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Sequence alignments are becoming more important with the increase of 
nucleic acid data. Fitch and Smith have recently given an example where 
multiple insertion/deletions (rather than a series of adjacent single inser- 
tion/deletions) are necessary to achieve the correct alignment. Multiple 
insertionJdeletions are known to increase computation time from O( n2)  
to O ( n 3 )  although Gotoh has presented an O(n2) algorithm in the case 
the multiple insertion/deletion weighting function is linear. It is argued in 
this paper that it could be desirable to use concave weighting functions. 
For that case, an algorithm is derived that is conjectured to be O ( n 2 ) .  

Introduction 
With the advent of rapid methods for determining nucleic acid sequences, 
there is increased interest in computer methods for comparing these sequen- 
ces. Sequencing is estimated to be proceeding at the rate of lo6 bases per 
year and various data bases are being structured to organize the sequences 
and attendant information. Relevant portions of the data base are searched 
for sequences similar to ones recently determined; and rapid, efficient, and 
meaningful algorithms are necessary. 

The Needleman & Wunsch (1970) algorithm was the first rapid method 
in the biological literature for determining sequence homology and was 
followed by the metrics of Sankoff (1972) and Sellers (1974a,b) for finding 
the distance between two sequences. Kruskal(l983) recently presented an 
extensive review of these and related methods and applications. 

Sellers' work was generalized to include multiple insertion/deletions by 
Waterman, Smith & Beyer (1976). A review of the use of these techniques 
in sequence analysis was given by Smith, Fitch & Waterman (1981). Fitch 
& Smith (1983) recently studied these algorithms for a region of DNA 
coding for alpha and beta hemoglobin in chicken, where the alignment is 
assumed known by comparison of the many corresponding protein sequen- 
ces, and they determined that a specific range of weights for multiple 
insertion/deletions were necessary to obtain correct alignments. Therefore, 
it is important to include these in application algorithms. 
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In this paper we review recent work of Gotoh (1982) who presented an 
O( n’) algorithm for the case of linear insertion/deletion functions. An 
extension to concave insertion/deletion functions is obtained here which 
has computation complexity close to O( n’). 

Linear Insertion/Deletions 

To make the discussion specific, the algorithm of Waterman et al. (1976) 
will now be presented. a = alaz . . . a, and b = blb2 . . . b,,, are the sequences 
of interest and D(a, b) will denote the (minimum) distance between a and 
b where d ( x ,  y) is a dissimilarity measure between the sequence elements, 
and deletions of length k are assigned weight w(k). We take Die= w(i), 
Do, = w( j )  and D,, = D(alaz . . . a,, bl b2 . . . b,) and proceed by 

D,, = min { D,-l,l-l + d (  a,, b,), min { D,,,-k + w ( k) : 1 I k I j } ,  

min{Dz-l,l+w(l): l s l s i } } .  

Of course, the final result is D,,,,,, = D(a, b). The computational efficiency 
of the algorithm is of order 

( i  + j )  = O( n’m + m’n) 
1.1 

which, when n = m, is O(n3).  
Paul Haeberli of the University of Wisconsin brought it to our attention 

that this algorithm can be improved to O( n’) when w (  k) is a linear function 
of k, although he did not carefully state the condition on w(k) or give a 
complete proof. Much the same observation was made by Goad & Kanehisa 
(1982) regarding the secondary structure algorithm of Waterman & Smith 
(1978). More recently Gotoh (1983) gave a complete and clear proof for 
the new algorithm. 

Concave Insertion/Deletions 

The intuitive argument for multiple insertion/deletion functions is that 
a deletion of fourteen bases (say) should not be thought of as fourteen 
independent single deletions but as one deletion event which has weight 
less than the sum the weights of fourteen single deletions. This reasoning 
implies a general inequality 

w ( k + l ) s  w ( k ) + w ( l ) ,  k, I r l .  

It is possible to give a slightly improved set of inequalities which proves 
useful in this problem. If we agree that bases are increasingly easier to 
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insert (delete) as the insertion (deletion) length grows, then the resulting 
inequalities are 

w(m+k+I)-w(m+k)S w(k+I)-w(k), k , l , m > l .  

If equality is required, then linearity follows: 

w ( k )  = a  + b ( k -  1). 

The assumption of linearity is now transparent; w( k)  linear means that 
after the first deletion (insertion) each successive addition of a base has 
equal cost. We argue that strict inequality could be preferable. Since the 
function w is increasing and has decreasing differences, it is concave down- 
ward, here simply referred to as concave. Such functions as 

w(k)=a+blog(k) ,  a, b>O 

are concave and have intuitive appeal. 

Gotoh’s proof. He presents the above recursion for Dij in the form 
Next we make the assumption of linearity, w( k) = a + b( k - 1) and review 

Dij=min {Di-l,j-l +d(ai, bj),  FiSj}, 

Ei,j = min {DLj-k + w( k): 1 I k 5 j } ,  

Fi,j = min { Di-si + w( 1 )  : 1 5 1 I i}, 

where 

where E,,,, = Foo = Doo = 0, Eio = Dio = w (  i ) ,  Foj = DOj = w (  j ) .  Gotoh then 
observes 

E,j=min{Di,j-l+a,min{Di,j--k+ w(k): 2 5  k ~ j } }  

=min {Dhj-l +a, min {DLj-l-l + w(l+ 1): 11 I5 j -  1)) 

= min { Di,j-l + a, min { Di,j-l- I + w ( 1 )  : 1 I 1 5 j - 1) + b} 

= min {Di,j-l +a, Ei,j-l + b}. 
Of course 

Fi,j=min {Di-l,j+a,Fi-l,j+b} 

and the algorithm is of order O( nm) or O( n’) in case n = m. 

of all, set 

This means that, for some 1 E [0, j -  13, 

Y Now we study the problem of e.fficient algorithms for w concave. First 

Ei,j=min{D,k+ w ( j - k ) :  k ~ [ O , j - l ] } .  

D i , , + W ( j - I ) a D i , k + W ( j - k ) ,  O s k s j - 1 .  
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If k 2 1, w (  j - I + 1) - w (  j - I )  I w( j -  k + 1 )  - w( j -  k), and 

Di,/ + w ( j -  I )  + w ( j -  I + 1 )  - w ( j -  I )  

5 D i , k  + W ( j -  k)+ W ( j -  k+ 1 )  - W ( j -  k) 

The utility of the last equation is that minimization can be reduced to 
those Dl, associated with 

S ( i )  = { I :  EIJ+1 = D,J+ w ( 1 ) ) .  
In fact 

E4, = min { D b k  + w ( j -  k): k E S ( i ) } .  

The computational complexity of this algorithm depends on the rate of 
growth of S(i) as a function of sequence length. On a row of length m, 
how many times will length one deletions be optimal? We conjecture that 
this function does not grow faster than log (m). 

For further improvement of the algorithm, notice that whenever 

Dl,,-1 + W (  1) < D l , k  + W (  j -  k), j -  1 > k E s( i), 
it is possible to calculate when D1.k can be superior to Dl,,-l. That is, solve 

Dl,,-l+ w( 1 + h )  = D1.k + w (  j -  k + h) .  

If j + h > m, then D1.k never need be considered again and k can be removed 
from S ( i ) .  Otherwise, D l k  need not be considered until calculation of El,,+,,. 
While we cannot establish the computational complexity of this last result 
on first principles, the practical implication is an O(n2) algorithm. 

Conclusion 

More development of sequence comparison algorithms will occur in the 
near future. The rapidly increasing data base will force those working on 
algorithms for molecular biology to construct algorithms that are more 
efficient and that answer increasingly more special and involved questions. 
We are, for example, applying our results on concave deletion functions to 
algorithms for RNA secondary structure. One of the interesting aspects 
will be the effects that molecular biology and computer science will have 
as they continue to communicate and cooperate. 
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