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RENEWAL THEORY FOR SEVERAL PATTERNS 

STEPHEN BREEN 
MICHAEL S. WATERMAN. AND 
NING ZHANG,' Uniuersity of Southern California 

A M  
Discrete renewal theory is generalized to study the occurrence of a collection 

of patterns in random sequences, where a renewal is defined to be the 
occurrence of one of the patterns in the collection which does not overlap an 
earlier renewal. The action of restriction enzymes on DNA sequences provided 
motivation for this work. Related results of Guibas and Odlyzko arc discussed. 

DISCRETE RENEWAL THEORY, GENERATlNG NNCTIONS; DNA SMUENCES 

The results presented in this paper were motivated by a study of certain 
patterns, known as restriction sites, in DNA sequences. DNA sequences can be 
thought of as finite words over a four-letter alphabet {A, T, G, C}, and restriction 
sites are (sequence-specific) locations of positions in double-stranded DNA where 
it is cut by a protein known as a restriction enzyme. See Watson (1977). For 
example, the restriction enzyme Hpa I1 cuts at occurrences of CCGG while Hha 
I cuts at GCGC. Such enzymes, under proper conditions, cut the DNA at all 
non-overlapping occurrences of the restriction sites. The enzymes are applied 
alone (a single digest), in batches of two (a double digest), and so on. 

The goal was, then, to derive the distribution of fragment lengths when a 
specific set of enzymes was used to digest DNA. We assumed the DNA was an 
independent, identically distributed sequence of letters where the letter prob 
abilities were p., p, p a ,  p c .  A direct application of Theorem 3 and the corollary 
to DNA sequences appears in Waterman (1983). To simplify the current 
discussion we use the canonical sequence of heads and tails (H and T), and 
generalize the renewal theory of Feller (1968). 

The earliest work we can locate which considers such problems is Ledlie (1967) 
who treats the recurrent event E(k,  g) which occurs at the end of a group of k 
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H s  no two of which are separated by more than g T's, provided E(k, g) does not 
occur at any of the preceding ( k  - 1) H's of the group. He does note the general 
problem, but does not solve it. 

More recently the papers of Guibas and Odlyzko (1980), (1981) study string 
overlaps and generating functions. They define polynomials similar to our 
matching polynomials and generating functions related to but distinct from ours. 
Their basic concern is the first occurrence of any of the patterns, and the details 
of proof also differ in an essential manner. Their applications concern a 
coin-tossing game of Penney (1969) and an important algorithm from computer 
science, the Boyer-Moore (1977) string-matching algorithm. We shall close this 
paper with some remarks relating the results of Guibas and Odlyzko to ours. 

To begin the discussion we define the matching polynomial A B ( z )  between 
two patterns (finite strings) A and B. This polynomial is obtained from 
considering whether or not overlapping portions of the patterns match, where 
we proceed as follows. Let A = HTHTH and B = HHTH. 

P (unmatched 
Match bit Power of L portion of A )  

A =  HTHTH 
B =  HHTH 0 2" 1 = 1  

HHTH 0 Z I  P(H) = P 
HHTH 1 L 2  P(TH) = 9P 

HHTH 0 L J  P(HTH) = 9p2 
HHTH 1 t q  P(THTH) = q 2 p 2  

and 

Therefore if A = ala2* * a. and B = PIP2 * Pb, we formally define 

4 2 2  AB(L)  = L'W + q . 

Take a collection of patterns {A, B ; . - , Q }  such that no pattern in the 
collection is a substring of another. Guibas and Odlyzko refer to this as a reduced 
set of Patterns. In addition, we asume that each pattern I in our set of patterns 
has p ( I )  f 0. For a given sequence xIx2 .  x., we proceed from left to right 
marking d l  Occurrences of members of {A,  B, - -, Q} which do not overlap other 

Occurrences of the collection. 
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For example let our collection equal {TTH, THT, HH} and let 

x = 'ITTTHTHHHTH'TTHH'IT. 

Each time a pattern is marked, a renewal is said to occur. The renewals are 
named by the specific pattern occurring so that an HH renewal is said to occur at 
position 8 in the above sequence. Define 

uA ( n )  = P(pattern A renewal at n ) ,  

---- 

UA (0) = 1, 

and m 

UA ( 2 )  = UA (n)Zn. 
n 

Renewals defined in this fashion do, for each pattern, constitute a discrete 
renewal process according to the classical definition of Feller. We are studying 
the related renewal processes corresponding to A, B, - * e, 0. 

Now assume pattern A occurs, ending at position n ( n  2 1). Then either there 
is an A renewal at n, or some pattern A, B, - e ,  0 has had an earlier renewal 
that overlaps this occurrence of A. This yields the equation 

Multiplying both sides by z n ( n  2 IA I = length of A) ,  

Summing on n, and writing an equation for each pattern, 

... 

This system is written in matrix form by 

If the matrix of pattern polynomials is denoted by A(z), note that A(O)=I. 
Therefore det (A(0)) = 1 and det A(z) # 0 in a neighborhood of z = 0 so that 
A-'(z) exists in this neighborhood. The system (2) then has solution 
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(3) - l ( Z  

Since 0 5 UA (n) S 1, all UA (z), - * e ,  UO (z) are analytic for I z I < 1. The right- 
hand side of (3) is the meromorphic continuation of these analytic functions to 
the complex plane, having only a finite number of poles due to 1/(1- z )  and the 
zeros of det A(z). Note also that it follows from (3) that A - ' ( z ) K ( z )  exists for 
I Z  I < 1, where K ( z )  is the column matrix on the far right of (3). 

The generating functions FA (z), - e ,  F o ( z )  are defined by 

where 

fn = P(the first I renewal at the nth trial). 

As noted by Feller 

Then 

where defined. If pA denotes the mean recurrence time of A renewals, etc., it is 
known to follow from the definition of F ( z )  that pA = FA(l), . *, 

To find FA(1) we evaluate limzd1 FA(z).  Since UA (z) is meromorphic, we 
have 

= F&(l). 

in a neighborhood of z = 1. First, rn 2 1. If not, then VA (I) is analytic at f = 1 
and limz-l A-'(z)K(z) = 0 follows from (3). However, since K ( z )  = 
A(z)A-'(z)K(z), this would yield K(1) = 0, which is clearly a contradiction. 

u ' -  1\-m-1+ . . . 

SO that 
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Since B J A  I>O,  m = 1 and 

-(a-::)=!$(l-z)( UA ... ( 2 )  ) = A - ' ( I ) (  P(A a * * ) ,  1 

a -1 UO ( 2  1 P ( Q )  
(4) 

We can summarize.our results as follows. 

Xkorem 1. For any reduced set of patterns, {A,& - *, 01, the generating 
functions UA (2); - -, Uo(z )  satisfy 

A A ( z ) - . - A ~ ( ~ ) ) (  ... UA(z)--l) ... =- (z" lP(A))  ... 
1 - 2  

Q A ( z ) * . * Q O ( Z )  Uo(z)-1 z'O'P( 0) 

Theorem 2. If A(z) equals the matching polynomial matrix in Theorem 1, 
A-'(z)K(t) exists for Iz IC 1 and for z = 1.  

Theorem 3. 

(li?) = ( P(A . . . 1 ) . 
1 /Po P(Q) 

The equation of Theorem 3 follows from the calculation of (4). Since 
u, (n)+  l/pr as n 4 0 0 ,  the system of equations 

A(l)(  PA - - e ) = (  P(A) ) 
1/cLo P(Q) 

follows easily from (1). Theorem 2 assures us the system has a solution. 
If we set 

~ ( z )  = 5: u(n)z" ,  
n -11 

where u ( n )  = P(some renewal at nth trial), u(0)  = 1, then 
0 

V ( 2 )  = c (U1(2)- 1)+ 1 .  
I - A  

If p is the mean recurrence time between renewals, then we have the following 
corollary. 

Corollary. 

I ' = 1 / P A  + ' * * + 1//&J 
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For an illustrative example we use the above patterns A = TTH, B = THT, 
and C =HH. J A  I =IB I=3, IC( = 2 ,  P(H)=p = 1 -P(T)= 1-4.  

AA(z)  AB(t )  AC(z) 
BA(z)  B B ( z )  BC(z) 
CA(z)  C B ( z )  CC(z) zp 0 1+zp  

SO that the above system becomes 

Solving this system, we obtain 

(1 + zp)z3q2p 
(1  + zp)(l-  zq)z3q2p 

z2p2(i + (qp - q2)z2 - z3q2p) 

and from (4) (left-hand equality) 

For p = q = 1/2, 

(:::) = ($8) 7/54 , 
1/clc 

and pA = 9, p B  - - 18, 
estimates of l /P(A)  = 8, l/P(B) = 8, and l/P(C) = 4.) Finally 

= 7.7 ... (These values should be compared to the naive 

which should be compared to the naive estimate of l/(P(A) + P ( B )  + P(C))  = 2. 
Finally we relate the generating functions of Guibas and Odlyzko (1981) to 

those of this paper. Define 

G ( z ) =  2 g(n)z-" 
n -0 
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I 
where 

g(n) = P(none of A, - ., 0 occur in the first n trials), 

g(0) = 1, 

gA (0) = 0. 

(n) = P(A occurs at nth trial and none of A, e, 0 occurs earlier), 

Then 

F ( t  ) = GA ( Z  -') + Ge (t -I) + * * * + Go (Z -I), 

while in our set-up we obtain F via UA, * * ., Uo through 

F( z ) = 1 - { ( u, (2) - 1) + ( ue ( z ) - 1) + - + ( uo ( A  ) - 1) + I}-'. 
Also J 

or 
F ( t )  = 1 - (1 - z)G(t-l). 

Although Guibas and Odlyzko derive properties of first passage of any pattern 
and our interest is in the distribution of number of trials between a pattern's 
occurrence, the generating functions G(z) and F ( t )  can be obtained from each 
other. 
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