids Res. 9, 1151-1170
22. Lin, Y. and Gross, J.K. (1981) PNAS (USA) 79, 2825-2829
23. Sekiya, T., Kuchino, Y. and Mishimura, S. (1981) Nucl. Acids Res. 9, 2239-2250
24. Kataoaka, T., Kawakani, T., Takahashi, V. and Honjo, T. (1980) Pvis (USA) 77, 919-923
25. Salia, M. and Madden, B.E.H. (1981) Nature 291, 205-208
26. Watson, R.J., Urene, K . and Enquist, L.W. (1981) Nucl. Acids Res. 9, 4189-4 199
27. Ng, R. and Abelson, J. (1980) PNAS (USA) 77, 3912-3916
28. Law, S.W. and Dugaiczyk, A. (1981) Nature 291, 201-205
29. Hudson, P., Haley, J., Cronk, M., Shine, J. and Niall, H. (1981) Nature 291, 127-131
30. Comb, M., Seeburg, P.H., Adelman, J., Eiden, L. and Herbert, E. (1982) Nature 295, 663-666
31. Heilig, R., Perrin, F., Gannon, F., Mandel, J.L. and Chambon, P. (1980) Cell 20, 625-637
32. Woo, S.L.C., Beattie, W.G., Catterall, J.F., Dugaiczyk, A., Staden, R., Brownlee, G.G. and 0^{+}Malley, B.W. (1981) Blochenletry (IJSA) 2n, 6437-6446
33. Proudfoot, N.J. and Maniatis, T. (1990) Cell 21, 537-544
34. Hardison, R.C., Butler, E.T., Lacy, E., Meniatis, T., Rosenthal, N. and Efetratiadis, A. (1979) Cell 18, 1285
35. Haynes, S.R. and Jelinek, W.R. (1981) PNAS (USA) 78, 6 130-6 134
36. Miler, W.L., Martial, J.A. and Raxter, J.D. (1980) J. Bio. Chem. 255, 7521-7524
37. Roskam, W.G. and Rougeon, F. (1979) Rucl. AciAs Res. 7, 305-320
38. Seeburg, P.H., Shine, J., Mertial, J.A., Baxter, J.D. and Goodaan, H.M. (1977) Nature 270, 486-494
39. 0110, R., Auffrey, C., Mrchamps, C. and Rougeon, P. (1991) PNAS (USA) 78, 2442-2446
