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I\lathematIcal methods for comparison of nucleic acid sequences are reviewed. There are 
two major methods of sequence comparison: dynamic programming and a method 
referred to  here as the regions method. The problem types discussed are comparison of 
two sequences, location of long matching segments, efficient database searches and 
comparison of several sequences. 

1. 111rrodz~c~i011. Sucleic acid data  are increasing at  a rapid rate and several 
international databases are being created to organize the  information. The 
number of possible relationships between the  various sequences is signifi- 
cantly larger than the number of  sequences. To complicate further the 
problem of  finding information within and relationships between sequences 
is the fact that ,  as molecular biology matures, the  number  of features of  
interest also increases. These trends d o  not  show signs o f  abating. 

Molecular biology celebrated its thirtieth birthday in 1983. As with any 
young science, new mathematical and analytical questions have been posed 
and sometimes solved. The solutions have not  always been rigorous o r  
mathematically sophisticated but  are generated o u t  of  a need for answers. 
The present paper is an at tempt  to survey methods o f  comparing macro- 
molecular sequences which is perhaps the most mathematically developed 
aspect of macromolecular sequence analysis. 

Recently two issues of .\itcIeic Acids Research, Volume 10: No. 1 ( 1  982) 
and Volume 13, So. 1 (1984), have been devoted entirely t o  computer 
methods for nucleic acid sequences. Analysis packages and methods of  
analysis are described in many of the papers and several are referred to in the  
present paper. Sequence comparison by the  method of  dynamic programm- 
ing has recently been treated in a book edited by  Sankoff and Kruskal 
( 1983). The present treatment is focused on macromolecular sequences 
\vhile the  Sankoff and Kruskal book has a broad and fascinating range from 
biology to error correcting codes, spelling correction. geological sequences, 
speech recognition and birdsong studjes. T e c h ~ i q u e s  which are not dynamic 
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progr~iiiniing aIc bricfly nicntioiic,d or o ~ n i t t c ~ l  i n  tlicir hook a n d  \'c-ry ~ L ' c L ~ I ~ ~ .  

i nip 01.1 a 11 t d eve lo pnien t s co ti Id no t bc i n  clu d cd . 
111 this paper  I take the point of view that  sequcncc coinparison is useful 

a t  \.arious Ic\~els of  refinements. For esalnple,  both rapid database searclirs 
a n d  t lie iiiost re fined d y n aniic programming met hods are import 3 n t t 001s. 
To keep the discussion to a reasonable length I consider the compariso~i  01' 
t \ s u  (or more) sequences to obtain an alignment or lo17g similar regions. 
Palindromes. repeats, inverted repeats and helical regions will not bc. 
espl ic i t l~ .  discussed. In addition. DNA sequences will be t h e  e sample  
sequences. altliougli any other  linear ~nasromolecular  sequences could be 
used.  

The pijpt'r is organized by prob1t.m r \ .pe  a n d  methods of solution tr~l~all!. 

a p p x r  35 sections. The  outline is 

Section 2. Comparison of Tn.0 Sequences 
2.1 Distance and Similarity 
7.2 X lig n m e n t Comb ilia t oric s 
7.3 Basic Dynamic Programming Nethods  
2.4 Extensions of the Basic Methods 
2.5 Ukkonen's Dynamic Programming Algorithm 
2.6 S e a r  Optimal Alignments 
2.7 The Regions Method 

Section 3. Location of Long Matching Segments 
3.1 Long Exact Matches 
3.2 Long Inexact Matches by Dynamic Programming 
3.3 Long Inexact Matches b y  Regions 

Section 3. Efficient Database Searches 
3.1 The Wilbur-Lipman Method 
4.2 X Vectorized Maximum Segments Algorithm 
3.3 The  Regions Method 

Section 5. Comparison of Several Sequences 
5.1 Dynamic Programming Algorithms 
5.2 A Regions Algorithm 

Section 6. Conclusion 

The introduction concludes with a general and widely used method of  
analysis used in the  problem of  Sections 2-3. 

1.1. Visual merhods There is an important method of  sequence analysis 
which is best described as "just look at it". An analyst might observe a long 
stretch of GCGCGC . . . and have found a feature of  interest without  any 



sopliistica~c~d 1 i i a t I i ~ , i i i a t i i a 1  o r  ioi i ipi i tcr  11ic.t Iic~ds. I t  is po~sil7lc I O  1'0r1iii1- 

late 311 ;i~i;~l>.ti'.;il prob1~~111 froin such a n  ol3scrv:i~ion: " I  low likcl!, is the 
obsei-vatioii of s u ~ . l i  ; i n  c\ 'c~nt  in  randon1 sc~l~~cnccs ' ! ' '  A l7iologist is 
u~ilikclp 10 be rurpriscd. informed or iniprcss'd by being to ld  l h t  tlic 
GCGC. . . run \vas ~ ~ n u s u ~ l .  Instead tlir qusstion of f~inctioii  of tl1c GC 
region is tlie focus of the biologists attention. Just looking a t  S ~ Y ~ U L V C C S  

is useful. 
The dot  niatris nittrhod is a widely used visual method that gencrally 

utilizes coniputers. Here 3 matrix .II = ( u l i i )  is formed where ruij = 0 if the 
it11 element of s c ' q ~ i m c ' c t  a is unequal to the  j t l i  element of sequenct b and 
/ ? ? i j  = 1 o~l ie ru~ise .  R U I I S  of exac t  matclies SI IO\V u p  2s  diagonals of 1 S. The 
Jor ~ i i a t ~ . i s  112s 11cc;i Jisc.o\crcd i~iJ~)peiiClctiitl~~ si.\.i.ral tinicbs ; ~ n d  I (lo 1101 

know tlie histor\.. Se t .  for esaniple. .11aizel 3nd Lti ik  ( 1  !?SI I .  Sovotn!! 
( 1982) .  Harr ir ' 1 1 .  ( 1PS2) .  Ja_gadees\varan and \lcCuirs ( 19s'). a n d  Gibbs 
and \IcIntyre ( 1  9-0). 

\laii\.  of  th?se i m ~ l e m e ~ i t a t i o n s  filtc'r the  matches to display o111!~ runs of 
I' or  more. for ~ s a m p l s .  I t  is possible to combine mor2 sopl i is t ics td  methoJs .  
described nes t .  to filter matches. 

The  do t  niatris  method is useful in locating regions of high match 
between two  DS.4 sequences. It is natural to ask for the probability distribu- 
t ion of the longest match bet ween two sequences. This distribution will 
allow the analyst to locate the  significant matches. In Section 3.1. a forniula 
is given for  the  espectation and variance of the  longest exact match and in 
Section 3.3 empirical and theoretical extensions are given for inexact 
matches. These methods allow the  statistical significance t o  be estimated so 
that  the anal~.sis results are much less ad hoc. 

2. Coinparisoii of T\t*o Sequences. The problem of  this section can be 
described as that of finding the  "smallest number' '  o f  steps which changes 
one  sequence into another.  The sequences are nucleic acid sequences: 
a = a,u2 . . . a, and b = blbz  . . . b, where ai and bj are one  of the nucelo- 
tides. adenine (A)! thymine (T)! guanine (G) o r  cytosine (C). A: T. G, C 
\vi11 also be referred to as bases. Therefore these sequences are finite words 
over a four-letter alphabet. The  steps mentioned above correspond t o  evolu- 
t ion events which can alter the  sequences. The simplest set o f  evoiution 
events consists of mutations, where one  letter is substi tuted for another,  and 
insertions (or  deletions) where one letter is inserted (or  deleted) f rom 
a sequence. 

If a = AXTAG. then a substi tution of  T for  a 2  = A transforms a into b: 

a = AATAG -+ b = ATTAG. 

This correspondence is usually shown by representation in an alignment : 



3 :  A A T A G  

C: XXTAG. 

\vhzre t h e  deletion of u4  = .A is indicated by a "A" inserted into c .  Corres- 
pondiiigly. the  insertion of C ht.t\veen o 3  311d u4 is represented by 

3: .AXTAAG 

e: XXTCAG. 

);ruskdl aiid Sankoif ( 1  9S.3 I pldce these problems 111 a general setting. 
.Another general fomiulation is 117 \I'aterman c f  a / .  ( 1  976). \shicli is follou.ed 
liere. Let S be  t h e  set of finite nards o \er  3 finite alphabet. including t h e  
empt). \ lord.  Let 7 = { T  j T : S --i. S }  be a set of transformations which 
includes the identity transforniations. Our interest is in sequences of  trans- 
formations T I .  T?. . . . . Tk from r such that 

T,oT20 . . . o T k ( a j  = b. 

Various problems can be formulated based on this set-up. F o r  the smallest 
number of steps problem. \ye are to  search for  minimum A. where r = 
{single-letter mutations. insertions aiid deletions). The  objective function can 
be changed and the set of transformations enlarged. There is a balance 
b e t \ye en b i o 1 o g i c a 1 re a li t y and c o m p u t a b 1 e a 1 go r i t h m s . 

Several issues are treated in the subsections below. First I discuss rela- 
tionships between distance and similarity (2.1). Then I take u p  dynamic 
programming algorithms for the simplest problem (2.3). some natural 
extensions (2.4j. some recent important results for efficient calculation 
( 2 . 5 ) .  a technique for solutions near the optimum (2.6) and finally some 
other techniques for solving these problems (2 .7) .  I follow Kruskal (1983)  
and refer t o  insertion/deletions as indels. 

One of the earliest string comparison algorithms was due t o  Levenshtein 
( 1  966) although this work did not influence the developments reported in 
this paper. The work of Fitch and Margoliash (1967)  and Fitch (1969) 
brought the problems of sequence comparison t o  the attention of  a large 
number of  people, including Beyer et ai. (1  974). 

2 1 Distalice a i d  siinilariry . \!'hen non-negative weights are assigned to the 
transformations. then the minimum sum of weights of  T,oT,o . . . oTk(a> = 
b can be viewed as the distance from a t o  b. This is made explicit in 



W3ternian c t  ul. ( 1976)  and,  with obvious symnietrizing. a metric S ~ L I C C  is 
obtrlinzd. Interesting cases arise when 7 is restrictcd to spccit'ic sets o f  trans- 
formations and specific weights. Fo r  esrlmplt.. it is important w1ietlic.r or not 

For mutations, insertions and deletions. the aligniiient corresponding to 
the minimum sum of  weights should be displayed 3s long as each sequence 
element is in 110 more than o n e  e\:olutionary e\'ent. Letting t l ( . ~ .  .I.) be t h e  
\vejglit o f  substitution y for  .Y, even having d ( . ~ .  .Y) = 0 for all .Y does not  
make the minimum alignment sum of weights into 3 metric. If d( . - )  

is a metric 011 the  set of letters, then S2llers ( 1  97-lh) sho\vs t h a t  3 metric on 
S results. I n  this csse. the  alignment can be displs!~ed. 

.hi earlier approach was taken by S ' z d e m a n  m d  \I'unsch ( 1  970) \s.110 

present an algoiithm for maximizing the  n u m b e ~  of ni3tcIies minus the 
number of insertions and deletions. This is referred to 3s a n ias imu~n sinii- 
lurity criteria \j.liile the one above is a niiniinuni distance criteria. Relating 
similarity and distance is important  in p s ~ ~ c l i o l o ~ ~ ~  (Slityard. 1980) 2nd the 
relationship is also interesting here. Sometimes d(s ,  j.,l < 0 is uscd and the 
resulting minimum referred to as a distance. Here I resen'e distance t o  be 
the result of  minimizing non-negative weights. with d(s .  s) = 0. Situations 
with d ( s ,  .I:) < 0 might be called negative similarity. 

Each substitution o r  pair (a i ,  b j )  in an alignment corresponds t o  one  of  
the k = 1 2,  . . . 16 pairs (A,  A) ( A ,  T) . . . (G, G) and has a similarity 
cyk 2 0 o r  a distance Pk > 0. Indels are each given weight \t' for similarity o r  
s for distance. The maximum similarity alignment coincides with the mini- 
mum distance alignment if and only if 

P i =  max (&])-ai f o r i =  1 , 2 !  . . .  16 

- efficient algorithms exist. 

l < j < l 6  

and 

s = ( max ai) 12 + ;I*. 

A more general result than this with a complete proof appears in Smith et al. 
(1981). 

Beyer et a/. (1983) recently raise the question of relating similarity t o  
distance for these algorithms. Beyond the relationships given above they ask 
for a general criteria for  similarity which would be "complementary" t o  
a nietric distance. By careful examination of the above equations, I have 
(unpublished observations) accomplished that ,  for these specific algorithms. 
The general characterization o f  similarity and its relationship t o  metric 
distance remains a problem of interest. 

2.3 Aligrinienr conibiriarorics. As above let a = a l a 2  . . . a,, and b = 
b lb2  . . . bn,. An alignment can be produced by increasing the length of each 

I<]<l6 

: 

~ 

~ 



seqiieiice \s, i t l i  tlir insertion of As. If t h e  length of such 317 ~llignmeiit is L .  
then it ~‘311 he written 

bTbf . . . bf 

where the subsequence of  a*(b*) of  elements not equal to A is d b ) .  
I t  is o f  interest t o  c o ~ i n t  the number o f  alignments. If this number is not 

large. then a direct search is feasible for  finding optimal aljgnments. As i v t  
will see. the nuniber grows very rapidly. 

An alignment o f u l  . . . ( J ~ ,  \vith b ,  . . . h,,, can end in one of three \ Y ~ J ’ S  

. . . ( 1 1 ,  . . . U“ . . .  A 

. . .  A * . . b,,, * * . bl,, 

(aligning A o\.er A is eliniinated. as it contributes n o  information). l f , f (n .  1 7 7 )  

counts configurations generated by recursivel!. ending alignments as abo1.e. 
then 

f ( l 2 .  1 7 7 )  = f(17 - 1. 1 7 2 )  + f ( 1 7  - 1 . 117 - 1) + .f(17, 112 - 1). 

The numbers generated by  this recursion equation are known as the  Stanton- 
Cowan ( 1  970) numbers? where they arose from calculating the volume of 
a sphere o f  radius 177 in 11 dimensions using the  Lee metric. Asymptotics is 
done for  a generalization of  these numbers by  H. T. Laquer ( 1  98 1). He 
shows that  

. 

f ( 1 7 ,  I ? )  - ( 1  + ~ / ) ~ n + l ~ / I z .  

After close examination, however, .f(iz, 171) is seen t o  overcount the align- 
ments or a t  least a reasonable definition of  alignments. For example, the t w o  
alignments 

A A  and 
A 4  

A T  T A  

might not  be distinct in a biological sense. To design a recursion tha t  does 
not  double count  these “tandem” dele2ons: let g(17, in) be the  number  of  
such alignments. If an alignment ends in 6 there are three possibilities 

. . . O n - ]  a, . . . a l l - ]  a, . . .  4 a,,. 

. . .  .bn,  is. . . .  A A 
A 

and if an alignment ends in b,, there are three possibilities 

. . .  a, A . . .  A A . . .a, A 

* - bm-lbn, * * b171-1b171 . . .  A b ,  



-...- 

Therefore 

g(r1. 1 1 1 )  = g(11 - 1 .  1 1 1 )  + g t / 1 ,  I ) ?  - 1 + p ( r 1  - 1 . 111 - 1 1 - p o l  - 1 . 111 - 1 1 

or 

g(11. 1 1 1 )  = g o t  - 1-. 1 1 1 )  + g(1l .  1 ) 1  - 1 ). 

a rccursion of simpler character tllan the  Stanton-Cowan recursion. 

Clearly 
The boundary conditions for our rccursIon must no\v be consjdered. 

p ( O . O ) = p ( 1 . 0 ) = p ( O .  I ) =  I .  

By Stirling‘s formula 

g(17. I I )  - 2:” ( 4 f i T ) .  

For 11 = 1000. g ( u ,  i t )  > 1O6O0 and direct examination of  all aligninents is 
impossible!. This is the reason for the development of  efficient algorithms. 

2.3 Basic d j x a m i c  prograi?ii?iiiig i?ierhods. In  the last section. the  sequences 
a = a l a 2  . . . a,, and b = blbl . . . b,,, were used to generate alignments, 

a T a 5 . .  .a: 
b*b* 1 2 . . .  b t  

where the subsequences of a *  and b* of  elements not equal t o  A arc the 
original sequences. For the cases of similarity and distance, t h e  recursion 
equation for f(n, m) from Section 2.3 is modified to provide an efficient 
way of  calculating similarity and distance. 

Historically. these methods  began in biology with Needleman and Wunsch 
( 1  970) who present algorithm N-W stated below. Then Sankoff ( 1  972)  
and Sankoff and Sellers ( I  973)  find d\*namjc programming methods for 
optimal alignments with a given number of  indels. Next Sellers (1974a.  b j  
gives algorithms to conipute the distance D(a. b), a problem posed b!, 
Ulam ( 1  972). Gordon ( 1  973)  and Delcoigne and Hansen ( 1  975) make useful 
contributions t o  sequence comparison which involves “slotting” the bases 
together in an optimal way. Probably their work goes unnoticed because t h e  
slotting alignments are not used by biologists. All of  these methods are 
included in a class o f  techniques known as dynamic programming which was 
introduced by Richard Bellman. See Byers and Waterman (1984) for a 
general discussion and further references. 



I 

D(a. b) = min 1 d(a$. b t ) .  
k = l  

.Ilgorithi?t S Let 



~(i-~rage rqt i i red to cafctilatc f l ( 3 .  b )  is i i i i i i ( / i .  / / I ]  but f j ( : t .  b )  is s~~ltl011l 
of valite \vithout the set of associatcd op~i ina l  aliyiinciits. 

There ;ire t\vo basic techniques to  produce aliyiiiicnts. Thc first is to s;ivc: 
pointers a t  each ( i .  j )  to sliow wliich of Di-,.,: Di-j . , - l :  Di.i-l ;ire used in 
calculation of tlie optimal D,. The pointers arc s w z d  ~1~1ri i ig  the “forward” 
calcul3tion so that during tracebacks the poiiiters c;in he followed to 
produce 311 optin131 alignment. \!’here t1iciI-e are niultiplc optinia. t lie pointers 
not follo\i*ed can be stacked a n d  in this 1iia111i~~r (brc;idtli-first sz3rcli with 
stacking) all optimal alignments can be produced. If pointers art‘ not saved, 
rc.comyutinp which of Di-,.,: Di- l . j - I :  Di.,-] rrsults i i i  Di , i  is casy to do 
i f  the  D iiiatr‘is is s31’c-d. In either cas?. r c q u i r ~ ~ i  storagc is 007117). 

2.4 L.urci7sioiis of rlic bilsic i i i c f l i o J s .  Tliz most i i i i pc~r t~~n t  t r~nsforn ia t ions  
of e\~olutioii tresred in sequence soinp3rison arc singk base mut;ltions and 
indels. .4bo\,e only single indels are t r e a t d .  This s ~ c t i o n  gi\.zs estensions to 
longer indels and describes a p rob le~n  of long invzrsioii of segments of a 
s r q  u en ct‘. 

\Vliile indels of many bases. 100 sa)’. could h e  the si1111 of 100 single base 
indels, the likely esplanation is that  there \vas a single e\’ent. 111 a study of 
alignment parameters, Fitch arid Smith ( 1983) show that.  for certain chicken 
henioglobi~i niRXA sequences: longer indels are necessary t o  obtain the 
correct alignment. The  longer indels sliould not be iveiglited as tlie sum o f  
single indels. 

Let .yk be tlie weight chosen for an indel of k letters. k > 1 .  The follow- 
ing results appear in Waterman er al. ( 1  976). If s1 < s 2  < . . . and d is a 
metric 011 the set of sequence elements. then D is a metric on the set of 
sequences. 

Algorirlrm I+’-S-B. Let DiO = si, Doj = Sj.  Do0 = 0. and Dij = 
D(ala2. . . ai: bib2 . . . bj). Then  

A corresponding algorithm \vi11 coniyu te a generaiized 5. 
It is important t o  note  tha t  computation $me is increased to  

A n  0(n3j algorithm. fo r  two sequences of length I I  = 1000 say: is a signifi- 
cant price to pay for ~nu l t ip l s  indels. One approach to avoiding this is t o  
assume sk linear. That is, set 

For  secondary structure calculations this assumption is exploited by 
. ~ k  = LI + bk .  



\V;iteriiiaii ( 1 0 7 0 :  1'. 20-3) a n t 1  L;inc~liis;i ; in t l  ( ;o ; id  ( 1 In ;in c'Ic-g;int 
p ; ip>r .  (;otoIi ( 1987) tlc~ri\~r-s ;I r L ~ l ; i t L x l  algoIItliiii f o r  1iii~t;ir \'k with rirnning 
t i ~ i i c >  O ( i i i ~ i ) ,  T'aylor ( 19S-i) gi\,cs iiioIc rc~siilts ;iloiig the  lincs of' (;atoll. 

01' iotirse. al'ter .Y, and x2 .  ~ 1 1 ~ ~ 1 1  x k  1 3 c h a \ ~  i i i i i ~ . I i  like i i ig lc  iiidcls. I t  is 
therefore dcsirabIc: to extend 11ie algoritliiii. c.syc~c.iaII~. to coiic:ivc 111d~*I 

l'tiiic~ioiis such a s  

.Sk = I1 + /I log( I; 1 .  

This lias heen accoiiiplishc~d in \\'aterm;in ( 1984) a t id  h;is application to 
scco1id3ry structure problems 3 s  \\.c,ll \vhc~rc i i ~ d e l s  arc  : ~ n a l o g o u s  t o  b ~ ~ l g e s .  
interior loops a n d  ni~111il~raiiiIi kwpr.  T h c  :ilgoi~itIiiii for ~ ~ n i i c : n c  ':j, li:js 

riiiiiiiiig t h i e  001111 1 .  

Tiit p~.obItiii of iii~ltiding i ~ i \ i ~ r ~ . i o n s  i b  \ ~ ' r > '  i i i i c r ~ ~ t i i i g .  I n r ~ r c . l i ~ n g i ~ i g  
t u o  adjsct .nt  Iettfrs is II tr11nsiorni3tioii  c o n s i d e r e d  by  coinputer scientists. 
Recc.ntly Wagner  1983)  ! u s  sho\\.n t h a t  this tr:rnsforni3tioii i311 bc  i:icl:!ded 
\ ~ . i t l ;  ~ o m p u t a t i o n a l  t ime O(cuiiiz4" ) \\ her2 

Q' < min {4.1113s d(il. 0 ). 2 . ~ ~  };J, + 1 

\4;herf J ;  is the cost o f  transposition. Inc lud ing  long in\.ersions would seem to 
be a \'cry difficult task. Certainly these long inversions occur  in DX.4 
sequences and should be included. .A problem relevant t o  biology is t o  include 
inversions in an algorithm where there is a single cost o f  inwrsion plus the  
distance beriveen the  segments. It should be possible t o  allow inexact inver- 
sions with their o w n  indels. 

Reicliart et al .  ( 1973): Wong et  al .  ( 1  974)  and Cohen er a / .  ( 1975)  produce a 
series of  dynamic programming algorithms motivated by  Turing machines 
and information theory.  Their algoritlims can be viewed as special cases of  
the general dynamic prograniming algorithms. See Waterman et al. ( 1  976) .  

2.3 L'kkoiteir S dyimiiiic prograiiii7iiiig algoritliin. While the  o(i72) dynamic 
programming algorithm is much faster than  the O( 22 ' ' )  brute  force algorithm, 
i t  becomes prohibitive for  verq' large 1 1 .  Recently, E. Ukkonen ( 1  983 ,  1983) 
gives significantly faster algorithms for  computing tlie distance between t w o  
sequences. The  algorithnis, which are outlined below, compute the  distance 5 
bettveen sequences o f  lengths it and 1 1 1 ,  along with the  alignnient, in time and 
storage O(s*min{ii, l i t } )  (with storage O(s2) in some cases). If n o  alignment 
is desired. the storage is O(s). The worst case behavior is equivalent t o  the 
standard algorithm, lvhile for small s the improvement is dramatic. I f  no 
distance larger than a threshold r is desired. then the time is 110 larger than  
O(t-min ( 1 1 .  vi)). 

An algorithm similar in spirit to Ukkonen's is proposed by  J .  W. Fickett  
( 1  984). Fickett's algorithm is not as time efficient as Ukkonen's. (Each of  
these author's work treats tlie case of  single indels.) 



Ukkoncn  ( 1  983) prc‘sents his 31gorithm for niisinatches. single indcls. 2 n d  
two letter tr3nspositions. Bclow are the sanie results lor ni is~i ia tc l~rs  and 
~iiultiple iiidels. Let. as 3bovc. 

and assume d ( ~ .  6)  = 1 ii111t:ss u = b. Ukkonen proyes a k e y  Icnim3 wliicli is 
sliown to be true for the general case of riiultiple indcls: 

P R O O F .  The proof is b!. induction on i + j .  Tht l e f t -hand  side is iiiimediate 
from rhe  recursion. If  Di, = Di-l.;-l + CJ’(.U;? b; 1 ~ h e n  D;, 2 D,-] . , -1  follo\~s.  
Orher\+~ise, without loss of generality. assume D ,  = D i - k , i  i- x k .  Tiit i n d u i -  
tion Iiypothesis implies D;-k , ,  2 D;- (kTl ) . , - l  SO that  Djj 2 l l j - l - k . ; - 1  -t .YL. 
The recursion equation now implies D j j  Z D j - l - k , i - l  -!- .sk 2 Di- l . j - l  . 

Lemma U. \vliich is elementary. is the key to Ukkonen‘s  elegant method. 
It states that  Di,i+c is a non-decreasing function of i. This implies a structure 
for the  matris Dij: it is shaped like a valley with increasing elsvations along 
lines of constant j - i. The lowest elevation is Doo = 0. The focus below is 011 

the boundaries of elevation changes when Di, i+c = k changes t o  Dj+l , j + l + c  - 
k +  1. 

Suppose all indels have cost 1, i.e. sk = k The basic idea of Ukkonen’s 
algorithm (1983) is to start at Do0 = 0 and extend along j - i = 0 until 
Dji  = 1 .  In general. there will be 2k + 1 boundaries of the region Djj G k. 
Each boundary j - i = c is extended until D j j  = k + 1 ( f o r i  - i  = c). T h e  
estensjon of the boundary to k + I can be determined from the boundaries 
for k ,  k - 1, . . . and tests of  ai = bj. This procedure is followed until Dn,,, 
is reached. If Dn,, = s. it is clear that  no more than (Is + 1 )  min(n, i n  j entries 
have been computed. It is sufficient t o  only store these boundaries so that 
required storage is O(s2). 

2.6 .Year opt imal  aligi7iiieitts. Although the algorithms locate optimal 
alignments, the weights are determined by  the user. Calibration of weights 
by alignments already known t o  b e  correct can be done  bu t  no set o f  weights 
can be assumed to be absolutely correct. Even if  the  weights are properly 
chosen, unknown biological constraints might cause the true alignment t o  be  
different from the computer generated optimal alignment. 

X natural problem, then, is t o  find all alignments within a specified 
distance of the optimal. The  motivation is that  rhe correct alignment should 
be near the optimal one and that a biologist or sequence analyst niight 
recognize it .  This problem was solved in Waterman (1983) and received a 
more general treatment i n  Byers and Waterman ( 1  983). 

- 
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rcjpecti\.el>,. ~ l u l t i p l e  near-optimal al ignmeii t j  can be produced by stacking 
LI n e s plo re d d ire c t ions. 

A study of sequence alignliimt ssnsitiyity to \veiglits and multiple indels has 
been carried ou t  by Fitch and Smith ( 1  983). The  sequencss displayed below 
are chicken lienioglobin mRNA sequences. nucleotides 1 15-1 7 1 from the 0 
chain (upper sequence) and 1 1  8-1 56 from the cy chain (lower sequence'). 

UUUGC GUC C UUUGGGAACC UC UCCXGCCCC AC UGCC AUCC 
UUUC CCCAC UUC G AUC U 

UUUUGUCACACGGCAACCCCAUGGUC 
GGCUCCGCUCAAAUC 

This alignment is presumed correct from the analysis of the many known 
amino acid sequences for  which such R S A  sequences code. 

By using a mismatch weight of 1 and a multiple indel function sk = 2.5 4- 
k :  u.hsre k is the length of  the indel, the  correct alignment is found among 
the  13 optimal alignments. (This is region Q of  the Fitch-Smith paper.) 
To indicate the size of neighborhoods in this example, there are 14 align- 
ments within 0% of the optimum, 14 within 1%. 35 within 2%. 157 within 
3%: 579 within 4% and 13 17 within 5%. 

.4 mismatch weight of 1 and a multiple indel function 2.5 + 0.5 k is in 
region P of  Fitcli and Smith; accordingly, the correct alignment is not  in the  
list of two optimal alignments. It is necessary to go t o  the list o f  31 align- 
ments  within 4% of  the optimal alignment to find the correct alignment. 
This example illustrates the sensitivity of alignment t o  weighting functions. 

2.7 The regions method. An examination of dot  matrices (Section 1 . l )  
might suggest constructing a list of matcliing regions. Then. since an  alignment 



is just 3 speci;iI ordered subsct of 51rc~li ;I list. :ilgorit lims niiglit l3c. tlc.\.isc*.cl to 
find opt  inial  :ilignmcnts. This approach iiiiist Ii;i\.c b c ~ c ' n  piirsirtxj h y  scvcr;~l 
iiidependcnt groups, altliough 1 d o  not k n o w  thc early history. A s  dcsc-rihcd 
in Section 3 .1 .  it is hasic to find long matching regions. For sccniidary 
structirre prediction, Studnicka er nl. ( 1978) f'ollo\v such s co i i r s~~ .  h4;irtincz 
( 1  980. 1983) gives a n  algorithm u~liicli is mucli more mathenistical. I n  fdct. 
34artinrz ( 19S3)  adapts  his secondary structiire algorit liiii into sequence 
alignnient. I a t tempt  to describe this procedure. fnllo\+.ing tlie oiitlitic o f  
his secotidai-\. structure algorithm. 

First \\.e ncetl 3 list L of  matching regions. ,A region R is Jc>t'iticxl to he 
;1 triple OI': i. j )  wliicli means  ;f ni;~tcIi of \ \ u r d  \ \ *  tvgins  3t (1, = b,. In other 
\vordz. i t ' ]  = : l t , l  is the uzord length.  

- ui = hi. u i A l  = blT1. . . . .ai+-] - 

To obtain such a list. Martinez ( 1  983) first concantenates the sequences 
into a single sequence S.  He uses the teclinique of repeatedl\3 sorting S. 
Csing s Ieuicographic ordering. tlie first sorting groups 311 equsl elements 
of  S together. The second sorting operates 011 each of these equal element 
groups and groups together elements wliich are succeeded by equal elements 
in the original S. .At the  end of the  k t h  sort. t\+.o elements o f  tlie permuted S 
\{ill belong to the same group if and only if their locations i and j in the  
original S are such tha t  the elements a t  locations i + / and j + / are equal for  
/ = 0 . 1  . . . . .  k - 1 .  

As shown in Martinez ( 1  983): the  speed o f  this sorting procedure for  
generating regions is, in the expected sense, o f  order  .\.log.\' \+there -\' is the  
total length of  the concantenated sequences. The  procedure is therefore 
comparable in speed t o  the  standard computer  science method of  construct- 
ing "position trees" for  identifying common substrings o f  two or more 
sequences. as described by  Aho. Hopcroft and Ullnian ( 1  974). but has the 
advantage of  ease o f  implementation. 

To illustrate the concept o f  position trees let a = AATXATGCS. where 
S signals the end of  the  sequence. For each i, i = 1 t o  8. let the substring 
S be the shortest substring beginning at  i which does not  occur elsewhere 
in a. This substring is said to identify i. For example. position i = 4 is identi- 
fied by  XXTG. These identifying substrings are organized into a position 
tree which represents t he  information: 



Posit ion 
1 

3 
3 
5 
6 
7 
8 
9 

7 - 

Id tvi t i f y  i 11g SLI 1x1 r ins 
AAI'A 
ATA 
TA 
AATG 
ATG 
TG 
G 
cs 
S 

Thc. i i  ttriiiinal iioJc, of rlic.  position ~ r c c  fo r  a = d , d 2  . . . u,, co i i i s t  o i  
1 .  2. . . . . i f .  The sequence of 1~Lxls  011 the edges fro111 the root t o  terii1in;il 
node i is the identifying s ~ i b ~ t r i n g  for position i .  The j~osit ion tree for the 
length 8 sequence from above is pi\'en in Fig. 1 .  T\vo sequences (or  more )  
can be processed sjinultaiieousl~~ to give a position trec' where the  longest 
niatsliiiig regions c m  be easil!. found. 

Figure 1 .  Position tree for a = AATAATGC. 

Still another  method for  rapidly finding regions can be based on the  
concept of "hashing" as used in classical lexocographic search problems. 
The earliest reference is Dumey ( 1  956). Described more fully by  Dumas  and 
Kinio ( 1  9821. the  basic idea of  this concept is t o  associate with each position 
of a sequence the  numerical equivalent of the  k - mer starting a t  that  
position. The  numerical equivalent is obtained by  regarding the  sequence 
alphabet as defining the basis of a number system. Thus, a four-letter alpha- 
bet \vould give a number  system t o  the base four,  and for fixed k there are 
4k possible numbers. These numbers can then be  used to identify positions 
of an array of  size 4k of lists of the positions of  locations in the  sequence 
at  which the corresponding k - mer occurs. This method is used by  Wilbur 



and LipJ1l;Jll ( 1983)  in making rapid sjiiiIlarity scarc-hcs of' dd ta  hdses. 2nd 
apparently also by ~ a r l i n  et U I .  ( I 983) for fin~iiiig csact  rcpeats. The array 
call be constriicted in tinie of order .\'. Longest repcats, and hence rcgions. 
are found by simply piecing together the repeats of size k .  and the speed 
seenis t o  be of order ,V log ,V (or order .I!?). 

Given the list of regions found by any of these methods. w e  now utilize 
tlieni to find optimal alignments. Two regions R 1  = ( \ t Q 1 :  i,. j l )  and 
R 2  = ( \ t y 2 :  i 2 .  j 2 )  are said to satisfy R 1  < R 2  if i l  + l \ t311 - 1 < i 2  and 
j ,  + I \ i > , l  - 1 < j 2 .  R ,  < R 2  means that there are i2 - i, - l \ t ~ l l  bases of 
a and j 2  - j l  - I \ t 9 , 1  bases of b bet\veen the regions. and that R 1  is left of  
R 2 .  ,4 formula must be given to Lveiglit rhese unmatched bases. If  tliere are 
.Y bases from 3 and j' bascs from b. let :(.u. .I,) give this \veiglit. If niisinatches 
cost 1 and indels cost 6 \+.it11 1 < 26. then a reasonable choice for :(.I-, .I.) is 

:(.Y. .I,) = is - j ~  16 t min(.u. j'). 

Formulae can l-re devised for other  situations and :(.Y. j.1 = .Y + .I' can  ,be 
used. 

Each region R can be considued to be at rlie left end of a n  optimal 
alignnient A ( R ) ,  beginning with R and proceeding to a,, and b,,,. Let 
D(A(Rj) be the score o f  such an alignment. The optimization follows from 

D(.4(Rj) = min{\i.(k - i - l \ \ ~ l :  I - j  - I \ i * I )  + D(A(R*)):  R = (w: i .j)<R* 

= (w*; k, I)}. 
General algorithms are known t o  run in time 0(ILl2). 

An iinplementation of this algorithm has been made by  Martinez and 
Sobel and described in Martinez (1983). They also produce near optinial 
alignments by an adaptation of  the  ideas in Section 2.6. 

3. Locarion of Long .llahrchiitg Segments. IJI the  past few years. the concept 
of a genome as a stable. slowly evolving collection of nucleic acids has been 
drama tically altered. U'hile there is a general constancy o f  genome organiza- 
t ion,  recent discoveries of genetic elements such as transposons suggest that  
drastic reorganization can take place. Scientists have found unexpected 
relationships between viral DN.4 and host DNA (Doolittle er al.. 1983; 
Naharro et al . ,  1984: Weiss, 1983). In these cases, it is not entire DNA 
sequences with high similarity bu t  in  fact contiguous subsequences (seg- 
ments) with high similarity which are found. The modular organization of 
DNA into functional domains also suggests a search for highly similar 
segments is more appropriate than attempting t o  match long sequences of  
DSA.  Of course, if bo th  strings of DNA are known to s e n e  the same 
purpose and are thought to have a direct common ancestor. then t h e  
methods of  Section 3 should be used. 



7'1:~ p tohlc~i i s  01' this sL\c.tioii i c i i t L > r  on t l i c  x , ; i r L , l i  t.01. ~ c * g i i i c ~ i i t ~  of' I \ V U  
Dh..\ s c q ~ i e ~ i i ~ ~ ~ s  which Iia\.e i i n c s p c ~ c ~ t c ~ d l ~ ~  Iiigli siiiiil~rit!~. TIic'rc ;1rc t w o  
hasic appro3ches: search for 1112 long c's;~c*t iiiatclics o r  ti>r long inexact  
niatilies. S e w  developnients i n  prob;ibiIity theory assist t l i ~ ~ s c  searches. 

--', 1 L o r i p  o.yucf r iu fd ie s .  The first c>ft'iciL>iit mc>thod for locltting exac t  
~ i ia tchcs  \+'as given by Korn c ' f  ul.  ( 1977) .  Their ~pproac l i  iitilizcs 117~'  position 
tree concept discusscd in Section :.7. That saiiie r n e ~ t l i c d  c m  be usrd to find 
long rc'pe3ts in a fixed sequcnce. Repcats \ \ . i l l  sIi31.e brdnc1it .s  i n  t h c  position 
tree.  For example in Fig. I position 1 is identified 17). .A.\T,\ while position 
1 is identified by AATG.  \vhicIi i~npl ies  111~1 "long" A.4T rc'pc3t. Korn of  a / .  
drra:'.st ?lie identifying s ~ b s t r i ~ i g j  in 3 1 ~ ~ i c o ~ r ~ i p I i i ~ : i l  c)rJer to find these 
rt.pe;ts. riinoiip o the r  things.  This is lt strsifiiIi'Or\\.L1i.j :ind t i ~ c ' f i i l  3 p p l I ~ 3 -  
tion of modern computer  science to DNA sequence ;111:11).sis. 

The sl_~oritlini given in ,4110 il ill. ( 1  $ 7 7 )  for coi is i r i i~t i i ip  position trees 
118s 3 \vorst case n~nn i i ig  time of 001'1 for a sequonce of length 1 7 .  T h e  
ruiiniiip time is proportional to t h e  number  of \ .ert icts c7f the  t r w .  Hoii:e\.er. 
if t h e  k t t t r s  of t h e  word are i n d e p e n d e n t  and  identicill>. d i s t r ibu ted .  then 
the :peered running t ime is O(ri I. They also point out ill? esistcnce of a n  
algoritlim \i.hich runs in O ( H )  for all inputs. 

I n  recent work Karlin er a/ .  (1983) and Karlin ef a / .  (1984) perform 
sequonce analysis b y  locating long direct repeats. Their very interesting 
techniques use a hashing technique aiid locate all direct exact repeats. 

R? c en t 1y a the ore t i c a1 d et  mi1 i 11 a t  ion of  the  s t a t is t ic a1 d is t rib ut  ion o f  
similarity has been given. If .lI(~i. 1 7 1 )  is the length of  the  longest exact match- 
ing rtgion between t w o  sequences. then 

ECII(II, V I ) )  = log (( 1 - p)1?171 + Y j X  - 112 + I - ~ O L  1 1 1 )  + O( 1 )  

02(11. 171 j = r2/6x2 + 1 / I  2 + ~ ( 1 1 .  1 7 1 )  + O( 1 

and 

\diere p = P ( two random iiucleotides match)? log = y = 0.577 . . . 
is the Euler-Mascheroni constant? h = / n (  1 / p )  and I - , ( ? ? ,  1 7 1 )  and r,(n. ) i f )  

are small. Sot ice  tha t  ~ ( I I ,  1 7 7 )  is essentially independent of I I  and 1 7 1 .  This 
result is from Arratia et a/.  ( 1  984). Karlin er al. ( 1  984) also state a result 
differing by  constants f rom this 01'12. Also see Arratia and Waterman ( 1983) 
for related l a~vs  of large numbers. Yatches between sequences are considered 
significant if they esceed €( ,V ( i? ,  i n ) )  + Za. In the next section these results 
are generalized t o  include mismatches. 

Collins aiid Coulson ( 1984) give a parallel processing algorithm to 
build the dot  matrix o f  all matches of  length greater than or equal t o  
a set threshold. Their iniplementation accepts sequences of up  to 49.1 5 3  
bases and is a n  indication of the results of applying new technology to 



I 

I 

I 

these problciiis. The  prohabjlitp results abovc c01ild he t r s ~ ~ d  to set t l i c  
thresh o Id. 

3.2 Lorig iri(?.~17ct i i iu l ihcJs  h.v dj.iiuiiiic pi .ogrui i i ini i ig .  Considc.1- the 
problem 01' loc'clring similrlr scgments bc't\vt.cn t w o  scqurncss without rcyti ir-  
ing the segments to be identical. Sellers ( 1979.  1980) first consider this 
problem. He defines a n  interval / of  a t o  most  resemble b globally if '  
D ( l y  b) G D(J,  b) for  all segmentsJ  o f  a. Both "forward" and "backward" 
distance niatrices 3rc required. One  of  the problems is finding the desirable 
~~ ia t c l i i ng  segnients from the  many produced. (Sankoff  and Kruskal ( 1983) 
estimate that ti' matcIles result from sequences of Ienpr11 1 1 . )  Goad and  
Kanehisa ( 1  O S ? )  modify Sellers' technique. Erickson aiid Scllers ( 198.7) 
fu l ly  dis'-iiss rhis msthod and  gi\,e tu'o non-rri\~ivl applicsrions of' their 
tecliniquss. I n  rhis issue Sellers refines his analysis and gives another algo- 
rithm for finding "best s e p e n t s " .  He uses the Go3d and Ksnehisa ( 1  9 8 3  
concept of m a t c h  density to find longest segments of  a prescribed m a t c h  
densit!'. Repisred passes tlirough the matrix are required. 

I n  another approacll. Smith and  \\'atcrman ( I  981 a.  b )  use similarity rarlier 
than  distances. Similarity counts  

AAAA .A 

AAAA A 
vs 

as four  matches vs one, while distance is zero in each case. I n  order to filter 
o u t  portions of the sequence with negative match.  define Hij t o  be the  
maximum similarity of two segments that  end in ai and bi, or zero. which- 
ever is larger. Define 

Hij = max{O, S(axuxil . . . ai. byb,,+l . . . bj): 1 Q s  < i  and 1 G y  Q j } .  

Sellers' paper in this issue suggests that  best  segments are essentially 
maximum similarity segments which (1  ) have non-negative similarity. 
( 2 )  have scores at  least as large as any  o ther  segments with intersecting paths  
and (3) which have scores a t  least as large as some cut-off value. Smith and 
Waterman ( 1  981a. b) recommend sequentially processing the H matrix. 
finding alignments with the largest, next largest, etc.  similarity values with 
non-intersecting paths. After  stating the algorithm for  H, I give a new and 
more complete algorithm for  finding alignments satisfying ( I ) ,  ( 2 )  and (3) 
of Sellers' recomniendations. 

Algoritliiii S-W. Set Hi, = Hoi = 0 for  I Q i G ii and 1 < j Q i n .  Then 

j -  + s(ai. b j ) .  ~ i i a x { H ~ - ~ ,  - sk >. max {e.,j-k - s k  >. 0 . 
1CkCi 1CkGj  t 

Values which might be used for  weights are 

http://bc't\vt.cn


.Yk = 1 + k / 3 .  

A reduction i n  computing time from O(ri3) to O(ri2)  for linear or concrtve 
deletion functions can be achieved as i n  Section 2.4. 

\\’lien constructing tlie matrix H .  stack all (i. j ,  Y) wit11 Y = H j j  and 
llji 2 C = cut-off \.slut.. The stiick is ordered by  > where 

(i. j ) > ( li. 1 )  11‘ ( 1 1 H;, > fik, or 

( 2 )  H j j  = H k l a i i J i + j < k + l o r  

(3)  Hij = Hkl. i + j = k + 1. and i < k .  

Durinp tracebacks for some Stack entry.  iiiultiple alignments ;ire resolved 
in tlie fo l lo \ s~ in~  manner: if two multiple alignments end a t  (i. j )  and ( k .  I )  
output  t h t  one  ending at (i. j j  if ( 1  1 i + j < k + 1, or if ( 2 )  i + j = k -k 1 and  
i > k. Once a trackback is successfully completed, the alignment entries in 
the matr is  are multiplied by  - 1 ,  the alignment output ,  and the correspond- 
ing stack entry is reinoved from the stack. Negative elenients o f  H are not  
used in any future  ali, ~ n m e n  ts. 

If a stack entry has a negatii:e corresponding matrix element, remove it 
and continue. If a traceback encounters a negative matrix element: it cannot 
continue. If the  best aligiiment generated tha t  far has score = Y 2 C: then 
the (i, j ,  1’) must be replaced into the ordered stack. 

Boswell and McLaclilan ( 19841 also suggest using similarity values for  
locating similar segments. Their forward matrix is calculated b y  

F(i, j )  = s(ai: bj) + hmax(Fi-2,j-l - Fi-l?j-l, Fi-1,j-Z - 1.1). 

The reverse matrix R is found b y  reversing the  sequences. Then 

M(i, j )  = F(i, j )  + R(i, j )  - s(ai, bj). 

The idea is that  .V(L j )  is the sum of s(ai,  bj) plus the  weighted best paths 
extending in either direction. The  parameter X E (0, 1 )  is a geometric danip- 
ing factor. 

The pro b le ni o f  d is t inguishing stat is t ic ally significant values of 

H* = niasHij  
i .  j 

Arratia er a/. ( 1984) have shown that  the length 111(17. 1 ~ 7 )  of the  longest 
is clearly important. 

match interrupted by  k mismatches satisfies 



where y = P ( two random nucleotides inatcli). log = 10g1,~. Y = 0.577 
is the Euler-Mascheroni constant. A = h(1 and r l .  r 2  are sinall. I t  is 
possible to use. for example. H,, 2 E(.\I(ii. m)) + 2 ~ 0 7 ,  I ? I )  to decide which 
l / , j  are of interest to output .  Notice t h a t  0 0 7 .  1 ~ )  is once again essentially 
independent of 1 1  dnd 1 1 2 .  

I n  a n  siiipirical s tudy .  Smith er a/ .  ( 1914) sIio\v t h a t .  for 

i f  .Y = j. I ]  -0.9 if Y f j .  
9 ( s .  j’) = 

and 

i f k  = 1 

the values of E ( H * )  and u are 

E(H*)  = 2 . 5  log(i711t) - 9 

and 

u = 1.78. 

where log = lo_el/,, as above. 
An asymptotic result that  the log(n) law holds with indels as well as  

mismatches is given in Arratia and Waterman ( I  984). The  empirical s tudy 
reported above is evidence of the robustness of this distribution. 

3.3 Lorig iitesact inarclies bj .  regioits. An algorithm to find long inexact 
matches which does no t  use dynamic programming is proposed by Korn et ai.  
( 1  977).  It has some serious drawbacks, which are pointed o u t  below, bu t  it 
is a useful method and has received wide distribution to sequence analysts. 
Also see Queen et al .  (1  982). 

The  algorithm begins at positions (i, j )  where ai = bj and Qi+l  = bj+ 1. 

This match of length two is extended in a recursive manner. where the  rules 
for extension are 

( 1 )  the  next bases match (i.e. 
( 2 )  by deleting 1 ,  2 or 3 bases from sequence a there is a run of 3 matches. 
(3) by deleting 1 2 o r  3 bases from sequence b there is a run of  3 matches. 

= bj+z),  



0 1- 

(1) by mismatching u i+?  a n d  two of the nest  3 pairs ni:~tcli. Thcii- 
program does not search o\'er pairs (i. j )  where ( u i .  hi)  art' alrcrldy in 311 

identified region. 

Ssnkoff a n d  Kruskal ( 19S3) point out t h a t  this niethod will.  when com- 
paring AXCAAA a n d  AAAAA. find 

'A AC .A .A A 

A A A . A X  A 

b u t .  \\it11 11ie S C ~ U ~ ' I ~ ~ C ' S  ~-e\.c.r-sc.d. \i,ill  not find this  region. This could be  a11 

undesirable property.  Sankoff 2nd Kruskal also point ot;t t h a t  XXCCGT and 
.A.I\CGT \vi11 produce 

X.4C CGT 

.I\ A C CGT, 
31ld 

\\.liicli Iia1.e a base in coninion. instead of 

AACCGT 
and AX CC G T 

XXCAGT AAACGT. 

The running time of this algorithm for two length 12 sequences is propor- 
tional t o  1 r 2 .  The constant is larger than the expectation of  a geometric 
random variable. For equally likely bases, this means the constant exceeds 
4. Since the dynamic programming algorithms have a constant of 3. this 
strongly suggests using the more mathematically rigorous algorithms. 

The Wilbur-Lipman method, given in the next section, is also a regions 
method that can be  applied t o  this problem. 

1. Efficieiit Data Base Searches. The size of the nucleic acid sequence data 
is increasing rapidly with almost 3 X lo6 bases in GenBank at this time. It 
is of interest t o  compare new sequences with those already known. While all 
comparisons might not be of interest, several important and unexpected 
discoveries have been made from these large searches. A recent computer  
finding. for example. indicates an oncogene product appears t o  have arisen as 
a result of recombination of two unrelated cellular genes (Naharro e? a!.. 
1981). These searches will become increasingly important. 

The mathematical problem of interest is how to rapidly search a large data 
base. For example to search 1000 sequences 500 base pairs (bp)  each with 
a new 500 b p  sequence will take. with dynamic programming techniques. 
time proportional to 2000(500)2 = 7 .5  X 10'. This is an unacceptably large 
number, and below 1 present some approaches t o  the problem of rapid 



searches. I d o  n@t inclu~le thc IIL'\V 111r~tlloJ 01' Ukkont.11 since I cJlll1ot w e  
how to utilize Leniiiia U to find long ~ i i ~ r ~ . l i i n g  scgnients (Section 3 1. 

An already well-kno\~n niethod for these scarchcs is that of Wdbur a n d  

biological discoveries mentioned ahove. I n  addition tlie dynamic progranini- 
ing maximurn segments method is also used for these purposes. Finally. 
I suggest connections between the niethods of \Vilbur-Ljpman and o f  
h4artinez. A generalized regions method suggested in Section 3.3 could 
utilize the  output  of tlie hashing alporitlinis for a list L of regions. 
4 I T ~ I C  lVi/bztr--Lipumi7 irierliotl. I n  two important papers Wilbur and 

Lipinan ( 1  983. 1981'1 dele lop  \ \ h a t  the!. call context  dependent sequence 
comparison. The outline of their method is that they ( 1  ) produce a list L 
of matching regions. all of a fixed Iengrli. ( 2 )  order the  regions as in Section 
2.7.  (3) obtain a n  optimal alignment b ~ i  processing tlie list L .  They in fact  
develop a theor!. for much niore general context dependence and in addition 
present conditions for their similarity memi res  to hase an associated dis- 
tance which is metric. 1 uill limit niy discussion t o  the  case of regions. 

I n  Section 2.7. regions methods are discussed. Here the  list L of exact 
matching regions can be restricted, for example t o  those regions of length 
exactly 4. Wilbur and Lipman ( 1  983) describe a linear t ime hashing algo- 
rithm for producing 1 with fixed length regions. 

Denote a region Y by (w: i, j )  where 11' is a word of length IwI which begins 
at position i in sequence a and position j in sequence b. As in Section 2.7. 
r1 < r2 if il + 1it711 - 1 < i, and j ,  + 111~~1 - 1 < j 2 .  Also ler region r0 = 
(Q; 0. 0) be a minimal element and I ' ,  = ($J: I ? ,  1 7 1 )  b e  a maximal element. 
I? = (rlr2. . . . . 1'1) is a path if p < q implies I ' ~  <I.,. The score of a path F is 
give 11 by  

, Lipman ( 1983. 1984). Indeed their ~netliod has accounted for some of the 

where s( * )  is a similarity score for region rk , like l ivk I ,  and g ( , * )  is a gap 
penalty. Then 

S(a, b) = max{score (r): I' is a path from ro to r. >. 
1 AIgoritlm 14'-1. The algorithm is as follo~~s: make two lists of  regions L-: 

ordered by <, and L+, ordered by the usual order -4 of  best scores from r o  
to the  region listed in 1'. 

(0) Set L- = L and L+ = 6 
(1 )  rq = { m i n r : r E L - )  

score (rq) = S(r9) 

u 



( 2 )  Bcgin ; i t  Iargcst eIen1ent of f’. 
(.A) >love do\\.11 f+ until rl, < r ,  such t h a t  

y = score ( r;, ) - g ( i ,  - I H;~, I - i, - 1 , j4 - I \tqrl, I - j , ,  - 1 1 + .s(/; 1 

> score Ob). 
If there is n o  region r,, in L+ below r9 under < \+:it11 3 score greater 
than score ( r9 )  - s ( r q ) .  o r  if the inequality c31lnot he satisfied. go 
to (C j  

(B)  Set score r4 = y and go t o  (A)  
( C )  Ren1oi.e ib from f- and insert i t  in f+ under <. 

I f ‘  L- f 0. go to  ( X ) .  

I t  is posjible to  modify this algorithm. along the lines of‘ Section 3.2.  to 
oh t ain ma si m u 111 si 111 i 1 arit y s e p i e  nt s i 11 s t  cad of  m asini uni si 111 ila ri t y a1 ign- 
inelits. Wilbur and Lipnian describe s e \ ~ r a I  useful modifications o f  the-ir 
a lg o ri t h ni. 

4.2 .4 recrori-ed 17iasiiiiiiiii segiiieiirs algorirhi7i. .Anothr2r approach to 
rapid computation was taken by  T. F. Smith when at Los .Alanios ;Vational 
Laboratory. Several CRAY-1 computers exist there and these vector machines 
are very fast. Smith modified the algorithm o f  Smith-\\’atermari t o  run o n  
one  of  these computers. By utilizing the vector architecture o f  the  CRAY-1. 
i t  is possible t o  perform comparisons among very large numbers o f  nucleic 
acid sequences in reasonable time. Fo r  example, a study b y  Smith et al. 
( 1  984) reports all pairwise comparisons among 204 vertebrate sequences 
(including the complemeiit strands) were carried ou t  in approx. 170 min,  a t  
the rate of over 240 sequences per mill with an  average sequence length o f  
800 nucleotides. 

Vectorizing algorithms is a relatively new topic. The  essential idea is tha t  
the machine performs a number of operations simultaneously and gains this 
factor over the  usual linear sequence operations. If at tention is focused on 
calculating H ,  n o  Hii calculation being performed can depend on the  
results of  another  calculation being simultaneously performed. This elimi- 
nates row by  row o r  column by  coluinn building up  of  the matrix. What 
remains is calculating blocks of Hii o n  negative diagonals, i.e. with i + j = 
constant. 

Collins and Coulson (1 984) discuss parallel processing algorithms for  
the Sellers’ method. Smith’s approach should allow much more efficient 
implementation for  parallel processing. 

4.3 The regioiis nrerhod. The regions method o f  Martinez (Section 2.7)  and 
the Wilbur-Lipman method are clearly closely related. although Wilbur- 
Lipman d e i k e  a different optimization technique. Of course these were 
independently developed but  the theme is now clear. For  rapid calculation. 



iudicioiisI\~ l i m i t  the list of regions ;inti  ;iligniiic.nts will he protl~iccd morc 
r3pjdly. 

For esaniplc.. Karlin cf ut .  ( 1  984) do not s ta te  311 algorithm for aligning 
their long ~nrltching regions. although ~ l i g ~ i i i i t ~ n t s  resiilt from 1 1 i t x  matc11- 
ings. It is clear t h a t  using their regions 3s inpits to 1 regions mctliod algo- 
rithm would produce meaningful alignn~t'nts. In addit ion. i f  a regions list 
js not totally ordered. such an 3lignment method would be very useful in 
resolving the possibIe nlignments. 

5. Coiiipur'isoii 01 S ~ I I J I ' U ~  Seyztciic cs. 111 biological sequence analysis. 
prohlenis frequently rcquire the  ident liic;it ion of rclationships ; i~nong  
R sequences. ulier? R > 2. For c.\3111plrl. deducing 311 e\~olutionary tree for 
5s K S X  niolecules miglit invol\.e I' = 100 S ~ ~ ~ U ~ I I C ~ S  of length 120. Xi io t l i~ r  
r u m p l e  might i n \  011 s a set of coding rrlgions which are assumed to h a 1 ~  
etol\.sd from a c o ~ m i o ~ i  ancestor. One r-tsult of such studies is a n  alignment 
of  tlie R sequences. Issues of Scicrice m d  .\briue frequently  ha\^ articles 
con ta iriing su sh alignm?n t s. 

As esplained below. these problems appear to require a large amount  of 
computation and storage for their rigorous solution. Often the biologist 
solves these problems by eye. The first mathematical results were obtained 
by Sankoff tvith others and are described below. and utilize dynamic 
programming. A second promising approach has been presented by  Martinez 
who advocates the regions method. in this issue, Waterman and Perlwitz 
give geometry and algorithms for another dynamic programming approach to 
such problems. while Waterman et al. give a method which does not use 
dynamic programming o r  regions. 

5.1 Dj-iiainic programini i ig  algoritliiiis. In a clearly written article, 
Sankoff and Cedergren ( 1  983) review methods which give alignments of  
R sequences given a tree that relates the R sequences. Each interior node 
of  the given tree T has a degree at  leas1 three. and the  R sequences are 
attached to the R terminal nodes. The algorithm constructs sequences for 
each interior node arid gives an alignment relating the  original and the  
reconstructed sequences. If the  tree has -Y interior nodes,  this is an alignment 
o f  R + .\' sequences. 

While the Sankoff and Cedergren article is well written and need not be 
reproduced here. I will try t o  give the dynamic programming aspects o f  the 
problem. Suppose the R sequences are a. b. . . . . r. The  cost of an overall 
alignment of the R original plus .Y constructed sequences is the sum of  the  
pairwise alignment cost in T. The idea is to think of  aligning u l u 2  . . . U j -  

b , b 2  . . . bi. . . . , r , r2  . . . rs. The last column of  the alignment can be 
broken off from tlie initial columns. For a. b. . . . , r the  last column will 
appear as 



E Id, 
E ? D j  ... 
ER r; 

\iht.rc. ei E { O .  1 }, 0 ui = A ,  ;tnd Q = ( E , .  . . . , E R ) #  0 .  Tliis last rcstriction 
j u s t  keeps the last column from being all As. The dynamic programming 
step is 

TI?? 13st term is t o  indicate that the letters slsZ . . . y g  for the .2' interior 
noJ?s ha \e  been determined in a n  optimal way. Fitcli's ( 1  97 1 1 parsimony 
mstliod. suitably generalized. is used for this purpose. The computation time 
for this algorithm for R sequences of length 17 is O(2R~~R.\? where 3R comes 
from e l ,  . . . ~ eR at each step. nR comes from i, j .  . . . , s. and ,Y conies from 
Fitch's parsimony method. For sequences of  length 100, this is approx. 
O( 102.3R.\1 so that  R = 3 is nearly as large as possible. 

Unaware of Sankof f s  work ( 1  975), Waterman er al. ( 1  976) present 
a similar algorithm which does not explicitly assume a tree. In Sankoff's 
framework. this corresponds to the tree, one interior node, and R terminal 
nodes. A function d(s,  J., . . . , r) of  R variables was used t o  generalize t h e  
metric on the letters so it is possible t o  have a different weighting. b u t  the  
essential idea is iil Sankoff's work. 

Although no one seems t o  have suggested i t ,  it  is possible t o  generalize 
the Smith-Waterman algorithm for maximum similarity segments t o  t h e  
case of R sequences. Exactly the same computational problems limit the  
utility of the idea. 

3.2 A regions algoritlini. Martinez ( I  983)  has suggested approaching these 
problems via regions. Locating all repeats of  R sequences 11 long can be  done  
in time proportional t o  nR. Repeat in this contes t  refers t o  a word w which 
occurs in all R sequences. Such a repeat is called a region and is placed in 
a list L .  A partial order in R dimensions (instead of the two  dimensions) 
is placed on L .  

Exactly the same algorithm from Sections 2.7 and 4.3 can be used 
t o  produce a multiple sequence alignment. The limitation here is that  
a requirement of  exact matches in all R sequences is quite stringent. Still, the  
aligned portions would be very convincing and such an alignment could 
be produced in reasonable time. 



O. ( ’ O I I ~ / U . \ W I I . V .  Computer a n a l ~ ~ s i s  of m~lcromolc.cular sequences will 
become more important and I foresee two ~i ia jor  directions to ~llgorit l i~n 
changes. First. 3s more detailed biological information becomes available. 

as insertion/deletion ~nechanisms are studied it might become clear that  the 
sequences a t  tlie i~isertioii/deletion boundaries greatly influence tlie Iikeli- 
hood of tlie event. Such inforniation should certainly be incorporated into 
algorithnis. Second. the increasing nucleic acid data will require that  rapid 
data base searclies become even more rapid. Imagine what size the  data 
base will grow t o  in even ten ).ears. Computer science methods must be 
d e ~ e l o p e d  and applied to these important problems. 

A s  meiirioiied i n  the introduction. this I-e\.iew does not rshaust  the 
problem t \  pes of interest. Existing algoritlinis can be modified to  handle 
a surprising \clriety of problems. For  example. the best fit of a sequence 
into another or the best alignment of two sequences with either or both 
end gaps un\j  eighted are possible with alterations of  dynamic programming 
algorithms presented here (Sellers. 1980 and Smith et a/ . .  1981 ). 

b i t  will be important to perform more finely tuned comparisotis. For exrtinple 

t 

There is no lack of problems of  theoretical and applied interest. 

Over tlie last few years, several people have helped and encouraged me in 
studies of scqueiice comparison in molecular biology. They include S. Ulam: 
W. Beyer, T. Smith, W. Fitch, H. Martinez, P. Sellers, C. Smith and G. C. Rota.  
I am also grateful t o  M. Perlwitz for  assistance in preparing this manuscript. 
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