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Motivated by the comparison of DNA sequences, a generalization is given of the 
result of Erdos and Renyi on the length R, of the longest run of heads in the first n 
tosses of a coin. Consider two sequences, X,X, Y,. The length 
of the longest matching consecutive subsequence, allowing shifts, is M, = 
max{m: X,,, = Y,+& for k = 1 to rn, for some 0 < i,j Q n - m ) .  Suppose that all the 
“letters” are independent and identically distributed. The length of the longest 
match without shifts has the same distribution as R, , the length of the longest head 
run for a biased coin with p = P ( X , =  Y,), described by the Erdos-Renyi law: 
P(1imn+- R,/log,,,(n) = 1) = 1. For matching with shifts, our result is: 
P(Iim,, M,/log,,,(n) = 2) = 1. Loosely speaking, allowing shifts doubles the 
length of the longest match. The case of Markov chains is also handled. Q 198s 
Acrdanic Press. Inc. 

X, and Y, Yz 

1. INTRODUCTION 

Erdos and Rinyi [ 31 considered the length R of the longest run of heads 
in the first n tosses of a coin. One result, from the book of Renyi 181, is that 

P( lim R,/log,,,,(n) = 1) = 1. (1) 
m+w 

Here, p E (0, 1) is the probability of heads for a single toss. More refined 
estimates on the behavior of R, are given in Erdos and Revesz [4] and 
Guibas and Odlyzko [ 5 ] ;  a survey appears in Revesz [9]. 

In this paper, we consider a problem motivated by the comparison of 
DNA sequences, which are taken from an alphabet of four letters: 
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14 8 )  ARRATIA AND WATERMAN 

A = adenine, G = guanine, C = cytosine, and T = thymine. Given two such 
sequences, such as 

-- 

X I X 2 - * * X , . * . =  A G T C T G A  A G C A C A A G T G T 

Y , Y 2 * . . Y , * - . =  T A T C T T T G A A G C C C A  T T T . . .  

the degree of relationship between the sequences may be measured by the 
length of the longest matching consecutive subsequence. For two sequences 
of length n, this length is 

M=M,=max{m:X,+,=Y,, , fork=l  tom,forsomeO<i ,  j , < n - m ) .  

(2) 

Smith and Waterman [lo] give an efficient algorithm for finding such 
matches, which allow all possible shifts of one sequence relative to the other. 
The results of this paper were suggested by a data analysis of DNA 
sequences by Smith, Waterman, and Burks [ 111. 

Suppose that all the “letters” XI, X ,  ,..., Y , ,  Y2  ,..., are independent and 
identically distributed. If no shifting between the two sequences is allowed, 
then the data may be reduced to a single sequence of heads and tails, with a 
head reported for the ith toss when X ,  = Yi. Thus the length of the longest 
match without shifts is like R , ,  the length of the longest head run for a 
biased coin with p = P(X, = YJ, described by the Erdos-Rknyi law, Eq. (1). 
For matching with shifts, Theorem 2 below implies that 

P( lim M,/log,,,(n) = 2) = 1. (3 ) 
n +a0 

Loosely speaking, allowing shifts doubles the length of the longest match. To 
see that M ,  should grow like 2 log,,,(n) note that a match of length 
rn = 2 log,,,(n) starting from Xi and Y, occurs with probability p” z n-,, 
which balances against z n 2  choices for (i, j ) .  

For the example above, with n = 18, we have R, = 3, corresponding to the 
matching subsequence “T C T” in the third position, while M ,  = 6 ,  
corresponding to “ T  G A A G C‘ starting at i = 5 in the Xs and j = 7 in the 
r s. 

2. THE LONGEST MATCHING SU3SEQUENCE 

For the remainder of this paper, assume that the two sequences X, X, 
Y ,  have the same distribution and are independent of each other. 

In the next three theorems, three different structures are taken for the 

and Y, 
Let p = P(X,  = Y , ) ;  any unqualified log will denote log,,,. 
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distribution af the individual sequences. In all three cases, it is easy to get an 
upper bound on M :  

3c such that Vb, n, P(M, - 2 log,,(n) > b )  < cpb. (4) 

In Theorem 1, we get a lower bound of the same form, under the assumption 
that all letters are independent and uniformly distributed over a finite 
alphabet: for some constant c > 0, for all n and b > 0, 
P(]M,,  - 2 log,,,(n)l > b)  < cpb. In Theorem 2, we assume that the letters are 
i.i.d., and show that 

In Theorem 3, assuming that each sequence is a Markov chain with tran- 
sition matrix [pU], the result is ( 5 )  again, using p = the largest eigenvalue of 
the matrix [ ( p , J ] ] .  

In each of the above cases, it seems reasonable to conjecture that the 
family of random variables (M- 2 log,,,(n)} is tight, with limits in 
distribution which are derived from the extreme value distribution by scaling 
and rounding. The motivation for this conjecture is the following result for 
R,, the longest head run in n tosses of a p-biased coin, taken from Guibas 
and Odlyzko [ 5 ]  and Louis Gordon (private communication): with 

I f  n + 00 along a subsequence such that ((log,,,(qn)) mod 1) -+ a E (0, l), 
q = l - p :  

then 

R, - [log,,(qn)] + [Z/ln(l/p) + a 1, where P(Z  < c)  = exp(-e-C). 

THEOREM 1. Let X , , X ,  ,..., Y,, Yz  ,..., be independent letters, each 
uniformly distributed over the finite alphabet { 1,2, ..., a}, so that p = 
P(X, = Y,) = l/a Q 4. Then for all b E R, and for n = 1,2 ,..., 

Let 

A,, G A&) = {X,+, = Y,+& for k = 1 to m) 
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so that -- 

- 2  b n-'pb+' < P(Afj)  = p m  < n p . 
Consider the random variable 

T E  T(n, m)= l(A,) 
O <  f . j  < n - m  

so that, as events, (A4 2 rn) = { T > 0). The upper' bound (6) follows from 

P ( M Z m ) = P ( T > O ) g E T = c P ( A , / ) = ( n - m +  1)'#"<pb. ( 8 )  

To establish (7), we need an upper bound on var(T). Any pair of events 
A ,  and Af t , , ,  for which both 1 i - i' I 2 rn and I j  - j '  I 2 m, is independent, 
just because independent blocks of letters are involved. Under the 
assumption that all letters are equally likely, there are several more 
independent pairs Ai, and A i , j , .  Those pairs for which li - i'l < m and 
l j  - j ' I rn, or 1 i - i' I 2 rn and I j - j '  I < rn, are independent; this follows 
easily by conditioning on the entire sequence XI - X n  , or on Y, - - Yn . For 
those pairs in which I i - i' I < m, l j  - j' I < m and k = (i - i') - ( j  - j ' >  f 0, 
it requires calculation to see that the pair of events is independent; this result 
may seem surprising when k is small, because the event A i j n A i , , ,  in this 
case implies the existence of a repeating subpattern of length k. 

In the expansion 

the only nonzero terms are those for which k 3 i' - i = j '  - j E (-m, m). 
For these terms, 

For each k, there are at most (n - rn + 1)' choices for (i, j ) ,  so that 

(n - m + 1)" var(T) 

and hence 



I 
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We have -- 

P(M < m) = P( T = 0) 4 VU( T)I(ET) < (( 1 + P)/( 1 - p))/ET 

< (( 1 +p) / (  1 -p))(n - rn + 1) -,n 2p - - - (( 1 +p) / (  1 - p ) ) p  - b  - ' . 
This establishes relation (7). 4 

THEOREM 2. Let XI, X, ,..., Y,, Y, ,..., be independent and identically 
distributed and let 0 < p = P ( X ,  = Y , )  < 1. Then (6) holds, and for any 
E > 0, 

P((M - 2 log,~p(n))/log,~p log,,,(n) E (-4 - E ,  1 + E )  eventually) = 1. 

the present hypothesis, so that (6) holds here. Fix a parameter b and let 
Proof: The argument leading up to (8) in Theorem 1 remains valid under 

m 3 m(n, 6 )  si [2 log n + b log log nl. 

From (6), we get P(M > rn) < pb log log " - - (log n)-', which tends to zero as 
n-, 00, provided that b > 0. To get an almost sure result via the Borel-Can- 
telli lemma, exploit the fact that V o ,  M = M ( n , w )  is nondecreasing in n, 
while m(n) - 2 log n increases slowly. Along the subsequence n = n ( k )  = 
/( l/p)&l we have V b  > 1, P (M 2 m for infinitely many k) = 0, and hence 
Vb > 1, P (M > rn i.0.) = 0. 

To establish lower bounds on M ,  consider matches between blocks of 
length rn, each starting with an offset that is a multiple of rn. Let 

B ,  = Ami,mj {X,,,,,, = Y,,,j+k for k = 1 to m), 

and let S be the sum of the indicators of these events: 

S E  S ( n , m ) =  1 I(B,~). 

As events, { M  < m} c {S  = 01. Our choice of m yields pn-*(log n ) - 6  < p"' = 
P(Bu), so that 

ES - (n/rn)2pm > p(log n)-,-'. 

O < l . / < ( n / m ) -  1 

In the expansion for var(S) as a sum of covariances of indicator functions, 
there are - ( n / n ~ ) ~  diagonal terms, whose combined contribution is <ES, and 
there are - ( n / ~ z ) ~  terms which are all zero, corresponding to the independent 
pairs of events B,, and B,, with i # k and j # 1. Finally, there are -2(n/n~)~ 
nontrivial terms for pairs of events such as B ,  and B,, with j #  k, or B ,  and 
B ,  with i # k. Let qo be the weights of the atoms in the distribution of XI, 
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so that p = Eo (q,J2. We have, using HoldeF’-s inequality (Hardy, Littlewood, 
and Polya (6, Formula 2.10.31) that for j # k, 

so that the combined contribution to var(S) from these -2(n/m>’ nontrivial 
pairs is <2(ES)’/*. Combining these estimates, we have var(S) < 
ES + 2(ES)’/’. Using Chebyshev’s inequality, 

P(M < m )  < P ( S  = 0) < var(S)/(ES)’ < I/ES + ~(ES) - ’ / ’  

. 

< 2p’/2(log , ) l + b l 2 .  

Thus, to conclude that P(M < m) + 0, we need b < -2. To get an almost 
sure result, consider again the skeleton n 3 n(k)  = 1 ( l / p ) & ] ;  it follows that if 
b < -4, then P(M < m Lo.) = 0. I 

THEOREM 3. Let X , , X ,  ,..., and Y , ,  Y ,  ,..., be independent Markov 
chains on ajinite alphabet S ,  each irreducible and aperiodic, with transition 
probabilities [pr j ] i , j a s .  Let p E (0, 1 )  be the largest eigenvalue of the 
substochastic matrix [ ( P ~ ~ ) ~ ] ,  so that there exist constants 0 < c, < c ,  < 00, 

such that with any initial state for  XI = Y , ,  and for all n, 

cop” < P(X, = Y ,  for  k = 1 to n )  < c, p”. (9) 

Then 

andfor any E > 0, 

P((M - 2 1og,~,(n))/1og1~, log,,,(n) E (-4 - E,  1 + E )  eventually) = 1. 

ProoJ The argument leading up to (8) in Theorem 1 is valid here, if the 
factor c, is inserted appropriately, so that (10) holds. Fix a parameter b and 
let 

m = m(n, b) ZE [ 2  log n + b log log nl. 

From (lo), P(M > n)  < c,(log n)-’. Consider the skeleton of times 
n n(k) E [ ( l / p )k l ,  and use the Borel-Cantelli lemma to conclude that if 
b > 1, then P(M 2 rn i.0.) = 0. 

To give a lower bound on M ,  the strategy is to find independent blocks of 
letters within the two sequences X, Yn. These blocks must 
have fength at least M, and there must be at least c n/m such blocks among 

X, and Y ,  
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the first n letters of each process, for some constant c > 0. We apply 
Doeblin’s method (Chung [ 11). Fix any letter a-€ S and let r(X, k )  be the 
time of the kth visit to state a by the process X, 

r(X,O) = 0; r(X, k + 1) 5 min{i > r(X, k):  X i  = a } ,  for k = 0, I,... . 
Let r(Y, k )  be the time of the kth visit to a by the process Y. Note that the 
excursions ( X i ;  z(X, k )  < i < r(X,  k + 1)) for k = 1,2, ..., are mutually 
independent, and in each excursion the letter a appears exactly once, in the 
first position. 

Let Ai,=Ai,(rn) =, {Xi+k = Y/+k for k = 1 to m } ,  and for i, j> 1, let 

I Bij E A z ( X . m i ) - l . r ( Y . m j ) -  1 ,  

so that each event B ,  involves m consecutive excursions of X and m 
consecutive excursions of Y.  Denote the equilibrium distribution for X and Y 
by (n(i>,i€ S). The expected length of each excursion is 
E[7(X,  k + 1) - r(X, k ) ]  = l/n(a). Let 

E = {r(X,  [nn(a)/2])  < n - m )  n ( r (Y ,  [nn(a)/2])  < n - m}. 

I 

By the weak law of large numbers, P(E)+ 1 as n + 03. On the event E,  the 
events B ,  for 1 < i, j <  nx(a)/(2rn) involve only X, -.. X n  and Y, Y,,. Let 
S be the sum of the indicators OF these events: 

On the event E n  (S > 0}, we have (A4 - 2 log n)/log log n 2 b. Write 
P”(A, , )  for P(A, ,  1 X, = Y ,  = a ) ,  and observe that V i , j ,  P(Bi j )  =Pa@ 
Note that P ” ( A , , )  > c,n-’(log n ) - b ,  and hence if b < -2, I 

! ES = ( jnn (a ) / (2 rn ) ] ) ’~~(~  , ,) > cO(n(a)/2)’(log n ) - 2 - b  + 00 as n + CO. 

In the expansion For var(S) as a sum of covariances of indicator Functions, 
there are -(nn(a)/(2rn))’ diagonal terms, whose combined contribution is 
<ES, and there are - ( n ~ ( a ) / ( 2 m ) ) ~  terms which are all zero, corresponding 
to the independent pairs of events, B ,  and B k l ,  with i # k and j # 1. Finally, 
there are -2(nn(a)@n))’ nontrivial terms for pairs of events such as Bij  
and B,, withj# k, or B ,  and B ,  with i #  k. 

For each “word” w f Sm, let p w  E P ( ( X ,  ,..., X,) = w I X, = a )  so that 
P(Bu) = Cw (pw)’. We have, using Holder’s inequality, that for j # k 

I. 
!. 
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so that the combined contribution to -var(S) from these -2(n~(a)/(2nz))~ 
nontrivial pairs is <2(ES)’lZ. As in Theorem 2, 

P(S = 0) < ~ a r ( s ) / ( E S ) ~  < l/ES + 2(ES)-’12 = O((l0g n)1+b’2). 

We have P(M < m) < P(S = 0) + P(EC)  + 0 provided b < -2. The strong 
law of large numbers for the return times to state a yields f(EC Lo.) = 0. An 
argument using the skeleton of times n = n(k) = [ ( l / p ) k l  shows that if 
b < - 4, then P(S = 0 i.0.) = 0, and hence P(M < m Lo.) = 0. 1 

3. SUBSTITUTIONS, INSERTIONS, DELETIONS, 
AND INVERSIONS 

In addition to the transposition of segments of DNA, the transformations 
of molecular evolution include single letter substitutions and insertions, 
deletions, or inversions of one or more letters. Thus, we consider the length 
of the longest match allowing shifts as well as a given number of 
substitutions, insertions, and inversions. 
In the following two patterns of length n = 20, the length of the longest 

match, allowing shifts, is 3, and there are nine places where this longest 
match appears-at the occurrences of “A A A” in both patterns: 

Xl . * . X 2 0 =  T T T T T T T A  A A T A  A A C A A A C C ,  

Yz0= G A A A G A A A G A A A G C  C C G G  GG. Y, 

If a single substitution is allowed to correct a mismatch, then by 
changing Ys from G to T, the match “A A A T A  A A” of length 7 can be 
found. If one deletion is allowed, then deletion of Y l ,  = G produces 
the match “A A A C C” of length 5.  If three corrections are allowed, 
via either substitution or deletion, then there is the match 
“A A A T A  A A C A A A C C” of length 13. 

Only deletions are considered in Theorem 4 below, because the effects of a 
number of substitutions, insertions, and inversions can be “covered” by a 
comparable number of deletions. In detail, a pair of deletions, one for each 
sequence, can be used instead of a substitution to correct a single mismatch; 
the match produced dter deletion will be one shorter than the match 
produced by substitution. In the above example, delete XI, = T and Y5 = G 
to produce the match “A A A A A A” of length 6,  instead of the match 
“A A A T A  A A” of length 7. The effect of an insertion in one sequence could 
also be “covered” by a deletion in the other sequence, although the deletion 
produces a match which is shorter by one. In the example above, insertion of 
the letter G between X,, and XI, produces the match “A A A G C C” of 
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length 6, versus the match “ A A A  CC” of leu th  5 achieved by deleting 
Y,, = G. The effect of an inversion can be duplicated by two substitutions; 
the correspondence between deletions and substitutions has already been 
discussed. 

THEOREM 4. Let X , , X ,  ,..., Y, ,  Y, ,..., and p be US given in either 
Theorem 2 or Theorem 3. Let M ( k )  = M,,(k) be the longest match between 
XI e-. X,, and Y ,  Y,, allowing shifts and allowing at most k single letter 
deletions in each sequence: 

M,,(k) = M ( k )  = max{m: Xi(=)  = Y,,a) for  a = 1 to m, for some integers 
7 

l Q i ( l ) < . - - < i ( m ) < n a n d  l Q j ( l ) < . - - < j ( r n ) < n  
with i(m) - i(1) < rn + k and j (m)  - j ( l )  < m + k}. 

r Then for any constant k, or deterministic sequence k = k(n) with 
I 
I 

we have, as n + co, 

ProoJ The length of the longest match allowing shifts from Theorems 2 
and 3 is M = M(O), and for any pair of sequences, M ( 0 )  Q M( 1) < , so 
the lower bounds given in Theorems 2 and 3 for A4 also serve here for M(k).  

To establish an upper bound on M(k),  fix c: > 0 and let m =m(n ,  e) = 
[ (2  + e) log n]. Consider the event f i k ; i ,  that there is a match of length at 
least m, starting at the ith position among the Xs and thejth position among 
the Ys, and allowing at most k single letter deletions, b, 

I 

Ak;u = t) {xi(=) = Y,(=) for a = 1 to m], 

where the union is taken over i( l ) ,  ..., i(m), j (  I), ..., j ( m )  such that 
i Q i( 1 )  < - - < i(m) Q n and j Q j (  1) < - < j (m)  < n with i (m) - i( 1 )  < 
s k  = O implies M(k)  < (2 + E )  log n. With S = So, ES = (n - m + 1 )  2 p m =  

< i(m) 
with i(1) i and i(m) - i(1) < m + k is (m + k)!/(m!k!).  In the i.i.d. setup 
of Theorem 2, P(kik; 11> \< [ (m + k) ! / (m!k! )]  2 ~ ( ~  < (m + k)2kP(A < 
P(ki,,)(3 log n)2k for large enough n, so that E S ,  < ES(3 tog n)’, = 
O(n-’(3 log n)”). Thus, to show that Ve > 0, ES,  --* 0, we need V E  > 0, 
(log n)k < n‘ eventually, or by taking logs, we need Ve > 0, k log log n < 
c: log n eventually, which is precisely ( 1  1).  

m + k and j ( m )  - j ( l )  < m + k. Let s k  = ~ o < ~ ~ < ~ - ~ +  I 1(Ak:u) SO that 

o(n  -9. 
For each choice of i, the number of choices for indices i(1) < 
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In the Markov setup of Theorem 3, we claim that for each allowable 
choice of the indices i ( l ) ,  ..., j (m) ,  P(X,,,, = Y,,,) for a = 1 to m )  Q cp , 
where p is specified at (9) and c is a constant depending only on our Markov 
transition mechanism. To prove this, let T(a) be the matrix with 
T(a), = (Prcot ‘ ) - f ( u ) ) ~ S ( ~ ( ~ ” ) - ’ ( o ) ) r S ,  so that P(X,(,, = Y,(,) for a = 1 to m, 
Xi(m)  = s IXfC1, = ylc1) = r )  = [nl<o<m-l T(a)lrS. Our claim is proved by 
noting that at least m - 2k of the matrices T(a) are the matrix [ (prS)’ ]  
whose largest eigenvalues is p ,  while the rest of the matrices T(a) are 
substochastic. By counting the possibilities for i, j ,  ..., j ( m )  it follows from 
our claim that P(M(k) 2 (2  + E )  log n )  < [(m + k)! / (m!k!)12(n  - m + 1)’  
cprn - 2k - - o ( l )  as n +  03. D 

rn-2k  

, 

The case k =  ao, ie., no limit on the number of deletions allowed, 
corresponds exactly to the “longest common subsequence of two random 
sequences” studied in Chvatal and Sankoff [ 2 ] .  

COROLLARY 1 .  Let X , ,  X, ,... , Y , ,  Y2 ,..., and p be as given in either 
Theorem 2 or Theorem 3. Let M(k)*  = M,,(k)* be the longest match between 
X ,  .-. X,, and Y ,  Y,, allowing shifts and allowing at most k deletions, 
insertions, corrections, or transpositions. If k = o(1og n/log log n ) ,  then 

As seen from the discussion preceding Theorem 4, a match of 
length rn achieved with at most k deletions, insertions, corrections, or 
transpositions corresponds to a match of length at least rn - 2k achievable 
with at most 2k deletions, as counted by M ( 2 k )  in Theorem 4, Le., M ( k ) *  \< 
M ( 2 k )  + 2k. Trivially, M ( k )  Q M(k)* .  Now if k = o(iog(n)/log log n), then 
by Theorem 4, M(2k)llog n --* 2 and also (M(2k)  + 2k)/log n + 2. 

M(k)*/log,/,(n) --tp 2. 
Proof: 

4. EXTENSIONS 

Various extensions to Theorems 2 and 3 ,  such as (12 )  and (13),  can be 
obtained with ‘minor modification of the proofs already given. We omit the 
details of the proofs. 

Consider matches between two sequences of not necessarily equal 
lengths, say n ,  < n,. That is, consider M 5 M(n,  , n 2 )  max(m: Xi+k = 
Y,tk for k =  1 to m, for some O < i < n ,  - m ,  O < j < n , - m } ,  
where X , , X 2  ,..., Y , ,  Y,  ,..., and p are as given in Theorem 2. Define 
x = l~g,/,(C,(q,)~) E ( 3 / 2 , 2 ] .  If x # 2 and (2  - x)/(x - 3 / 2 )  < 
lim(1og n,/log n,), cx if x = 2 and 0-< lim(1og n,/log n2), then 

P( lim M/(log,,(n, n,)) = 1 )  = 1 .  (12) 
new 
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‘d 
I 
I 

c 

I .  
I 1 

Consider r 2 2 independent sequences. For fixed r, the length M = Mn,r of 
the longest consecutive subsequence common to the first n letters of all r 
sequences satisfies 

where p = (2, (p,)‘) in the i.i.d. setup of Theorem 2, or p = the largest 
eigenvalue of the substochastic matrix { ( p J ) ,  in the Markov setup of 
Theorem 3. 
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