
Determining All Optimal and Near-Optimal 
Solutions when Solving Shortest Path Problems 

by Dynamic Programming 
THOMAS H. BYERS 

Digital Research Inc., Monterey, California 

MICHAEL S. WATERMAN 
University of Southern California, Los Angeles, California 

(Received May 1982; accepted October 1983) 

This paper presents a new algorithm for finding all solutions with objective 
function values in the neighborhood of the optimum for certain dynamic pro- 
gramming models, including shortest path problems. The new algorithm com- 
bines the depth-first search with stacking techniques of theoretical computer 
science and principles from dynamic programming to modify the usual back- 
tracking routine and list all nearoptimal policies. The resulting procedure is the 
first practical algorithm for a variety of large problems that are of interest. 

HE ALGORITHM presented in this paper was motivated by a study T of the evolutionary distance problem in molecular biology. In this 
context, dynamic programming methods are used to investigate evolu- 
tionary relationships between two DNA sequences (Smith et al. [1981]). 
The specific sequences studied implied a network of approximately 2,200 
nodes and 110,OOO arcs so that analysis by Kth shortest path methods 
was not practical. Details of this study have been published elsewhere 
(Waterman [1983]). 

Consider a directed acyclic network or, more generally, a network with 
no cycle whose length is nonpositive. A simple method is presented for 
finding all paths from node 1 to node N whose lengths are within a 
prescribed distance e(e 2 0) of the length of the shortest path(s) from 
node 1 to node N. The algorithm uses a push-down (last-in, first-out) 
stack and has modest memory requirements. This new method is easy to 
understand and to code, which, with the memory requirements, accords 
it a special advantage over Kth shortest path calculations. See Dreyfus 
[ 19691 for a review of shortest path algorithms. 

To describe the new method let t (x ,  y) denote the length of arc (x, y) 
in the network. With f ( N )  = 0, let f ( x )  denote the length of the shortest 
Subject clrrssificatbn: 111 near-optimal policies. 

1381 
Operations Research 0030-364X/84/3206-1381$01.25 
Vol. 32, No. 6, November-December 1984 0 1984 Operations Research Society of America 



1382 Technical Notes 

path(s) from node x ( x  # N) to node N. For methods that compute f- 
values, see Dreyfus and Law [ 19761 or Denardo [ 19821. Consider a node 
x # N. Some path P of length d led us from node 1 to node x. Arc (x,  y )  
is now said to enter if 

d + t ( x ,  Y) + f ( y )  f ( 1 )  + e. (1) 

Hence, the arcs that enter are those on paths from node 1 to node N 
having path length within e of the shortest path length. 

The depth-first procedure lets one use the same path P for each entry 

w 
Figure 1. Example network. 

in the stack (push-down list). This approach keeps the data in the stack 
itself small. Each entry in the stack has three attributes: 

x = a next-to-last node 
y = a last-node 
c = the length of the path (1, - , x ,  y) having a subpath (1, - - - , x )  

The algorithm is as follows: 

1. Set P = (1) and x = 1. Then for each arc (1, y )  that satisfies t(1, y )  + 
f( y) I f( 1) + e, create an entry (1, y, c) in the stack with c = t( 1, y ) .  

in P. 



Byers and Waterman 1383 

2. Stop if the stack is empty. 
3. Remove (POP) the topmost entry (x, y, c) in the stack. Replace P = 

(1, - - - , x )  by P = (1, .. . , x, y). I fy  = N, go to Step 4. I f y #  N, let x 
t y and d t c. Then for each arc (x,  y) satisfying (l), create an entry 
(x,  y, c )  in the stack with c = d + (t(x, y). Go to Step 2. 

4. Output P and c. Go to Step 3. 

In the case of an acyclic network, the number of elements in the stack 
at any one time is at most the number IA I of arcs in the network. Since 
(z, y, c )  in the stack implies arcs leaving y are not associated with the 
stack, the actual stack size is much smaller than this bound indicates. In 
a cyclic network whose shortest cycle has length L > 0, the number of 
elements in the stack is at most IAI Te/L1, where rzl is the smallest 
integer a that satisfies a L z. 

In Figure 1, the shortest path from node A to node I has a length of 
13; path lengths are shown above the nodes. The method is illustrated 
by computing all paths from node A to node 1 whose lengths are within 
2.6 units (e = 2.6 which is 20% of 13) of the shortest path length. 

Entries 
Path P 

31 Y 
step 

C 

. 

1 A B 2 (A  ) 
A c 0 

2 B D 4 (A, B )  
A c 0 

3 D G 9 (A, B, D) 
A c 0 

4 G Z 14 (A, E ,  D, G )  
A C 0 

6 A C 0 Output (A, B, D, G, I), 14 

6 C F 3 (A, C) 

7 ' F  H 7 (A, C, F) 

8 H Z 13 (A, C, F, H) 

ACKNOWLEDGMENT 

The second author received support from the System Development 
Foundation. The authors are grateful to the referees for their very useful 
comments and suggestions. 



1 384 T€!ChniC8/ NOf& 

REFERENCES 

DENARDO, E. 1982. Dynamic Programming: Models and Applications. Prentice- 

DREYFUS, S .  1969. Appraisal of Some Shortest Path Algorithms. Opns. Res. 17, 

DREYFUS, S., AND A. LAW. 1976. The Art and Theory of Dynamic Programming. 

SMITH, T., M. WATERMAN AND W. FITCH. 1981. Comparative Biosequence 

WATERMAN, M. 1983. Sequence Alignments in the Neighborhood of the Opti- 

Hall, Englewood Cliffs, N.J. 

395-4 12. 

Academic Press, New York. 

Metrics. J. Mol. EvoL 18, 38-46. 

mum. Proc. Natl. Acad. Sci. U.S.A. 80,3123-3124. 


