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! 

and 

I 

p(C, G ,  C ,  G, C ,  G, C )  = d(x i ,  C )  = 3. 
i=l 

In this paper we explore the implications of an idea distinct from parsi- 
mony. Essentially, the weighted average of two sequences is defined. In 
speech recognition work, there are definitions of average trajectories and of 
average sequences (Rabiner and Wilpon, 1979, 1980; Kruskal and Liberman, 
1983), but no results or methods related to those we obtain are given by 
these authors. We present some observations about the geometry of such 
sequence comparisons. We refer to these geometries as line geometries because 
any two points (sequences) can be joined by a straight line in the metric 
space. This geometry has some highly non-Euclidean properties and is not 
currently well understood. Busemann (1 955) studies the geometry of geo- 
desics and refers to spaces such as we study as “straight”. In the final section 
we discuss the problems of aligning several sequences with these techniques. 
A useful application is a method for aligning two sets of sequences, each set 
of which has already been aligned. While there does not seem to be much 
hope for M sequences of unknown relationship, if the M sequences are 
related by a binary tree they can be aligned in O(MN2) steps by a heuristic 
method naturally suggested by the geometry. 

2. Weighted Average Sequences and Their Geometry. For our purposes, a 
new but simple concept of sequence is required along with a specific family 
of metrics on the letters of the sequence. First, if the original sequences 
are finite words over an alphabet A, define a weighted average sequence 
to be a finite sequence a = a,,  a2 . , . a,, where each ai has the form ai = 
(po, p , ,  p2,  . . .) where pi 2 0 and 

pi = 1 .  
i> 0 

If p i  corresponds to the proportion of the ith element of A and p o  to the 
proportion of A, it is then easy to convert a usual sequence into a weighted 
average sequence. The letter A is thought of as a space, indicating a deletion 
in the sequence in which it appears or an insertion in the opposite sequence. 

To compare two letters a = (po ,  p , ,  . . .) and b = (qo, q l ,  . . .), simply 
set 
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d ( a , b ) =  Wi I P i - q i  I 
( i > o  

where wi are weighting factors and (Y 2 1 is a constant. It is well known that 
d is a metric on our set of letters. 

To compute the distance &a, b) between two weighted average sequences, 
the usual dynamic programming algorithm is employed. Here a = ala2 . . . a,  
and b = b1b2 . . . b, . If Dij = D(al . . . ai, bl . . . bj), Doj = D(4, bl . . . bj), 
Djo = D(al . . . ai ,  h), Do,, = 0, then 

Di,i = min{Di-l,i + d(ai, A),  Di-l,j-l+ d ( 4 ,  bj),Di,i- l  + d ( A ,  bj)}. 

Throughout A = (1, 0, . . .) when used as a letter and 4 = AA . . . when used 
as a sequence. Of course D,,, = D(a, b). 

Corresponding to a, b and D(a, b) is a set of optima1 alignments of a with 
b. An alignment is a row listing of a = ala2 . . . a,  where As can be inserted 
among the ais under which b = blb2 . . . b, is written in a similar form. 
For example aaca can be aligned with acc by 

-* 

a a c a  

a Ac c.  
The score of an alignment is the sum of the pairwise distances of the “match- 
ing” letters. An optimal alignment is one whose score is D(a, b). If the 
length of such an alignment is L ,  we write 

aTaf . . . a f  
b f b f  . . . bf 

where the subsequence of a* not equal to A is a and where the subsequence 
of b* not equal to A is b. 

For an optimal alignment of a and b define c(h) = ha @ (1 - h)b where 
ci(h) = XaT + (1 - h)bT and the last “+” sign is a simple vector addition. 
In case h = &  c($) is an equal weighting of a? and bf from the optimal 
alignment of a and b. One might suspect that c($) is midway between a and 
b. More than that turns out to be true and Theorem 1 states that the metric 
space is a line geometry. 

THEOREM 1. Let 

c(h) = ha @ (1 - h)b. 

Then 

D(a, b) = D [ a ,  c(h)] + D [ b ,  c(X)] 

and 
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D [ a ,  c(h)] = (1 - X)D(a, b). 

Pro0 f 

L 
= ( l - A ) ~ d ( a T , b f ) = ( l - A ) D ( a , b ) .  

i=l 

In the same manner, D[c(X), b] < XD(a, b) and D[a, c(A)I + D[c(X), bl < 
D(a, b). The triangle inequality implies each of the inequalities are equalities. 

COROLLARY 

D[c(Xl), c(X2)1 = IX1 - X21D(a, b). 

Proof. We cannot assume c(Xl) and c(X2) are the result of the same align- 
ment. Still 

D(a, b) = Wa, c (h~))  + D(c(hd, c ( U )  + D(c(X2), b) 

and the corollary follows. 
The theorem implies that a weighted average sequence can be found to 

represent any point on the line between two sequences. While the converse 
of the theorem is not true, it has a coordinate by coordinate version. 

THEOREM 2. If c satisfies D(a, c )  4- D(c, b) = D(a, b), then each ci = Xia? + 
(1 - hi)bf for some optimal alignment of a and b. 

into optimal a, c and c,  b alignments, the alignments 
can be assumed to be of equal length: 

Proof. By inserting 

a ; " .  . .a2 
> 

cT . . .c2 

c ; " .  . .cf 

b T . .  .bf 

Because D(a, b) = D(a, c) + D(c, b), the implied a, b alignment is optimal. 
Moreover d(a:, b:) = d ( a f ,  cf) + d(cT, b:) and the result follows. 

At this point it might be conjectured that the geometry for more than two 
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sequences is approximately Euclidean. If this were true, then efficient 
algorithms for comparing sequences are immediately suggested. Unfortunately 
the geometrical properties of even three sequences is far from simple. Let 
a,, a, and a3, be given sequences and define b(X) = ha, @ (1 - Maz and 
c(X) = hal  8 (1 - h)a3 for X E [ 0, 1 ] . Now 

D(b(l), c(1)) = 0 

and 

D(b(O), do)) = D(az, a3) 

and, if a,, a,, a3 formed a triangle in plane geometry, D(b(X), c(h)) = 
( 1  - h)D(a2, a3) would hold. This equation need only hold at X = 0, 1, For 
an example, we take three portions of sequences from 16s rRNA sequences of 
B. stearothermophilus (a,), D. discoideum (a2) and E. coli (a3) (Woese et al., 
1983; Table 31). In Fig. 1 ,  values of D(b(h), c(X)) are plotted in order to 
show the deviation from Euclidean geometry. 

If all sequences are of equal length and the deletion weight is large, then 
the ith column in any alignment is composed of the ith members of the 
original sequences. In this extreme case the resulting line geometry is 
Euclidean. 

3. Algorithms. We now turn to consideration of algorithms for M sequences 
where M > 3. These ideas do not seem to suggest practical methods for 
aligning M sequences of unknown relationship However the problem of 
aligning M sequences, when a binary phylogenetic tree is assumed, does have 
a practical heuristic solution. We turn first to a simple but important 
problem. 

3.1 Aligning alignments. Suppose two sets of sequences a, ,  a, . . . ak and 
b,, b, . . . b, have been aligned by some method. Each such alignment can 
be easily made into a weighted average sequence a* and b*. The metric, 
D(* , e ) ,  above can be applied to  align these alignments. Notice that 
Xa* CB (1 - h)b* can be formed from any alignment which gives D(a*, b*) 
but that the number of sequences involved, k and I, do not enter into com- 
puting D(a*, b*). 

3.2 Center of gravity sequences. Consider three sequences a l ,  a2 and 
a3.  e2 = $al  @ :a2 occupies the midpoint of a line between a, and a,. 
If all distances had the properties of Euclidean geometry, the center of 
gravity is a point on a line from the midpoint e, to a3, two-thirds of 
the length from a3 and one-third from e,. Therefore the desired sequence 
is e3 = 3a3 8 ~ [ e , ] .  

The algorithm of the previous paragraph generalizes to M sequences, 

1 2 

a,, a,, * * Y aM by 
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Figure 1. For the three sequences below, the distances D ( h 1  @ (1 - h)a2, 
hal @ (1 - Ma3), D(hal 6 ( 1  - h)a3, ha2 @ ( 1  - h)aa) and D(haz @ (1  - h)al, 
ha2 @ (1 - A)a3 are plotted for 

9 - 1 A = -  
10' * * * ' 10' 

Such distances are represented by the length of lines joining the appropriate 
points of the sides of the triangle ending in *. If the line geometry were 
Euclidean none of these lines would extend beyond the triangle. 
Sequence al: is from B. stearothermophilus: 

Sequence a2: is from D. discoideum: 

Sequence a3: is from E. coli: 

CAACCCUCGCCUCUAGUCACUCUAGAGGGGAAGGUGGGGA 

AGACCUCGACCUGCUAACCUUCUUAGAGGGGAAGUCCGAGG 

CCACCCUUAUCCUUUGUAACUCAAAGGAGGAAGGUGGGGA 
4 

d(P,Q)=4IP, -Qq,I  -I- I I J p i - Q i I .  
i=1 

e1 = a1, 

e, = -a2 @ -el, 
1 1 
2 2  

1 2  
3 3  

e3 = -a3 CD -e,, 

. . .  
1 M - 1  

eM=-aM@- eM-1. M M 
This algorithm runs in time (M - l )O(N2)  where O(N2)  is the time required 
to align two sequences of length N .  The storage required is dominated by 
O(N2) ,  that required to align two sequences. The alignment of M sequences 
uses M N  storage. 
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In the above discussion, the M sequences were assumed to be equally 

We can locate all sequences ha, @ (1 - h)a, on a line. The main difficulty 
weighted. Unequal weighting of sequences is easily included. 

with the proposed algorithm is that, as illustrated in Section 2 

D[hal @ (1 - X)az, ha, @ (1 - X)a,l . 
cannot be assumed to be (1 - h)D(az, a3). This implies that 

L, 3 ra ?fa3 3 2  +a$, 

and 

might all have different metric properties. Set 

1 1 
2 2  

b, = -al @ -a,, 

1 1 
2 2  

b, = -a, @ -a3, 

1 1 
b --az@-a3. 

3 - 2  2 

Notice that, by Theorem 1 and the triangle inequality, 

D(a,, a2) + D(az, a3) + D(a,, all  >D(bl, b,) + 4 b 2 ,  b3) + D(b3, bl) 

I and, if equality holds, a, = a, = a,. We find the algorithm 

1 1  1 1  
(al, a,, a,) + -a, @ -az, -a2 CB -a3, -a3 @ -az (; 2 2  2 2  2 

I Go to (1) if D(a,, a2) + D(az, a3) + D(a3, a,) > e. (2) 

converges very slowly. For an example of this iterated midpoint algorithm 
see Table 1 and Fig. 2. Of course, replacing a,, az, a3 by the three possible 
center of gravity sequences should cause more rapid convergence but this 
does not seem to help much. We have not found that this algorithm converges 
exponentially. 

Otherwise, stop. 
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TABLE I 
Edge Lengths of Triangles obtained from the 

It era ted Midpoint Algorithm 

Iteration No. D(al, a?) D(al, az) D(a2, 83) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

12.000 
13.000 
8.000 
8.250 
6.494 
6.627 
5.852 
5.95 1 
5.302 
5.607 
5.305 
5.360 
5.137 
5.21 1 
4.992 
5.065 
4.897 
4.933 
4.790 
4.834 

33.000 
17.500 
12.750 
9.125 
7.685 
6.776 
6.163 
5.983 
5.614 
5.596 
5.33 1 
5.352 
5.172 
5.166 
5.054 
5.032 
4.944 
4.922 
4.860 
4.814 

35.000 
18.500 
13.750 
9.375 
8.3 11 
6.7 13 
6.601 
5.878 
5.946 
5.463 
5.590 
5.242 
5.351 
5.085 
5.180 
4.979 
5.023 
4.889 
4.906 
4.801 

The initial triangle has vertices a1 from D. discodeurn, a, from 
S. cerevisiae and a3 from H. volcanii. New triangles are formed by 
joining the midpoints of the previous triangle by the algorithm of 
Section 3.2. The edge lengths of these triangles are tabulated 
above. 

Figure 2. The initial triangle has vertices a1 from D. discoideum, a2 from 
S. cerevisiue and a3 from H. volcunii. Form a new triangle by joining the mid- 

points of previous triangle by the algorithms of Section 3.2. 
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3.3 Sequences related by a binary tree. As mentioned in the introduction, 
Sankoff's work assumes a binary tree T relating M sequences. If M > 3 ,  we 
show that there is a natural algorithm which terminates in O(MN2) steps. 

A binary tree with M external nodes has M - 3 interior branches. Com- 
bine the exterior nodes by @ until only one node remains. There is no 
ambiguity about order once an interior branch is chosen to be the last 
remaining branch. Then these last two weighted average sequences are com- 
bined. The computation time is O(MN2). 

An alignment of M > 3 sequences can be obtained by aligning each of the 
M original sequences with the final weighted average sequence. Above we did 
not specify the choice of weights. That is, ha2 @ (1 - h)b involves a choice 
of A. Without additional information, it seems reasonable to weight the 
sequences proportional to their number as in Section 3.2. For example, 

c 

I 

gives each sequence equal weight. Other choices are clearly possible. 

Fig. 3. 
As an example of this procedure, consider al ,  a2, . . . , as as given in 

E 
1 

E. Coli 
CAACCCUUAUCCUUUGUAACUCAAAGGAGGAAGGUGGGGA 
B. stearo. 
CAACCCUCGCCUCUAGUCACUCUAGAGGGGAAGGUGGGGA 
If. volcanii 
AGACCCGCACUUCUAAUUACAUUAGAAGGGAAGGAACGGG 
D. discoideum 
AGACCUCGACCUGCUAACCUUCUUAGAGGGGAAGUCCGAGG 
S. cerevisiae 
AGACCUUAACCUACUAAACUUCUUAGAGGGGAAGUUUGAGG 

Figure 3. Assumed tree for the sequences. (From Woese e t  al., 1983.) 

The combination 

is obtained. By aligning each of a,, . . . , as with b, 
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the overall alignment is obtained. This alignment agrees with that given by 
Woese et al. (Table 31) who obtain it by their phylogenetic analysis of 
16s like RNAs. 

E. Coli 
CAACCCUUAUCCAUUUGUAACUCAAAGGAGGAAGGUGGGGA 
B. stearo. 
C AAC C CUC GC C UAC UAGUC AC UC UAGAGGGGAAGGUGGGGA 
H. volcanii 
AGACCCGCACUUACUAAUUACAUUAGAAGGGAAGGAACGGG 
D. discoideum 
AGACC UC GAC C UGC UAAC C UUC UUAGAGGGGAAGUC C GAGG 
S. cerevisiae 
AGACCUUAACCUACUAAACUUCUUAGAGGGGAAGUUUGAGG 

The authors are grateful to Eric Silber who wrote programs for the sequence 
comparison and alignment algorithms reported in this paper. 
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