OOUIK230 RIS+ il
Pergamon Presw) 1l
©19kR4 Sovweny for Mathematical Biology

Budicnn of Mathematioal Biology Yob 36 NG 3 pp 473-800, 1983
Panted i Great Bnotan

GENERAL METHODS OF SEQUENCE
COMPARISON

B MICHAEL S. WATERMAN*
Departments of Mathematics and of Molecular Biology,
University of Southern California,
Los Angeles, CA 90089-1113, U.S.A.

Mathematical methods for comparison of nucleic acid sequences are reviewed, There are
two major methods of sequence comparison: dynamic programming and a method
referred to here as the regions method, The problem types discussed are comparison of
two sequences, location of long matching segments, efficient database searches and
comparison of several sequences,

1. Introducrion. Nucleic acid data are increasing at a rapid rate and several
international databases are being created to organize the information. The
number of possible relationships between the various sequences is signifi-
cantly larger than the number of sequences. To complicate further the
problem of finding information within and relationships between sequences
is the fact that, as molecular biology matures, the number of features of
interest also increases. These trends do not show signs of abating.

Molecular biology celebrated its thirtieth birthday in 1983. As with any
young science, new mathematical and analytical questions have been posed
and sometimes solved. The solutions have not always been rigorous or
mathematically sophisticated but are generated out of a need for answers.
The present paper is an attempt to survey methods of comparing macro-
molecular sequences which is perhaps the most mathematically developed
aspect of macromolecular sequence analysis.

Recently two issues of Nucleic Acids Research, Volume 10, No. 1 (1982)
and Volume 12, No. | (1984), have been devoted entirely to computer
methods for nucleic acid sequences. Analysis packages and methods of
analysis are described in many of the papers and several are referred to in the
present paper. Sequence comparison by the method of dynamic programm-
ing has recently been treated in a book edited by Sankoff and Kruskal
(1983). The present treatment is focused on macromolecular sequences
while the Sankoff and Kruskal book has a broad and fascinating range from
biology to error correcting codes, spelling correction, geological sequences,
speech recognition and birdsong studies. Techniques which are not dynamic

* This work was supported by a grant from the System Development Foundation.

473

474 M, S, WATIFRMAN

programming are briefly mentioned or omitted in their book and very recent.
important developments could not be included.

In this paper I take the point of view that sequence comparison is useful
at various levels of refinements, For example, both rapid database searches
and the most refined dynamic programming methods are important tools.

To keep the discussion to a reasonable length I consider the comparison of

two (or more) sequences to obtain an alignment or long similar regions.
Palindromes. repeats, inverted repeats and helical regions will not be
explicitly discussed. In addition. DNA sequences will be the example
sequences. although any other linear macromolecular sequences could be
used.

The paper is organized by problem tvpe and methods of solution usually
appear as sections. The outline is

Section 2. Comparison of Two Sequences

2.1 Distance and Similarity

2.2 Alignment Combinatorics

2.3 Basic Dynamic Programming Methods

2.4 Extensions of the Basic Methods

2.5 Ukkonen’s Dynamic Programming Algorithm
2.6 Near Optimal Alignments

2.7 The Regions Method

Section 3. Location of Long Matching Segments

3.1 Long Exact Matches
3.2 Long Inexact Matches by Dynamic Programming
3.3 Long Inexact Matches by Regions

Section 4. Efficient Database Searches

4.1 The Wilbur-Lipman Method
4.2 A Vectorized Maximum Segments Algorithm
4.3 The Regions Method

5. Comparison of Several Sequences
5.1 Dynamic Programming Algorithms
5.2 A Regions Algorithm

Section

Section 6. Conclusion

The introduction concludes with a general and widely used method of
analysis used in the problem of Sections 2-4.

1.1. Visual methods There is an important method of sequence analysis
which is best described as ‘‘just look at it”". An analyst might observe a long
stretch of GCGCGC . . . and have found a feature of interest without any

GENERAL METHODS OFF SEOQUINCE COMPARISON 475

sophisticated mathematical or computer methods. It is possible to formu-
Jate an analytical problem from such un observation: “How likely is the
observation of such an cvent in random scquences?” A biologist s
unlikely to be surprised. informed or impressed by being told that the
GCGC. . . run was unusual. Instead the question of function of the GC
region is the focus of the biologists attention. Just looking at scquences
is useful.

The dot matrix method is a widely used visual method thuat generally
utilizes computers. Here a matrix M = ;) is formed where m;; = 0 if the
ith element of sequence a is unequal to the jth element of sequence b and
my; = 1 otherwise. Runs of exact matches show up us diagonals of 1s. The
dot matrix has been discovered independently several times and 1 do not
know the history. See. for example. Maizel and Lenk (1981). Novotny
(1982). Harr ¢r al. (1982). Jagadeeswaran and McGuire (1982). and Gibbs
and Mclntyre (1970).

Manyv of these implementations filter the matches to display only runs of
7 or more. for example. It is possible to combine more sophisticated methods,
described next. to filter matches.

The dot matrix method is useful in locating regions of high match
between two DNA sequences. It is natural to ask for the probability distribu-
tion of the longest match between two sequences. This distribution will
allow the analyst to locate the significant matches. In Section 3.1, a formula
is given for the expecrtation and variance of the longest exact match and in
Section 3.2 empirical and theoretical extensions are given for inexact
matches. These methods allow the statistical significance to be estimated so
that the analysis results are much less ad hoc.

2. Comparison of Two Sequences. The problem of this section can be
described as that of finding the ‘‘smallest number™ of steps which changes
one sequence into another. The sequences are nucleic acid sequences:
a=aa,...a, and b = b,b, ... b, where aq; and b; are one of the nucelo-
tides, adenine (A), thymine (T), guanine (G) or cytosine (C). A, T, G, C
will also be referred to as bases. Therefore these sequences are finite words
over a four-letter alphabet. The steps mentioned above correspond to evolu-
tion events which can alter the sequences. The simplest set of evolution
events consists of mutations, where one letter is substituted for another, and
insertions (or deletions) where one letter is inserted (or deleted) from
a sequence.
If a = AATAG. then a substitution of T fora, = A transforms a into b:

a = AATAG - b = ATTAG.

This correspondence is usually shown by representation in an alignment:

476 MOSOWATERMAN

a2 AATAG
b: ATTAG.
If ay = A s deleted. the transformation into ¢ = AATG is represented by
a: AATAG
c: AATAG.

where the deletion of a3 = A is indicated by a A" inserted into ¢. Corres-
pondingly. the insertion of C between a3 and a4 1s represented by

a: AATAAG
e: AATCAG.

Kruskal and Sankoff (1983) place these problems in a general setting.
Another general formulation is in Waterman et «/. (1976). which is followed
here. Let § be the set of finite words over a finite alphabet. including the
empty word. Let 7 = {7 | T : § = S} be a set of transformations which
includes the identity transformations. Our interest is in sequences of trans-
formations 7y. T». T; from 7 such that

ToT,o...0T(a)=0D.

Various problems can be formulated based on this set-up. For the smallest
number of steps problem, we are to search for minimum kA where 7 =
{single-letter mutations, insertions and deletions}. The objective tunction can
be changed and the set of transformations enlarged. There is a balance
between biological reality and computable algorithms.

Several issues are treated in the subsections below. First I discuss rela-
tionships between distance and similarity (2.1). Then I take up dynamic
programming algorithms for the simplest problem (2.3). some natural
extensions (2.4), some recent important results for efficient calculation
(2.5), a technique for solutions near the optimum (2.6) and finally some
other techniques for solving these problems (2.7). I follow Kruskal (1983)
and refer to insertion/deletions as indels.

One of the earliest string comparison algorithms was due to Levenshtein
(1966) although this work did not influence the developments reported in
this paper. The work of Fitch and Margoliash (1967) and Fitch (1969)
brought the problems of sequence comparison to the attention of a large
number of people, including Beyer ez al. (1974).

2.1 Disrance and similarity. When non-negative weights are assigned to the
transformations, then the minimum sum of weightsof T107T,0 ... 0T, (a) =
b can be viewed as the distance from a to b. This is made explicit in

GENERAL MEFTHODS OF SFQUINCE COMPARISON 477

Waterman ef al. (1976) and, with obvious symmetrizing. 4 metric space is
obtained. Interesting cases arise when 7 is restricted to specitic sets of trans-
formations and specific weights. For example. it is important whether or not
efficient algorithms exist,

For mutations, insertions and deletions. the alignment corresponding to
the minimum sum of weights should be displayed as long as each sequence
element is in no more than one evolutionary event. Letting J(~. v) be the
weight of substitution v for x, even having d(x. x) = 0 for all x does not
make the minimum alignment sum of weights into a metric. If d(* . *)
is a metric on the set of letters, then Sellers (1974b) shows that a metric on
S results. In this case, the alignment can be displayved.

An earlier approach was taken by Needleman and Wunsch (1970) who
present an algorithm for maximizing the number of matches minus the
number of insertions and deletions. This is referred to as a maximum simit-
larity criteria while the one above is a minimum distance criteria. Relating
similarity and distance is important in psychology (Shepard. 1980) and the
relationship is also interesting here. Sometimes d(x, 1) < 0 is used and the
resulting minimum referred to as a distance. Here I reserve distance to be
the result of minimizing non-negative weights, with d(v, x) = 0. Situations
with d(x, ¥) < 0 might be called negative similarity.

Each substitution or pair (a;. b;) in an alignment corresponds to one of
the k =1, 2, ..., 16 pairs (A, A) (A, T) ... (G, G) and has a similarity
a, = 0 or a distance Bx = 0. Indels are each given weight w for similarity or
x for distance. The maximum similarity alignment coincides with the mini-
mum distance alignment if and only if

Bi= max () —o; fori=1,2,...16
1<j<16

and

x=[max a;}/2 +w.
1€€16

A more general result than this with a complete proof appears in Smith ez al.
(1981).

Beyer et al. (1983) recently raise the question of relating similarity to
distance for these algorithms. Beyond the relationships given above they ask
for a general criteria for similarity which would be ‘‘complementary’ to
a metric distance. By careful examination of the above equations, I have
(unpublished observations) accomplished that, for these specific algorithms.
The general characterization of similarity and its relationship to metric
distance remains a problem of interest.

2.2 Alignment combinatorics. As above let a = a4, .. .a, and b =
b,by . .. b,. An alignment can be produced by increasing the length of each

478 MUSCOWATE RMAN

sequence with the insertion of As. If the length of such an alignment is L.
then it can be written

afa¥ . ..

bib¥ ... b}

where the subsequence of a*(b*) of elements not equal to A is a(b).

It is of interest to count the number of alignments. If this number is not
large. then a direct search is feasible for finding optimal alignments. As we
will see. the number grows very rapidly.

An alignment ofa, .. .a, withd;...b,, can end in one of three ways
. dy ... dy LA
LA ... b, by

(aligning A over A is eliminated. as it contributes no information). If f(n. m1)
counts configurations generated by recursively ending alignments as above.
then

flom)=fm—1.m)+fn—=1.m—1)+1f(n,m—1).

The numbers generated by this recursion equation are known as the Stanton-
Cowan (1970) numbers, where they arose from calculating the volume of
a sphere of radius m in n dimensions using the Lee metric. Asymptotics is
done for a generalization of these numbers by H. T. Laquer (1981). He
shows that

@,) ~ (1 +/2)¥7* 0 /n.

After close examination, however, f(nn, m) is seen to overcount the align-
ments or at least a reasonable definition of alignments. For example, the two
alignments

AA AA
and

AT TA

might not be distinct in a biological sense. To design a recursion that does
not double count these ‘“‘tandem’™ deletions, let g(nn, m) be the number of
such alignments. If an alignment ends in A there are three possibilities

...au_1 an ...y ap ... A ay
.hy A ..A A -~'bmA,
and if an alignment ends in gm, there are three possibilities
.a, A ..A A .o dn A

. bm—-lbm ‘e bm—lbm A bm

GLENERAL METHODS OF SEQUINCE COMPARISON 479

Therefore

gln,my=gm—1.m)y+gn,m—"N1 +gn—1.m—1)—gn—1.m—1)

or

gln,m)y=gmn—1.m)+gn, m—1).

a recursion of simpler character than the Stanton-Cowan recursion.
The boundary conditions for our recursion must now be considered.

Clearly
g0.0O)=g(1.0v=¢g(0. Y= 1.

so that the explicit solution cun be written

g(n. m) =<" 4;/”).

Bv Stirling’s formula

gln,) ~ 23 (/).

For n = 1000, g(n, n) > 10%°° and direct examination of all alignments is

impossible!. This is the reason for the development of efficient algorithms.
2.3 Basic dynamic programming methods. In the last section, the sequences

a=ag,...a,and b=b,b,...b,, were used to generate alignments,

ata¥...af
o %a td
bibt ... b}

where the subsequences of a* and b* of elements not equal to A are the
original sequences. For the cases of similarity and distance, the recursion
equation for f(n, m) from Section 2.3 is modified to provide an efficient
way of calculating similarity and distance.

Historically, these methods began in biology with Needleman and Wunsch
(1970) who present algorithm N-W stated below. Then Sankoff (1972)
and Sankoff and Sellers (1973) find dynamic programming methods for
optimal alignments with a given number of indels. Next Sellers (1974a, b)
gives algorithms to compute the distance D(a, b), a problem posed by
Ulam (1972). Gordon (1973) and Delcoigne and Hansen (1975) make useful
contributions to sequence comparison which involves ‘‘slotting™ the bases
together in an optimal way. Probably their work goes unnoticed because the
slotting alignments are not used by biologists. All of these methods are
included in a class of techniques known as dynamic programming which was
introduced by Richard Bellman. See Byers and Waterman (1984) for a
general discussion and further references.

480 MUSOWATE RAMAN

Consider the alphabet (AL CO G T A enlarged 1o include &L Leta weight-
ing function ste. b)) be detfined on pairs of letters from the alphabet. A
function of the type used by Needleman-Wunsch is

i I ife=h.
sta. b)r =30 Wa#h.a#A. b FA.
‘—l Sifa#Fbandoneofa, b = A.

Here matches receive positive weight and indels receive negative weight. The
following statements appear in Smith and Waterman (1981b) where the
proofs proceed along the line of the equation for f(in. m) in Section 2.3,
First define. where the maximum is taken over all alignments.

/

Sta. by = max > st bE).

=1

Algorithin N=-1" Let
J i
So = 2 stA A See=0. and S,p= N stag. A,
k=1 k=0
If S;; =(ayay .. .a;. byb. ... b)) then

Si = max{S;—;; T sta;. &). S;_y joy +sla;. by). S; -y + s b))
If an initial distance function d is specified on {A. C. G. T. A} then a
similar result is obtained. One such function is
- 1 ifa=b»b
d(a. b) =
0 ifa=b.

Define, as above,

L
D(a,b) = min Y d(aj, b¥).

k=1
Algorithm S Let

J i
DOI' = Z d(A. by), Dgo=0. and D;y = Z d(ay . A).

k=1 o
If Dl’f = S(alal ... ay, b1b3 e bj), then
D = mi]]{Df-l_,- +da;. A), Di_y jy +d(a;. b)). D jy + d(A. b))

Both of these algorithms have computation time proportional 10

1 =nm.
1

Mz

n
i=1j

GENEFRAL MITHODS OF SIOUENCE COMPARISON 481

The storage required to calculate D(a. by is min{n, m} but Dta. b) is scldom
of value without the set of associated optimal alignments.

There are two basic techniques to produce alignments. The first is to save
pointers at each (/. j) to show which of D;_y ;: D;_y j_y: D; j_y are used in
calculation of the optimal D;;. The pointers are saved during the “forward™
calculation so that during tracebacks the pointers cun be followed to
produce an optimal alignment. Where there are multiple optima. the pointers
not followed can be stacked and in this manner (breadih-first search with
stacking) all optimal alignments can be produced. If pointers are not saved,
recomputing which of D;_y j: Dy -1t D; -y results in D; ; is casy to do
if the D matrix is saved. In either case, required storage is O(nimn),

2.4 Exrensions of the basic metrhods. The most important trunsformations
of evolution treated in sequence comparison are single base mutations and
indels. Above only single indels are treated. This section gives extensions to
longer indels and describes a problem of long inversion of segments of a
sequence.

While indels of many bases. 100 say. could be the sum of 100 single base
indels, the likely explanation is that there was a single event. In a study of
alignment parameters, Fitch and Smith (1983) show that. for certain chicken
hemoglobin mRNA sequences, longer indels are necessary to obtain the
correct alignment. The longer indels should not be weighted as the sum of
single indels.

Let x; be the weight chosen for an indel of k letters, &k = 1. The follow-
ing results appear in Waterman er al. (1976). If x; <y, <., .andd is a
metric on the set of sequence elements, then D is a metric on the set of
sequences.

Algorithm W-5-B. Let Djg = X;. Do; = x;. Dog = 0. and Dy
D(ajyay. . . a;, byb, .. . b;). Then

Dij =min{Dj_yj_y + d(a;. b;), min{D; j_x + X }, min{D;_x j+ xx } .
k>1 k>1

A corresponding algorithm will compute a generalized §.
It is important to note that computation time is increased to

»”

-

(ij) = O(nm* + n*m).
1

n
2
i=1

1

I

An O(n?) algorithm, for two sequences of length n = 1000 say, is a signifi-
cant price to pay for multiple indels. One approach to avoiding this is to
assume x; linear. That is, set

Xp =a + bk.
For secondary structure calculations this assumption is exploited by

482 MOSOWATT RMAN

Waterman (1976: p. 203) and Kunchisa and Goad (19820 In un clegant
paper. Gotoh (1982) derives a related algonthm for lincar v, with running
time Q). Taylor (1984) gives more results along the lines of Gotoh,
Of course. after vy and v, such x behave much like single indels. It s
therefore desirable to extend the algorithm. especially to concuave indel
functions such us

Np =a + blogth).

This has been accomplished in Watermuan (1984) and has upplication to
secondary structure problems as well where indels are analogous to bulges.
interior loops and multibranch Joops. The algorithm for concave X hus
running time OUnn),

The problem of including nversions is very interesting. Interchanging
two adjacent letters is a transformation considered by computer scientists.
Recently Wagner (1983) has shown that this transformation can be included
with computational time O(aim4=) where

o <min{d-max d@. b, 2y, + 1

where v is the cost of transposition. Including long inversions would seem 10
be a veryv difficult task. Certainly these long inversions occur in DNA
sequences and should be included. A problem relevant to biology is to include
inversions in an algorithm where there is a single cost of inversion plus the
distance between the segments. It should be possible to allow inexact inver-
sions with their own indels.

Reichart er al. (1973), Wongeral. (1974) and Cohenet al. (1975) produce a
series of dvnamic programming algorithms motivated by Turing machines
and information theory. Their algorithms can be viewed as special cases of
the general dynamic programming algorithms. See Waterman ez al. (1976).

2.5 Ukkonen’s dvnamic programming algorithm. While the O(n?) dynamic
programming algorithm is much faster than the O(2?") brute force algorithm,
it becomes prohibitive for very large 1. Recently, E. Ukkonen (1983, 1984)
gives significantly faster algorithms for computing the distance between two
sequences. The algorithms, which are outlined below, compute the distance s
between sequences of lengths n and 1, along with the alignment, in time and
storage O(s*min{n, m}) (with storage O(s?) in some cases). If no alignment
1s desired, the storage is O(s). The worst case behavior is equivalent to the
standard algorithm, while for small s the improvement is dramatic. If no
distance larger than a threshold r is desired. then the time is no larger than
O(r*min{n. m}).

An algorithm similar in spirit to Ukkonen’'s is proposed by J. W, Fickett
(1984). Fickertt’s algorithm is not as time efficient as Ukkonen’s. (Each of
these author’s work treats the case of single indels.)

GENERALMETHODS OF SFQUENCEF COMPARISON 483

Ukkonen (1983) presents his algorithm for mismatches. single indels, and
two letter transpositions. Below are the same results for mismatches and
multiple indels. Let. as above,

Djj=min{D;_y j_y +d(a;, b)) min{D; ;i + xp), mind{ Dy j+ i) p
k=1 kz1

and assume d(¢. b) = 1 unless ¢ = b. UKkkonen proves 4 key lemma which is
shown to be true for the general case of multiple indels:

LEMMA U. Forall(i.). D;; —1<D;_,y -y <D,
PROOF. The proot is by induction oni +j. The left-hand side is immediate

from the recursion, If Dy; = D;_y j_; + dta;, bj)then Dy 2 D,y ;-4 follows.
Otherwise, without loss of generality, assume D;; = D;_x ; + xx. The induc-

tion hypothesis implies D;_y j 2 D;_(x +1y.j—y s0 that D 2 D,y & joy + Xi.

The recursion equation now implies Dy; 2 D;_y_x jo1 + Xk 2Dy 1.

Lemma U. which is elementary. is the key to Ukkonen's elegant method.
It states that D; ;4. is a non-decreasing function of /. This implies a structure
for the matrix Dj;: it is shaped like a valley with increasing elevations along
lines of constantj —i. The lowest elevation is Dy = 0. The focus below is on
the boundaries of elevation changes when D; ;.. = A changes 10 Dy j114¢ =
k+1.

Suppose all indels have cost 1, i.e. x, = k The basic idea of Ukkonen’s
algorithm (1983) is to start at Doy = 0 and extend along j — i = 0 until
D;; = 1. In general, there will be 2k + 1 boundaries of the region D;; < A.
Each boundary j — i = c is extended until D;; = k + 1 (forj —i =¢). The
extension of the boundary to & + 1 can be determined from the boundaries
for k, k — 1, ... and tests of a; = b;. This procedure is followed until D,,,,,
is reached. If D,,,, = 5. itis clear that no more than (2s + 1) min{n, m} entries
have been computed. It is sufficient to only store these boundaries so that
required storage is O(s?).

2.6 Near optimal alignments. Although the algorithms locate optimal
alignments, the weights are determined by the user. Calibration of weights
by alignments alreadv known to be correct can be done but no set of weights
can be assumed to be absolutely correct. Even if the weights are properly
chosen, unknown biological constraints might cause the true alignment to be
different from the computer generated optimal alignment.

A natural problem, then, is to find all alignments within a specified
distance of the optimal. The motivation is that the correct alignment should
be near the optimal one and that a biologist or sequence analyst might
recognize it. This problem was solved in Waterman (1983) and received a
more general treatment in Byers and Waterman (1984).

484 AMLOSCWATT RMAN

Formully stated. the problem is 1o find all alignments with alignment
distance or score within € of the distance 1, ,, between the two sequences
a and b. Assume all D; ; are computed and stored.

At position (i, j) assume a traceback from (1, m) to (0. 0) is being per-
formed thuat can result in an alignment with score less than or cqual 1o
D, ,, + €. The score from (1. m) to but not including i, jyis T;. T;; is the
sum of the possibly non-optimal alignment to reach (i, /). From (i, j). as
usual. three steps are possible: (¢ — 1./ (i — 1./ — 1). and (i, j = 1). Each
step is in a desired alignment it and only if

T +da,. M+ Dy <D,y te

Tij + dta; bj) + Di_y iy Dy, +e

<
7"1 +d(Abl) +Di.,f-l <l)n.m + €.

respectively. Multiple near-optimal alignments can be produced by stacking
unexplored directions.

A study of sequence alignment sensitivity to weights and multiple indels has
been carried out by Fitch and Smith (1983). The sequences displayed below
are chicken hemoglobin mRNA sequences. nucleotides 115~171 from the 3
chain (upper sequence) and 118-156 from the a chain (lower sequence).

UCUUGCGUCCUUUGGGAACCUCUCCAGCCCCACUGCCALCC
CUUCCCCACUUCG AUCU

UUUUGUCACACGGCAACCCCAUGGUC
GGCUCCGCUCAAAUC

This alignment is presumed correct from the analysis of the many known
amino acid sequences for which such RNA sequences code.

By using a mismatch weight of 1 and a multiple indel function x, = 2.5 +
k, where & is the length of the indel, the correct alignment is found among
the 14 optimal alignments. (This is region Q of the Fitch-Smith paper.)
To indicate the size of neighborhoods in this example, there are 14 align-
ments within 0% of the optimum, 14 within 1%, 35 within 2%, 157 within
3%, 579 within 4% and 1317 within 5%.

A mismatch weight of 1 and a multiple indel function 2.5 + 0.5 4 is in
region P of Fitch and Smith; accordingly, the correct alignment is not in the
list of two optimal alignments. It is necessary to go to the list of 31 align-
ments within 4% of the optimal alignment to find the correct alignment.
This example illustrates the sensitivity of alignment to weighting functions.

2.7 The regions method. An examination of dot matrices (Section 1.1)
might suggest constructing a list of matchingregions. Then, since an alignment

GENFRALMETHODS O SEQUENCE COMPARISON 488

is just a special ordered subset of such a hist. algorithms might be devised to
find optimal alignments. This approach must have been pursued by several
independent groups, although I do not know the early history. As described
in Section 3.1, it is basic to find long matching regions. For secondary
structure prediction, Studnicka er al. (1978) follow such a course. Martinez
(1980. 1983) gives an algorithm which is much more mathematical. In fact.
Martinez (1983) adapts his secondary structure algorithm into sequence
alignment. I attempt to describe this procedure. following the outline of
his secondary structure algorithm.

First we need a list L of matching regions. A region R is defined to be
d triple Ovodo /) which means a4 match of word w begins ut ¢; = b;. In other
words. it / = vl is the word length.

(lizbj.(li+] =bj,1 disi—1 :bf+/—l°

To obtain such a list. Martinez (1983) first concantenates the sequences
into a single sequence S. He uses the technique of repeatedly sorting S.
Using a lexicographic ordering. the first sorting groups all equal elements
of S together. The second sorting operates on each of these equal element
groups and groups together elements which are succeeded by equal elements
in the original S. At the end of the Ath sort, two elements of the permuted S
will belong to the same group if and only if their locations i and j in the
original S are such that the elements at locations i +/ and j +/ are equal for
I=0,1..... k—1.

As shown in Martinez (1983), the speed of this sorting procedure for
generating regions is, in the expected sense, of order .Nlog.N where .V is the
total length of the concantenated sequences. The procedure is therefore
comparable in speed to the standard computer science method of construct-
ing “‘position trees” for identifying common substrings of two or more
sequences, as described by Aho. Hopcroft and Ullman (1974), but has the
advantage of ease of implementation.

To illustrate the concept of position trees let a = AATAATGCS, where
S signals the end of the sequence. For each i, i = 1 to 8, let the substring
S be the shortest substring beginning at i which does not occur elsewhere
in a. This substring is said to identify i. For example, position i = 4 is identi-
fied by AATG. These identifying substrings are organized into a position
tree which represents the information:

486 M.SCWATERMAN

Position Identifying substring

1 AATA

2 ATA

3 TA

4 AATG

5 ATG

6 TG

7 G

8 CS

9 S
The i terminal nodes of the position tree for a = ujus . . . g, consist of
o200, n. The sequence of labels on the edges from the root to terminal

node I is the identifving substring for position 7. The position tree for the
length 8 sequence from above is given in Fig. 1. Two sequences (or more)
can be processed simultaneously to give a position tree where the longest
matching regions can be easily found.

—~
/TG \
o 4 4 !
; Sy ‘\Z/ o \%
7NN
a4 2 3 8

Figure 1. Position tree fora = AATAATGC.

Still another method for rapidly finding regions can be based on the
concept of ‘‘hashing’ as used in classical lexocographic search problems.
The earliest reference is Dumey (1956). Described more fully by Dumas and
Ninio (1982), the basic idea of this concept is to associate with each position
of a sequence the numerical equivalent of the & — mer starting at that
position. The numerical equivalent is obtained by regarding the sequence
alphabet as defining the basis of a number system. Thus, a four-letter alpha-
bet would give a number system to the base four, and for fixed & there are
4% possible numbers. These numbers can then be used to identify positions
of an array of size 4% of lists of the positions of locations in the sequence
at which the corresponding & — mer occurs. This method is used by Wilbur

GLNERAL METHODS OF SEQUIENCE COMPARISON 4R87

and Lipman (1983) in making rapid similarity scarches of data ba_scs. and
apparently also by Karlin er al. (1983) for finding exact repeats. The array
can be constructed in time of order .N. Longest repeats, and hence regions.,
are found by simply piecing together the repeats of size k. and the speed
seems to be of order N log N (or order N7).

Given the list of regions found by any of these methods. we now utilize

them to find optimal alignments. Two regions R, = (wy: i). j;) and
R, = (wqi i fy) are said to satisfy Ry < R, if iy + hwyl — 1 </, and
jy + byl — 1 <j, Ry, € R, means that there are i, — i; — [w,| bases of
a and j, — j; — |wy| bases of b between the regions. and that R, is left of

R,. A formula must be given to weight these unmatched bases. If there are
~ bases from a and 3 bases from b. let z(v. 1) give this weight. If mismatches
cost 1 and indels cost § with 1 < 28. then a reasonable choice for z(x, 1) is

2(x.y) = ix —yi6 + min{x. v}
Formulae can be devised for other situations and z(x,) = x +)y can be
used.
Each region R can be considered 1o be at the left end of an optimal
alignment A(R), beginning with R and proceeding to a, and b,,. Let
D(A(R)) be the score of such an alignment. The optimization follows from

D(A(R)) = min{w(k —i—|wl.]—j—hv]) + DAR*): R =(wii))<R*
= (W*; k, 1)}

General algorithms are known to run in time O(|L|?).

An implementation of this algorithm has been made by Martinez and
Sobel and described in Martinez (1983). They also produce near optimal
alignments by an adaptation of the ideas in Section 2.6.

3. Location of Long Matching Segments. In the past few years, the concept
of a genome as a stable, slowly evolving collection of nucleic acids has been
dramatically altered. While there is a general constancy of genome organiza-
tion, recent discoveries of genetic elements such as transposons suggest that
drastic reorganization can take place. Scientists have found unexpected
relationships between viral DNA and host DNA (Doolittle er al., 1983;
Naharro et al., 1984; Weiss, 1983). In these cases, it is not entire DNA
sequences with high similarity but in fact contiguous subsequences (seg-
ments) with high similarity which are found. The modular organization of
DNA into functional domains also suggests a search for highly similar
segments is more appropriate than attempting to match long sequences of
DNA. Of course, if both strings of DNA are known to serve the same
purpose and are thought to have a direct common ancestor, then the
methods of Section 2 should be used.

4NN MUSCWATE RMAN

The problems of this section center on the scarch for segments of two
DNA sequences which have unexpectedly high similarity. There are two
basic approaches: search for the long cxuct matches or for long inexuact
matches. New developments in probability theory assist these searches.

S0 Long exact matches. The first efficient method for locating exact
matches was given by Korn ez ¢/, ¢1977). Their approach utilizes the position
tree concept discussed in Section 2.7. That same method can be used to find
long repeats in a fixed sequence. Repeats will share branches in the position
tree. For example in Fig. 1 position 1 is identified by AATA while position
4 is identified by AATG. which implies the “long™ AAT repeat. Korn et al.
arrange the identifying substrings in a lexicogruphical order to find these
repeats. among other things. This is a straightforward and useful applicu-
tion of modern computer science to DNA sequence analyvsis,

The algorithm given in Aho ¢r «/. (1977) for consiruicting position trees
has 3 worst case running time of O(17%) for a sequence of length n. The
running time is proportional to the number of vertices of the tree. However,
if the letters of the word are independent and identically distributed. then
the expected running time is O(i1). They also point ourt the existence of an
algorithm which runs in O(n) for all inputs.

In recent work Karlin er al. (1983) and Karlin er al. (1984) perform
sequence analysis by locating long direct repeats. Their very interesting
techniques use a hashing technique and locate all direct exact repeats.

2cently a theoretical determination of the statistical distribution of
similarity has been given. If M(n. 1) is the length of the longest exact match-
ing region between two sequences, then

EQI(n, m)) =log((1 —pnm + v/ A—1/2 + r(n, m) + o(1)

and
0%, m) = a2/6X?* + 1/12 + ry(n. m) + o(1)

where p = P (two random nucleotides match), log = log,;,. v = 0.377 . ..
is the Euler-Mascheroni constant, A = /In(1/p) and r,(n, m) and ry(n. m)
are small. Notice that o(n, m) is essentially independent of 1 and m. This
result is from Arratia er al. (1984). Karlin er al. (1984) also state a result
differing by constants from this one. Also see Arratia and Waterman (1984)
for related laws of large numbers. Matches between sequences are considered
significant if they exceed E(M(n, m)) + 20. In the next section these results
are generalized to include mismatches.

Collins and Coulson (1984) give a parallel processing algorithm to
build the dot matrix of all matches of length greater than or equal to
a set threshold. Their implementation accepts sequences of up to 49.152
bases and is an indication of the results of applying new technology to

GENFRALMETHODS OF SEQUINCE COMPARISON 189

these problems. The probability results above could be used to set the
threshold.

3.2 Long inexact matches by dyvnamic programming. Consider the
problem of locating similar segments between two sequences without requir-
ing the segments to be identical. Sellers (1979, 1980) first consider this
problem. He defines an interval / of a to most resemble b globally if
D(J,b) < D(J, b) for all segmentsJ of a. Both *‘forward™ and "backward™
distance matrices are required. One of the problems is finding the desirable
matching segments from the many produced. (Sankoff and Kruskal (1983)
estimate that 7% matches result from sequences of length n.) Goad and
Kanehisa (1982) modify Sellers” technique. Erickson and Sellers (1983)
fully discuss this method and give two non-trivial applications of their
techniques. In this issue Sellers refines his analysis and gives another algo-
rithm for finding ““best segments™. He uses the Goad and Kanehisa (1982)
concept of match density to find longest segments of a prescribed match
density. Repeated passes through the matrix are required.

In another approach. Smith and Waterman (1981a. b) use similarity rather
than distances. Similarity counts

AAAA A
Vs
AAAA A

as four matches vs one, while distance is zero in each case. In order to filter
out portions of the sequence with negative match, define H;; to be the
maximum similarity of two segments that end in 4; and b;, or zero. which-
ever is larger. Define

Hyj =max{0, S(@xay4y ..., bybysy ... b)) 1 <x<i and]<y<j}

Sellers’ paper in this issue suggests that best segments are essentially
maximum similarity segments which (1) have non-negative similarity.
(2) have scores at least as large as any other segments with intersecting paths
and (3) which have scores at least as large as some cut-off value. Smith and
Waterman (198la.b) recommend sequentially processing the H matrix,
finding alignments with the largest, next largest, et¢. similarity values with
non-intersecting paths. After stating the algorithm for H, I give a new and
more complete algorithm for finding alignments satisfyving (1), (2) and (3)
of Sellers’ recommendations.

Algorithm S-1. Set Hjp = Ho; =0 for 1 < i<nand 1<j<m. Then

]'I,'j = max 1‘1,'_1','_] + s(a;. b,) max{H,-_k',- - X) max {fli,j—k — Xk }, 01.
1<k <i 1<k <]

Values which might be used for weights are

http://bc't\vt.cn

490 MOSCWATLERMAN

] ifx =y
(o y) =
—1/3ifx#v¥
and
X =1+ k/3.

A reduction in computing time from O(n3) to O(n?) for linear or concave
deletion functions can be achieved as in Section 2.4.

When constructing the matrix H. stack all (i. j, Y) with Y = H}; and
H;; 2 C = cut-off value. The stack is ordered by > where

G.(y> ko it (1WHy > Hyyor
(QYHy=Handi+j<k+lor
(3) Hijj=Hy.i+j=k+1 andi<k.

During tracebacks for some stack entry, multiple alignments are resolved
in the following manner: if two multiple alignments end at (i. j) and (k. 1)
output the one ending at (7. j) if (1) i + <k +/,orif(2Q)i+j=k +/7and
i > k. Once a trackback is successfully completed, the alignment entries in
the matrix are multiplied by —1, the alignment output, and the correspond-
ing stack entry is removed from the stack. Negative elements of A are not
used in any future alignments.

If a stack entry has a negative corresponding matrix element, remove it
and continue. If a traceback encounters a negative matrix element, it cannot
continue. If the best alignment generated that far has score = Y =2 C, then
the (i, j, Y) must be replaced into the ordered stack.

Boswell and McLachlan (1984) also suggest using similarity values for
locating similar segments. Their forward matrix is calculated by

FG, j) = s(a;, by) + Mmax{F;_y ;-1 —wy, Fi_y o1, Ficy,j-2 — Wil
The reverse matrix R is found by reversing the sequences. Then

The idea is that M(i. j) is the sum of s(a;, b;) plus the weighted best paths
extending in either direction. The parameter A € (0, 1) is a geometric damp-
ing factor.

The problem of distinguishing statistically significant values of

H* = maxH;
ij

is clearly important.

Arratia er al. (1984) have shown that the length M(n,) of the longest
match interrupted by A mismatches satisfies

GENERAL MFTHODS O SEQUENCE COMPARISON 491

LM, my) = log(nm) + kloglog(my + (A + Dlogtl — p) — log(k!)
+k +y/N—Ya+ (o m) Fo(l)

and
o¥n, m)=7w2/6N*+ 1/12 + r(n. m) + o(1)

where p = P (two random nucleotides match). log = logy,,. v = 0.577
is the Euler-Mascheroni constant. A = /n(l/p) and r,, r, are small. It is
possible to use, for example, H;; = E(M(1. m)) + 2a(n, m) to decide which
H;; are of interest to output. Notice that o(n. m) is once again essentially
independent of n and m.

In an empirical study. Smith ez a/. (1984) show that. for

] ifx =1
Sy,) =
—0.9 ifyv#Fy
and
2 ifk =1
X =
oo ifk>1

the values of £(H*) and o are
E(H*) = 2.51log(nm) — 9

and
g=1.78,

where log = log,,, as above.

An asymptotic result that the log(n) law holds with indels as well as
mismatches is given in Arratia and Waterman (1984). The empirical study
reported above is evidence of the robustness of this distribution.

3.3 Long inexact matches by regions. An algorithm to find long inexact
matches which does not use dynamic programming is proposed by Korn er al.
(1977). It has some serious drawbacks, which are pointed out below, but it
is a useful method and has received wide distribution to sequence analysts.
Also see Queen er al. (1982).

The algorithm begins at positions (i, j) where a; = b; and a;4; = bj4 .
This match of length two is extended in a recursive manner, where the rules
for extension are

(1) the next bases match (i.e. a;42 = bj;2),
(2) by deleting 1, 2 or 3 bases from sequence a there is a run of 3 matches,
(3) by deleting 1, 2 or 3 bases from sequence b there is a run of 3 matches,

492 MLSOWATERMAN

or

(4) by mismatching ¢;45 and ;2. two of the next 3 pairs match. Their
program does not search over pairs (/. j) where (a;. b;) are already in an
identified region.

Sankoff and Kruskal (1983) point out that this method will, when com-
paring AACAAA and AAAAA, find

AACAAA
AAAAAA

but. with the sequences reversed. will not find this region. This could be an
undesirable propertyv. Sankoff and Kruskal also point out that AACCGT and
AACGT will produce

AAC CGT
and
AAC CGT.
which have a base in common. instead of

AACCGT and AACCGT
AACAGT AAACGT.

The running time of this algorithm for two length n sequences is propor-
tional to n% The constant is larger than the expectation of a geometric
random variable. For equally likely bases, this means the constant exceeds
4. Since the dynamic programming algorithms have a constant of 3, this
strongly suggests using the more mathematically rigorous algorithms.

The Wilbur-Lipman method, given in the next section, is also a regions
method that can be applied to this problem.

4. Efficient Data Base Searches. The size of the nucleic acid sequence data
is increasing rapidly with almost 3 X 10° bases in GenBank at this time. It
is of interest to compare new sequences with those already known. While all
comparisons might not be of interest, several important and unexpected
discoveries have been made from these large searches. A recent computer
finding. for example. indicates an oncogene product appears to have arisen as
a result of recombination of two unrelated cellular genes (Naharro ez al.,
1984). These searches will become increasingly important.

The mathematical problem of interest is how to rapidly search a large data
base. For example to search 2000 sequences 500 base pairs (bp) each with
a new 500 bp sequence will take, with dynamic programming techniques,
time proportional to 2000(500)% = 7.5 X 108 This is an unacceptably large
number, and below | present some approaches to the problem of rapid

GENFRAL METHODS OF SIFQUENCE COMPARISON 493

searches. 1 do not include the new method of Ukkonen since | cunnot sce
how to utilize Lemma U to find long matching segments (Section 3).

An already well-known method for these searches is that of Wilbur and
Lipman (1983, 1984). Indeed their method has accounted for some of the
biological discoveries mentioned above. In addition the dynamic programm-
ing maximum segments method is also used for these purposes. Finally.
I suggest connections between the methods of Wilbur-Lipman and of
Martinez. A generalized regions method suggested in Section 4.3 could
utilize the output of the hashing algorithms for a list L of regions.

4.1 The Wilbur-Lipman method. In two important papers Wilbur and
Lipman (1983, 1984) develop what they call context dependent sequence
comparison. The outline of their method is that they (1) produce a list L
of matching regions, all of a fixed length. (2) order the regions as in Section
2.7. (3) obtain an optimal alignment by processing the list L. They in fact
develop a theory for much more general context dependence and in addition
present conditions for their similarity measures to have an associated dis-
tance which is metric. I will limit my discussion to the case of regions.

In Section 2.7, regions methods are discussed. Here the list L of exact
matching regions can be restricted. for example to those regions of length
exactly 4. Wilbur and Lipman (1983) describe a linear time hashing algo-
rithm for producing L with fixed length regions.

Denote a region r by (w4, j) where w is a word of length [w| which begins
at position i in sequence a and position j in sequence b. As in Section 2.7,
ry <ryif iy + |wyl — 1 <iyand j; + [wy| — 1 <j,. Also let region ro =
(¢; 0, 0) be a minimal element and r, = (¢: n, m) be a maximal element.
L = (rnr,....n)is a path if p <q implies 7, <r,. The score of a path I is
given by

! -1
score (I = Y sOUR) = Y 8lksy = Iwil =ik =1, jxay = Wi | —jx — 1)
o k=1 k=1

where s(*) is a similarity score for region ry, like |wgl, and g (*, *) is a gap
penalty. Then

S(a, b) = max{score (I'): T isapathfromrytor,}.

Algorithm W-L. The algorithm is as follows: make two lists of regions L~,
ordered by <, and L*, ordered by the usual order <€ of best scores from r,
to the region listed in L*.

Q) SetL"=Land L*=¢

(D rg ={minr:r€L”}
score (1) = 5(r,)

494 M. SCWATERMAN

(2) Begin at largest element of L.
(A)Move down L* until r, <r, such that

v =score (1) —glig — Iwy | =iy — 1, jg — I, [=/ — 1)+ s0))
> score (1g).

If there is no region r, in L* below r, under < with a score greater
than score (r;) — s(r;). or if the inequality cannot be satisfied. go
to (C)

(B) Set score r, = 7y and go to (A)

(C) Remove 7, from L™ and insert it in L* under <.
It [% ¢. g0 to (A).

It i1s possible to modify this algorithm. along the lines of Section 3.2, 10
obtain maximum similarity segments instead of maximum similarity align-
ments. Wilbur and Lipman describe several useful modifications of their
algorithm. :

4.2 4 vecrorized maximum segments algorithm. Another approach to
rapid computation was taken by T. F. Smith when at Los Alamos National
Laboratory. Several CRAY-1 computersexist there and these vector machines
are very fast. Smith modified the algorithm of Smith-Waterman to run on
one of these computers. By utilizing the vector architecture of the CRAY-1,
it is possible to perform comparisons among very large numbers of nucleic
acid sequences in reasonable time. For example, a study by Smith er al.
(1984) reports all pairwise comparisons among 204 vertebrate sequences
(including the complement strands) were carried out in approx. 170 min. at
the rate of over 240 sequences per min with an average sequence length of
800 nucleotides.

Vectorizing algorithms is a relatively new topic. The essential idea is that
the machine performs a number of operations simultaneously and gains this

__factor over the usual linear sequence operations. If attention is focused on

calculating H, no Hj; calculation being performed can depend on the
results of another calculation being simultaneously performed. This elimi-
nates row by row or column by column building up of the matrix. What
remains is calculating blocks of H;; on negative diagonals, i.e. withi +] =
constant,

Collins and Coulson (1984) discuss parallel processing algorithms for
the Sellers’ method. Smith’s approach should allow much more efficient
implementation for parallel processing.

4.3 The regions metrhod. The regions method of Martinez (Section 2.7) and
the Wilbur-Lipman method are clearly closely related. although Wilbur-
Lipman devise a different optimization technique. Of course these were
independently developed but the theme is now clear. For rapid calculation.

GENFRAL MPTHODS O SEQUEFNCE COMPARISON 495

judiciously limit the list of regions and alignments will be produced more
rapidly.

For example, Karlin ¢t al. (1984) do not state an algorithm for aligning
their long matching regions. although alignments result from these match-
ings. It is clear that using their regions as inputs to a regions method algo-
rithm would produce meaningful alignments. In addition. if a regions list
is not totally ordered. such an alignment method would be very useful in
resolving the possible alignments,

3. Comparison of Several Sequences. In biological sequence analysis.
problems frequently require the identification of relationships among
R sequences. where R > 2. For example. deducing an evolutionary tree for
35S RNA molecules might involve r = 100 sequences of length 120. Another
example might involve a set of coding regions which are assumed to have
evolved from a common ancestor. One result of such studies is an alignment
of the R sequences. Issues of Science and Narure frequently have articles
containing such alignments.

As explained below. these problems appear to require a large amount of
computation and storage for their rigorous solution. Often the biologist
solves these problems by eye. The first mathematical results were obtained
by Sankoff with others and are described below. and utilize dynamic
programming. A second promising approach has been presented by Martinez
who advocates the regions method. In this issue, Waterman and Perlwitz
give geometry and algorithms for another dynamic programming approach to
such problems, while Waterman et al. give a method which does not use
dvnamic programming or regions.

5.1 Dynamic programming algoritinns, In a clearly written article,
Sankoff and Cedergren (1983) review methods which give alignments of
R sequences given a tree that relates the R sequences. Each interior node
of the given tree T has a degree at least three, and the R sequences are
attached to the R terminal nodes. The algorithm constructs sequences for
each interior node and gives an alignment relating the original and the
reconstructed sequences. If the tree has .\ interior nodes, this is an alignment
of R + N sequences.

While the Sankoff and Cedergren article is well written and need not be
reproduced here, [will try to give the dynamic programming aspects of the
problem. Suppose the R sequences are a, b, ..., r. The cost of an overall
alignment of the R original plus .V constructed sequences is the sum of the
pairwise alignment cost in T. The idea is to think of aligning a,a, . . . g;,
byby ... bnry. ... The last column of the alignment can be
broken off from the initial columns. For a. b, ..., r the last column will
appear as

196 M. S, WATERMAN

€14

631)/‘

ERls
where ¢ € {0, 1}, 0°¢; = A, and € = (. . . . , €g) ¥ 0. This last restriction
just keeps the last column from being all As. The dynamic programming
step is

€4,
Ezl?/'
Dij ..o =mimiD;_¢ j_e.... s—epT Minlength| egig
€ =0 e*0 .
R
RYY
The last term is to indicate that the letters xyx, . .. vy for the .V interior

nodes have been determined in an optimal way. Fitch’s (1971) parsimony

method. suitably generalized, is used for this purpose. The computation time

for this algorithm for R sequences of length n is O(2RnR\) where 2% comes-
from €,, . . . , €g at each step, n® comes fromi. /.. ... s.and NV comes from

Fitch’s parsimony method. For sequences of length 100, this is approx.

O(10*38 \) so that R = 3 is nearly as large as possible.

Unaware of Sankoff’s work (1975), Waterman er al. (1976) present
a similar algorithm which does not explicitly assume a tree. In Sankoff’s
framework, this corresponds to the tree, one interior node, and R terminal
nodes. A function d(x, v, ..., z) of R variables was used to generalize the
metric on the letters so it is possible to have a different weighting, but the
essential idea is in Sankoff’s work.

Although no one seems to have suggested it, it is possible to generalize
the Smith-Waterman algorithm for maximum similarity segments to the
case of R sequences. Exactly the same computational problems limit the
utility of the idea.

5.2 A regions algorithim. Martinez (1983) has suggested approaching these
problems via regions. Locating all repeats of R sequences n long can be done
in time proportional to nR. Repeat in this context refers to a word w which
occurs in all R sequences. Such a repeat is called a region and is placed in
a list L. A partial order <’ in R dimensions (instead of the two dimensions)
is placed on L.

Exactly the same algorithm from Sections 2.7 and 4.3 can be used
to produce a multiple sequence alignment. The limitation here is that
a requirement of exact matches in all R sequences is quite stringent. Still, the
aligned portions would be very convincing and such an alignment could
be produced in reasonable time.

GENERAL METHODS O) SEQUENCE COMPARISON 497

6. Conclusions. Computer analysis of macromolecular sequences will
become more important and | foresee two major directions to algorithm
changes. First. as more detailed biological information becomes available,
it will be important to perform more finely tuned comparisons. For example
as insertion/deletion mechanisms are studied it might become clear that the
sequences at the insertion/deletion boundaries greatly influence the likeli-
hood of the event. Such information should certainly be incorporated into
algorithms. Second. the increasing nucleic acid data will require that rapid
data base searches become even more rapid. Imagine what size the data
base will grow to in even ten years. Computer science methods must be
developed and applied to these important problems.

As mentioned in the introduction. this review does not exhaust the
problem tyvpes of interest. Existing algorithms can be modified to handle
a surprising variety of problems. For example. the best fit of a sequence
into another or the best alignment of two sequences with either or both
end gaps unweighted are possible with alterations of dynamic programming
algorithms presented here (Sellers, 1980 and Smith ez /., 1981).

There is no lack of problemis of theoretical and applied interest.

Over the last few years, several people have helped and encouraged me in
studies of sequence comparison in molecular biology. They include S. Ulam,
W. Beyer, T. Smith, W. Fitch, H. Martinez, P. Sellers, C. Smith and G. C. Rota.
I am also grateful to M. Perlwitz for assistance in preparing this manuscript.

LITERATURE

Aho, V. A_ J. E. Hopcroft and J. D. Ullman, 1974. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Menlo Park, California.

Arratia, R. A. and M. S, Waterman. 1984, “An Erdos-Renyi Law with Shifts.” Adv.
appl. Math. (in press).

, L. Gordon and M. S. Waterman. 1984. ‘“‘An Extreme Value Distribution for
Sequence Matching.”” Manuscript,

Beyer, W. A., C. Burks and W. B. Goad. 1983. “Quantitative Comparison of DNA
Sequences.”” Los Alamos Sci. 9, 62-63.

, M. L. Stein, T. F. Smith and S. M. Ulam. 1974. ‘A Molecular-sequence Metric and
Evolutionary Trees.” Math Biosci. 19, 9-25.

Boswell, D. R. and A. D, MacLachlan. 1984, "*Sequence Comparison by Exponentially-
damped Alignment.” Nucleic Acids Res. 12, 457-464.

Byers, T. H. and M. S. Waterman. 1984. “Determining All Optimal and Near-optimal
Solutions When Solving Shortest Path Problems by Dynamic Programming.” Operat.
Res. (in press).

Cohen, D. N., T. A. Reichert and A. K. C. Wong. 1975. “‘Matching Code Sequences Utiliz-
ing Context Free Quality Measures.” Marh. Biosci. 24, 25-30.

Collins, J. F. and A. F. W. Coulson. 1984, “*Applications of Parallel Processing Algorithms
for DNA Sequence Analysis.” Nucleic Acids Res. 12, 181-192.

498 MUS. WATIRMAN

Delcoigne, A, and P. Hansen. 1975, **Sequence Comparison by Dynamic Programming.”
Biomerrika 62, 661-664,

Doolittle, R. F., M. W. Hunkapiller, L. E. Hood, S. G. Devare, K. C. Robbins, S. A.
Aaronson and H. M. Antoniades. 1983, ‘‘Simian Sarcoma Viruses Onc Gene v-sis is
Derived from the Gene (or Genes) Encoding a Platelet-derived Growth Factor.”
Science 221, 275-276.

Dumas, J. P. and J. Ninio. 1982, “Efficient Algorithms for Folding and Comparing
Nucleic Acid Sequences.”” Nucleic Acids Res. 80, 197-206,

Dumey, A. 1. 1956. “Indexing for Rapid Random-access Memory.”” Comput. Automarl.
5, 6-8.

Erickson, B. W. and P. H. Sellers. 1983, In Time Warps, String Fdits, and Macromolecules.
the Theory and Practice of Sequence Comparison, Ed. D, Sankoff and J. B. Kruskal,
pp. 35-90, Addison-Wesley, London.

Fickett, J. W, 1984, *"Fast Optimal Alignment.” Nucleic Acids Res. 12, 175-180.

Fitch, W. M, 1969. *‘Locating Gaps in Amino Acid Sequences 1o Optimize the Homology
Between Two Proteins.” Biochem. Genet. 3, 99.

. 1971, *“Towards Defining the Course of Evolution: Minimum Change for

a Specific Tree Topology.” Syst. Zool. 20, 406-416.

and E. Margoliash. 1967, “‘Construction of Polygenetic Trees.”” Science 155, 279~

284,

and T. F. Smith. 1983, "‘Optimal Sequence Alignments.” Proc. natn. 4cad. Sci.
.5.4. §0, 1382-1386.

Gibbs, A. J. and G. A. Mcintyre. 1970. "The Diagram, a Method for Comparing
Sequences.”" £uro. J. Biochem. 16, 1-11,

Goad, W. B., M. I. Kanehisa. 1982. *"Pattern Recognition in Nucleic Acid Sequences. I.
A General Method for Finding Local Homologies and Symmetries.” Nucleic Acids
Res. 10, 247-263.

Gordon, A. D. 1973. ““A Sequence-comparison Statistic and Algorithm.” Biometrika
60, 197-200.

Gotoh, 0. 1982. “An Improved Algorithm for Matching Biological Sequences.” J. Mol
Biol 162, 705-708.

Harr, R., P. Hagblom and P. Gustafsson. 1982, “Two-dimensional Graphic Analysis of
DNA Sequence Homologies.”” Nucleic Acids Res. 10, 365-374,

Jagadeeswaran, P, and P. M. McGuire. 1982, “Interactive Computer Programs in Sequence
Data Analysis.”” Nucleic Acids Res. 10, 433-447,

Kanehisa, M. 1. and W. B. Goad. 1982, “Pattern Recognition in Nucleic Acid Sequences 11.
An Efficient Method for Finding Locally Stable Secondary Structures.” Nucleic Acids
Res. 10, 265-277.

Karlin, §S., G., Ghandour and D. E. Foulser. 1984, “Comparative Analysis of Human and
Bovine Papallimaviruses.” Mol Biol. Evol. 1,357-370.

, ——, F. Ost, S. Tavare and L. J. Korn. 1983, **New Approaches for Computer
Analysis of Nucleic Acid Sequences.” Proc. natn. Acad. Sci U.S.4. 80, 5660-5664.
Korn, L. J., C. L. Queen and M. N. Wegman. 1977. *‘Computer Analysis of Nucleic Acid

Regulatory Sequences.” Proc. natn. Acad. Sci. U.S.4. 74, 4401-4405.

Kruskal, J. B. 1983, ‘‘An Overview of Sequence Comparison.” In Time Warps, String
Edits, and Macromolecules: the Theory and Practice of Sequence Comparison,
Eds D. Sankoff and J. B, Kruskal, pp. 1-40. Addison-Wesley, London.

and D. Sankoff, 1983, In Time Warps, String £dits, and Macromolecules: the
Theory and Practice of Sequence Comparison, Eds D. Sankoff and J. B. Kruskal,
pp. 265-310. Addison-Wesley, London.

Laquer, T. H. 1981, “Asymptotic Limits for a Two-dimensional Recursion.” Stud. app!.
Math, 64, 271-2717,

Levenshtein, V. 1. 1966. *"Binary Codes Capable of Correcting Deletions, Insertions, and
Reversals.”” Cybernet. Control Theor. 10, 707-710: Dolklady 4kademii nauk SSSR
163, 845-848.

GINTRAL METHODS OF SFOQUENCF COMPARISON 499

Maizel, J. and R, Lenk. 1981, “Enhanced Graphic Matrix Analysis of Nucleic Acid and
Protein Sequences.” Iroc. natn. Acad. Sci. U.S.4. 78, 7665-7669.

Martinez, H. M. 1980. A New Algorithm for Calculating RNA Secondary Structure.™
Manuscript.

. 1983, " An Efficient Method for Finding Repeats in Molecular Sequences.”” Nucleic
Acids Res. 11, 4629-4634.

Naharro. G.. K. C. Robbins and E. P. Reddy. 1984. ““Gene Product of v-fgr Onc: Hybrid
Protein Containing a Portion of Actin and Tyrosin-Specific Protein Kinase.”” Science
223, 63-66.

Needleman, S. B. and C. D. Wunsch, 1970. A General Method Applicable to the Search
for Similarities in the Amino Acid Sequences of Two Proteins.” J. Mol. Biol. 48,
444-453,

Novotny, J. 1982, **Matrix Program to Analyze Primary Structure Homology.” Nucleic
Acids Res. 10, 127-131.

Queen, C. M., N. Wegman and L. J. Korn. 19&2. “'Improvements to a Program for DNA
Analysis: a Procedure to find Homologies Among Many Sequences.” Nucleic Acids
Res. 10, 439-453¢6,

Reichert, T. A., D. N. Cohen and A. K. C. Wong. 1973, ""An Application of Information
Theory to Genetic Mutations and Matching of Polypeptide Sequences.” J. Theor. Biol.
42, 245-261.

Sankoff, D. 1972, “Matching Sequences Under Deletion-Insertion Constraints.” Proc.
nam. Aced. Sci. U.S.4. 68, 4-6.

. 1973, ~Minimal Mutation Trees of Sequences.” S/4.3 J. appl. Math. 78, 35-42.

and R. J. Cedergren. 1983. In Time Warps, String Edits, and Macromolecules:

the Theorv and Practice of Sequence Comparison, Eds D. Sankoff ‘and J. Kruskal,
pp. 253-263. Addison-Wesley, London,

and J, B. Kruskal (eds). 1983. Time Warps, String Edits, and Macromolecules:

the Theory and Practice of Sequence Comparison, Addison-Wesley, London.

and P. H. Sellers. 1973. “Shortcuts, Diversions, and Maximal Chains in Partially
Ordered Sets.”” Discrere Math, 4, 287-293,

Sellers, P. 1974a. ““‘An Algorithm for the Distance Between Two Finite Sequences.”
Comb. Theory 16, 253-258.

. 1974b, “*On the Theory and Computation of Evolutionary Distances.” S/4.3 J.

appl. Math. 26, 787-793. '

. 1979. “*Pattern Recognition in Genetic Sequences.” Proc. natn. Acad. Sci. U.S. 4.

76, 3041.

. 1980. *The Theory and Computation of Evolutionary Distances: Pattern Recog-
nition.” J. dlgorithms 1, 359-373.

Shepard, R. N. 1980. “Multidimentional Scaling, Tree-Fitting, and Clustering.”” Science
210, 390-398,

Smith, T. F. and M. S. Waterman, 1981a. “’Identification of Common Molecular Sub-
sequences,”” J. Mol Biol. 147,195-197.

and . 1981b. “Comparison of Biosequences.” .4dv. appl. Math. 2, 482-
489. .

—— and C. Burks. 1984, “The Statistical Distribution of Nucleic Acids Simi-
larities.” In prep.

—_— and W. M. Fitch. 1981, “Comparative Biosequence Metrics.” J. Mol. Evol.
18, 38-46.

Soll, D. and R. J. Roberts (Eds). 1982. The Application of Computers to Research on
Nucleic Acids I. IRL Press, Oxford and Washington, D.C.

and . 1984, The Application of Computers to Research on Nucleic 4cids II.
IRL Press, Oxford and Washington, D.C.

Stanton, R. G. and D. D. Cowan. 1970. ""Note on a ‘Square Functional’ Equation.”
SIAM Rev. 12, 277-279.

Studnicka, G., G. Rahn, I. Cummings and W. Salser. 1978. “Computer Method for

500 M. S. WATLERMAN

Predicting the Secondary Structure of Single-Stranded RNA.” Nucleic Acids Res. 5,
3365-3387.

Taylor, P. 1984, ‘A Fast Homology Program for Aligning Biological Sequences.” Nucleic
Acids Res. 12, 447-455.

Ukkonen, E. 1983. “On Approximate String Matching.”” Proc. Int. Conf, Found. Comp.
Theor. Lectures Notes in Comp. Sci. 158, 487-496.

. 1984, *“Algorithms for Approximate String Matching.” Informat. Control (in
press).

Ulam, S. M. 1972, In Applications of Number Theory to Numerical Analysis, Ed. S. K.
Zaremba, pp. 1-3, Academic Press, New York.

Wagner, R. H. 1983, In Time Warps, String Edits, and Macromolecules: the Theory and
Practice of Sequence Comparison, Eds. D. Sankoff and J. B. Kruskal, pp. 215-235.
Addison-Wesley, London.

Waterman, M. S. 1976. “Secondary Structure of Single-stranded Nucleic Acids.” Adv.
Marh, Suppl. Stud. 1, 167-212.

. 1983, “Sequence Alignment in the Neighborhood of the Optimum with General

Applications to Dynamic Programming.” Proc, natn. Acad. Sci. US. 4. 80, 3123~

3124,

. 1984, “Efficient Sequence Alignment Algorithms.” J. Theor. Biol. (in press).

. T. F. Smith and W. A, Beyer. 1976. ‘‘Some Biological Sequence Metrics.” 4dv.
Marh, 20, 367-387.

Weiss, R. 1983, ““Oncogenes and Growth Factors.™ Narure 304, 12,

Wilbur, W, J. and D. J. Lipman. 1983, “Rapid Similarity Searches of Nucleic Acid and
Protein Data Banks.” Proc. natn. Acad. Sci, U.S.A. 80, 726-730.

and . 1984, “The Context Dependent Comparison of Biological Sequences.”
SIAM J. appl. Math. (in press).

Wong, A. K. C., T. A. Reichert, D. N. Cohen and B. O. Aygun. 1974. ““A Generalized
Method for Matching Informational Macromolecular Code Sequences.” Comput.
Biol. Med. 4, 43-517,

