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This paper presents a new algorithm for finding all solutions with objective 
function values in the neighborhood of the optimum for certain dynamic pro- 
gramming models, including shortest path problems. The new algorithm com- 
bines the depth-first search with stacking techniques of theoretical computer 
science and principles from dynamic programming to modify the usual back- 
tracking routine and list all nearoptimal policies. The resulting procedure is the 
first practical algorithm for a variety of large problems that are of interest. 

HE ALGORITHM presented in this paper was motivated by a study T of the evolutionary distance problem in molecular biology. In this 
context, dynamic programming methods are used to investigate evolu- 
tionary relationships between two DNA sequences (Smith et al. [1981]). 
The specific sequences studied implied a network of approximately 2,200 
nodes and 110,OOO arcs so that analysis by Kth shortest path methods 
was not practical. Details of this study have been published elsewhere 
(Waterman [1983]). 

Consider a directed acyclic network or, more generally, a network with 
no cycle whose length is nonpositive. A simple method is presented for 
finding all paths from node 1 to node N whose lengths are within a 
prescribed distance e(e 2 0) of the length of the shortest path(s) from 
node 1 to node N. The algorithm uses a push-down (last-in, first-out) 
stack and has modest memory requirements. This new method is easy to 
understand and to code, which, with the memory requirements, accords 
it a special advantage over Kth shortest path calculations. See Dreyfus 
[ 19691 for a review of shortest path algorithms. 

To describe the new method let t (x ,  y) denote the length of arc (x, y) 
in the network. With f ( N )  = 0, let f ( x )  denote the length of the shortest 
Subject clrrssificatbn: 111 near-optimal policies. 
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path(s) from node x ( x  # N) to node N. For methods that compute f- 
values, see Dreyfus and Law [ 19761 or Denardo [ 19821. Consider a node 
x # N. Some path P of length d led us from node 1 to node x. Arc (x,  y )  
is now said to enter if 

d + t ( x ,  Y) + f ( y )  f ( 1 )  + e. (1) 

Hence, the arcs that enter are those on paths from node 1 to node N 
having path length within e of the shortest path length. 

The depth-first procedure lets one use the same path P for each entry 

w 
Figure 1. Example network. 

in the stack (push-down list). This approach keeps the data in the stack 
itself small. Each entry in the stack has three attributes: 

x = a next-to-last node 
y = a last-node 
c = the length of the path (1, - , x ,  y) having a subpath (1, - - - , x )  

The algorithm is as follows: 

1. Set P = (1) and x = 1. Then for each arc (1, y )  that satisfies t(1, y )  + 
f( y) I f( 1) + e, create an entry (1, y, c) in the stack with c = t( 1, y ) .  

in P. 
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2. Stop if the stack is empty. 
3. Remove (POP) the topmost entry (x, y, c) in the stack. Replace P = 

(1, - - - , x )  by P = (1, .. . , x, y). I fy  = N, go to Step 4. I f y #  N, let x 
t y and d t c. Then for each arc (x,  y) satisfying (l), create an entry 
(x,  y, c )  in the stack with c = d + (t(x, y). Go to Step 2. 

4. Output P and c. Go to Step 3. 

In the case of an acyclic network, the number of elements in the stack 
at any one time is at most the number IA I of arcs in the network. Since 
(z, y, c )  in the stack implies arcs leaving y are not associated with the 
stack, the actual stack size is much smaller than this bound indicates. In 
a cyclic network whose shortest cycle has length L > 0, the number of 
elements in the stack is at most IAI Te/L1, where rzl is the smallest 
integer a that satisfies a L z. 

In Figure 1, the shortest path from node A to node I has a length of 
13; path lengths are shown above the nodes. The method is illustrated 
by computing all paths from node A to node 1 whose lengths are within 
2.6 units (e = 2.6 which is 20% of 13) of the shortest path length. 

Entries 
Path P 

31 Y 
step 

C 

. 

1 A B 2 (A  ) 
A c 0 

2 B D 4 (A, B )  
A c 0 

3 D G 9 (A, B, D) 
A c 0 

4 G Z 14 (A, E ,  D, G )  
A C 0 

6 A C 0 Output (A, B, D, G, I), 14 

6 C F 3 (A, C) 

7 ' F  H 7 (A, C, F) 

8 H Z 13 (A, C, F, H) 
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