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In this paper general deterministic one-dimensional cellular automata are identified with mappings of the unit interval into 
itself. This allows the machinery of dynamical systems analysis to be employed. The emphasis of the paper, however, is on 
applications of existing concepts and techniques of information theory to these automata. A basic paper by W.M. Conner is 
utilized to obtain equality of the capacity and HausdorlT dimension of each line of the automata, and existence of limiting 
values of these quantities is established. Assuming a probability measure on the initial line that is stationary and ergodic for 
the shift, a consistent ergodic theory is derived for any finite or infinite collection of lines of the automata. A body of related 
work by Russian authors on probabilistic automata is briefly examined. Important questions about the existence and properties 
of limiting distributions remain unresolved. 

1. Introduction 

Recently, there has been renewed interest in cellular automata, due perhaps to increased computational 
power and to developments in dynamical systems theory. A great variety of examples are mentioned in 
connection with cellular automata. Cellular automata are a focus of attention in the theory of computation, 
and a large array of examples from biology and physics is frequently brought into discussions of possible 
utility. Even the origin of life has been mentioned in these discussions of “self-organizing” systems. (See 
[14] for many references.) 

In particular, Stephen Wolfram [ 141 has recently performed extensive calculations for a class of 
one-dimensional cellular automata. For his situation, a cellular automaton is initiated by a string of sites 
with each site occupied by 0 or 1. Various rules are given which allow the string of sites to evolve in discrete 
time steps. Wolfram requires his site values to evolve as a deterministic function of the values of the sites 
and their nearest neighbors. 

While Wolfram’s automata would appear to be of a very simple nature, many intriguing and complex 
patterns arise when they are enumerated, line by line, as they evolve. His paper presents many figures and 
their numerical properties. In a study of algebraic properties of these one-dimensional automata, Martin 
et al. [7] analyze global properties of some of these automata. Their results are confined to a sub-class of 
“additive” cellular automata of the Wolfram type. 

The purpose of this paper is to bring into focus a connection of cellular automata with information 
theory. There will be no restrictions on alphabet size or the number of neighboring sites used in the 
evolution rule. The capacity and Hausdorff dimension of each line (or string) are shown to exist and to 
be equal, as well as the existence of limiting capacity and dimension established. A general probability 
measure, invariant and ergodic under the shift, is put on the initial string of sites, and the consistent 
probability measure on any finite or infinite collection of lines is derived. Entropy and ambiguity can then 
be calculated, and a theorem proved to show the almost everywhere value of the transducer ambiguity limit 
equal to the limiting dimension of the ambiguity set. Some obvious generalizations are shown to be easily 
included in this framework and important related work by Russian information theorists is mentioned. 
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By placing these dynamical systems into a probabilistic framework, certain theorems can be proved. 
The work of William M. Conner [2] on the capacity and ambiguity of a noise-less transducer turns out 
to be an important study of the first two lines of a one-dimensional cellular automaton and is the basis 
of this paper. Hopefully this will begin non-empirical studies of ergodic theory of one-dimensional cellular 
automata. Many numerical phenomena need explanation. 

2. Capacity 

We first define one-dimensional cellular automata. Take an alphabet A = (0, 1,  . . , , b - l}, where 2 6 b 
and b is an integer. For m a positive integer assume 4 * is a mapping of A m  = A x A x * * x A into A. 
Of course there are bb" such mappings. The integer m is referred to as the 4*-memory. 

For x,E(O, 11, let 

x0 = xo,ib --I 

00 

i = l  

be the non-terminating base b expansion of x.  Then define 
m 

X, = 4(x0) = xl,ib-i, 
i =  I 

where 

x1.i = 4 *(xo,i, xo,i+ 1, * * 3 xo.i+ m - 1) * 

Clearly 4: (0, 1140,  13 and x, is recursively defined by x, = 4(x,- J = 4'(xo). The triple ((0, 1],4*, 4) is 
called a one-dimensional cellular automaton. 

Note that two changes have been made to the set up in [14] where m = 3. The lines have been made 
infinite strings of sites, thereby eliminating the need for periodic boundary conditions. Also the second 
(third, etc.) line has been shifted one to the left, making identification into the unit interval more natural. 
The following elementary proposition allows easy identification of certain of Conner's results with cellular 
automata. 

Proposition. If ((0, 13, 4 *, 4) is a one-dimensional cellular automaton with memory m, then ((0, 1],4 *", 4") 
is a one-dimensional cellular automaton with memory m + v - 1,  where 

* V  4 ( X ~ , i , x o , i + l , . . . , x o , i + m + v  -*)=x,,i, 

to be the number of distinct sequences of length n on line v .  The channel capacity of line v is defined by 

if it exists. (All logarithms are to the base b.) To prove existence, a standard lemma is necessary [2]. 
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To extend to a probability measure on (0, 1]'+' consistent with p EM, simply let 

. . = P (Projo ( B  n G,)) 
where B is a Bore1 set in (0, l ] ' + ' ( B ~ 3 3 , + ~ )  and Proj, denotes projection onto the first or "zeroth" 
coordinate. The Kolmogorov consistency theorem [6] implies the existence of a measure Po,',, , , , on (0, 11" 
with finite-dimensional distributions consistent with those defined here. . 

Let M, be the set of probability measures in (0,1]"+' which are ergodic and invariant under T, defined 
by 

Tdx,, XI, f * 9 x,) = (S(xo), S(x,), * Y S(x,)) * 

Theorem. Po,',, , , , , E M,. 

Proof. For A , x  A ,  x . . .  x A , E ~ # , + , ,  Aic9#, 

T;'(Ao x A ,  x . . . x A,) = S-'(A0) x S-'(A,)  x * * * x S- ' (A , ) .  

Since S(~(X) )  = $(S(x)), {x: ~ ( X ) E S - ' A }  = {x: ~ ( S ( X ) ) E A }  = S - ' { x :  $ ( x ) E A } .  This observation 
allows a proof that T,  is a measure-preserving transformation (mpt) for Po,, , , , , 

Po,...,v(T;'(Ao x A ,  x a a . x A,)) 
= p { x :  x ES-'(Ao),  4 ( X ) E S - 1 ( A I ) ,  . . . , 4yn)€S-1(A")} 
= p s - ' { x :  x EAo, c $ ( X ) E A ' , .  . . , 4"(X)EA,} 

= p { x :  x EAo, $ ( X ) E A l , .  . . , 4'(X)EA,} 

= Po,. . . , "(A0 x A ,  x . . . x '4,) 

Since T, is a mpt on a monotone class [6] it is a mpt on 93,. 
In fact, these considerations also show T, ergodic for Po, . , , , , .  Assume T;'B = B. Then 

T;'(B n G,) =,s-l{x: (x, 4(x), . . . , ~ v ( ~ ) ) E B )  

= {x: (x, &(XI, * * * ,4'(X))E T;' (B)}  
= {x: (x, 4(x), . . . , ~ V ( ~ ) ) E B }  = B n G , ,  

and ergodicity of T, follows from ergodicity of S. 
Since the shift is measure preserving and ergodic for all marginals, entropies for any line or collections 

of lines are defined and the pointwise ergodic theorem holds [l]. Instead of concentrating on generalizations 
of channel capacity, the remainder of this section treats an information theory concept called ambiguity. 

First define 

R,(x) = {t: t ~ ( 0 ,  11 and $'(t) = 4"(x)}, 

the set of points with the same vth line image as x. In addition R,(x, n) is the number of sequences of length 
n + v(m - 1) which have the same first n digits in the vth line image as the first n digits of 4"(x). R,(x, n) 
is referred to as the ambiguity of line v at the point x .  The following theorem generalizes the case v = 1 
which is due to Comer [2] and Fischer [3]: 

~ 

Theorem. D ,  = lim,,,(log R,(x, n))/n exists for almost all n [ p] and D, = dim R,(x) for almost all x [ p]. 
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Corollary. limv-tm D, = R,(x) = D exists for almost all x [ p ] .  

Proof. If 4'(t) = 4"(x), then 4"+'( t )  = $'+'(x) and R,(t) c R , + l ( x ) ,  so that 0 6 D, < Dv+l  < 1. 
Once again, a limiting property of the rows has been derived. 

>, 

4. Generalizations 

In this section certain natural generalizations of simple automata are shown to be included in the above 

First of all, assume that the memory of 4 is still m but that there is an additional temporal memory 
framework. 

of k as well. That is 

and 

Of course, 4: (0, l I k + ' + ( O ,  11  and x , + ~  = f$ (X , -k , .  . . , x , - ~ ,  x,). If each column of height k + 1 is mapped 
to a new integer, 

/ x - k . i  \ 

Then each column can be considered a unique base B integer, 

I Therefore the temporal memory of 4 can be accomodated by considering 4 to have memory m with base 
B. This requires redefining 4 as 

4 ( x - k ,  x - k + l ,  . * * 9 x0) = ( x - k + l ,  . . . > x0, x1) * 

A similar device shows that a one-dimensional cellular automaton can frequently be restricted to 
memory 1 .  First of all let 

i - 
f ( x )  = f ( X I X 2  . . .) = ((XIXZ . . . x m ) ( x z x 3  . . . xm+ 1 )  . 1 .) 

and 
< 

4 ( f ( x ) )  = (4*(xl * * x m ) 4 * ( x 2 x 3 .  . . x m + l ) .  . -1. 

~ 

Again the alphabet has effectively been enlarged to reduce the memory. This device is employed by Fischer 
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5. Probabilistic automata 

The automata considered this far are all deterministic. Some important work by Russian information 
theorists considers probabilistic automata. See for example [5, 8, 9, 12, 131. In Conner's framework, they 
study the noisy transducer. 

As a sample of their reults, Vasershtein and Leontovich [13] take a string of zeros and ones with 
transition rules 

Q(4*(ll) = 1) = 1 ,  
Q(~*(oo)  = 1) = Q ( ~ * ( o I )  = 1) = Q ( ~ * ( I o )  = 1) = e .  

A4 is the space of Bore1 probability measures on (0,1]. A measure p E M  includes (as above) measures on 
(0, 13 for time step 1 ( P I ) ,  time step 2 ( P J , .  . . . 

A question of importance is that, for pS-' = p, when does limv+m Pv exist? When is the limit unique? 
Obviously if the measure p is defined by 

p(. 111.. .} = 1 ,  

then pS - ' = p and for the Q given above, Pv = p for all v .  When 8 is large, no other invariant measure 
exists. But when 8 is small (0 < 1/14) there is at least one other invariant measure. Other deep results have 
been found. 

In addition, this group considers the geometries obtained with the evolution of the automata [4, 10, 
111. Many of these results should carry over to the automata considered in this paper. 

6. Conclusion 

The object of this paper was to give a mathematical framework for one-dimensional cellular automata 
and to prove some simple results. The most important work remaining relates to the Markov process 

. . , v .  For example, when does 

lim P, 
v-rm 

exist and when is the limit unique? What is the set of support of Pv? When is P, absolutely continuous with 
respect to Lebesque measure? Singular? 

To obtain information about self-similarity the limits of 

pv - 1,v.v + 1 9 

A v - - l , v , v + l  9 
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In addition, a number of questions arise for specific 4*. For example, explicit computation of C,, C, 
D,, and D would be of real interest but is likely to be difficult. 

.- 
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