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ABSTRACT When applying dynamic programming tech- 
niques to obtain optimal sequence alignments, a set of weights must 
be assigned to mismatches, insertion/deletions, etc. These weights 
are not predetermined, although efforts are being made to deduce 
biologically meaningful values from data. In addition, there are 
sometimes unknown constraints on the sequences that cause the 
“true” alignment to disagree with the optimum (computer) solu- 
tion. To assist in overcoming these difficulties, an algorithm has 
been developed to produce all alignments within a specified dis- 
tance of the optimum. The distance can be chosen after the op- 
timum is computed, and the algorithm can be repeated at will. 
Earlier algorithms to solve this problem were very complex and 
not practical for any case involving sequences with significant time 
or storage requirements. The algorithm presented here over- 
comes these difficulties and has application to general, discrete 
dynamic programming problems. 

The first dynamic programming algorithm to yield optimal se- 
quence alignments was due to Needleman and Wunsch (1). Ex- 
tensions were made by Sellers (2, 3) and Waterman et al. (4). 
Relationships between these algorithms are discussed in the 
review by Smith et al. (5). These algorithms find the minimum 
weighted changes to convert one sequence into another. 

Recently Fitch and Smith (6) considered the effect of the 
weights that are assigned to the events of mismatch and in- 
sertion/deletion. They chose short sequences of chicken hemo- 
globin a and p chains, where the correct alignment is assumed 
to be known. Interestingly, they conclude that the only algo- 
rithm to give the correct alignment is that discussed in Smith 
et al. (5). Basically the reason is that insertion/deletion events 
must be included and correctly weighted. 

The subject of this paper is an algorithm that yields all align- 
ments within a user-specified distance of the optimum align- 
ment value. Even with “incorrect” alignment weights, there is 
reason to believe that the “correct” alignment is not too far from 
the optimum for alignments of truly related sequences. In re- 
ferring to dynamic programming solutions of the minimum free 
energy RNA secondary structure problem-an analogous prob- 
lem-Dumas and Ninio (7) comment, “unfortunately, they give 
by design only one structure so that the biologically important 
folding may be missed.” Their comments, in part, motivated 
the present paper. 

The dynamic programming/operations research literature 
has considered these problems, beginning with Bellman and 
Kalaba (8). Since then, several authors have studied what is re- 
ferred to as the Kth best-path problem (9, 10). To find the Kth 
best path, the original problem and the preceding (K - 1) best- 
path problems must be solved. Storage and calculation for each 
path is somewhat more expensive in time and storage than the 
preceding one. 
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When problems are solved where the initial optimum takes 
significant time and storage, the Kth best-path methods of op- 
erations research are not easy to implement. In particular, new 
methods are needed for the sequence alignment problem. For- 
tunately, the approach of this paper allows solution of this prob- 
lem in a simple manner. A paper with Thomas Byers (11) con- 
siders in detail the application of this algorithm to general, 
discrete dynamic programming problems. 

OPTIMAL ALIGNMENTS 
The algorithm of Sellers gives the minimum weighted sum of 
substitutions and insertion/deletions to convert the sequence 
A = ala2 . . . a, into B = bibs . . . b,. A distance d(a,b) (or weight) 
is given, and an insertion/deletion of a is given weight &,A) 
= d(A,a), where A is our symbol for a blank or space. For sim- 
plicity we restrict discussion in this section to single insertion/ 
deletions, but later an example is presented in which inser- 
tions/deletions of length greater than one are included. 

To find the distance between A and B, set up a matrix D. 
Initialize by Dk,O = k (0 I k I n) and Do,( = e (0 5 e I m). 
Values of DiJ are interpreted as the distance between ala2 . . . 
ai and blb2 . . . b,. The values are obtained by 

Di,j = min {Di-lj + d(ai,A), Di-1,j-l 

+ 4ai,bJ, Dij-1 + 44bj)}* 
This procedure calculates D,,,, the value associated with the 

optimal alignment(s). To produce these alignments, begin at 
D,,,. The optimal step(s) leading to D,, reveals the right-hand 
end of the alignment. Succeeding steps (back) through the ma- 
trix will produce the remainder of the optimal alignment(s) in 
time proportional to the length of the longest sequence. 

For illustration, take A = A-U-A-A-A and B = A-U-G-G-A- 
A-A, where matches have 0 weight while mismatches and in- 
sertion/deletions have weight 1. The resulting D and traceback 
are given in Fig. 1. The corresponding alignment with OS,, = 
2 is 

A-U-G-G-A-A-A 
A-U-A -A-A-A-A. 

NEAR OPTIMAL ALIGNMENTS 
The problem is to h d  all alignments with score within e of D,,,, 
the best possible score. For e 2 0, this set will include the op- 
timal alignments. The approach here is to exploit the meaning 
of the entries D,, and to modify the traceback procedure in an 
appropriate manner. 

Suppose we are at position (i,j) and that we are performing 
a traceback that can result in an alignment with score less than 
or equal to D,, + e. Let the score of the alignment from (n,m) 
to but not including (i,j) be equal to Ti,,. TiJ is the sum of values 
of each step to reach (i,j) and, as such, can include several steps 
that are not optimal. There are three possible steps from (ij), 
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A A U G G A A A  

0 2 3 4 5 6 7  
l\; 1 2  3 4 5 6 

\ 2 1 0-1- 3 4 5 
3 2 1 1 :\2,3 4 
4 3 2 2 2 2 2,3 
5 4 3 3 3 2 2 2  

FIG. 1. Did matrix resulting from application of recursion to se- 
quences A-U-A-A-A and A-U-GGA-A-A. The lines indicate the trace- 
back. I 
namely (i - l,j), (i - I j  - I), and (ij - 1). These steps are 
taken if, respectively, 

Tij + d(ai,A) + Di-ij 5 D , m  + e 

Tij + d(ai,bJ + Di-ij-i 5 D,m + e 

Tij + d(A& + Dij-l 5 4, + e .  
The traceback algorithm is based on the reasoning that an 

alignment score can be decomposed into three parts: the score 
to the current position (Ti,,), the weight of the next step (d( , )), 
and the score of the “remaining alignment. The best possible 
value for the “remaining alignment is the corresponding value 
of D and, for this reason, that value of D appears in the test 
criteria. 

It is necessary to save pointers at all locations where multiple 
steps are possible. In our program, we always execute the lower, 
left paths first and stack the pointers in a “last-in-first-out” man- 
ner. This implies that, for alignments with initial regions in 
common, the initial regions are only found once. 

To illustrate the traceback methodology, consider the ex- 
ample of Fig. 1 with 05.7 = 2 and e = 1. One of the near op- 
timal alignments is shown in Fig. 2. At position (2, 3) (a2 = U 
and b3 = G), T2,3 = 1, resulting from the alignment 

G-A-A-A 
A-A-A-A. 

The three candidates are 
1 + d(U,A) + D1,3 = 1 + 1 + 2 = 4 

1 + d(U,G) + D1,2 = 1 + 1 + 1 = 3 

1 + d(A,G) + D2,Z = 1 + 1 + 0 = 2. 

Assume the lower path has been followed already and see that 
we can move to position (1,2) with T1,z = 2, resulting from T1,2 
= 1 + T2,3, the alignment being 

G-G-A-A-A 
U-A-A-A-A. 

A A U G G A A A  

0 1 2 3 4 5 6 7  
l \ O - l  2 3 4 5 6 
2 1 O\l-2 3 4 5 
3 2 1 1  2 \ 2,3 4 
4 3 2 2 2 2 2,3 
5 4 3 3 3 2 2 2  

FIG. 2. Nonoptimal alignment with score 3. The alignment is 
A-U-G-GA- A- A 
A- A -Ud-A-A-A. 
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For OS,, = 2 and e = 1, there are eight alignments with the 
score of 3 and one alignment (the optimum) with the score of 
2. 

(Y AND B CHAINS OF CHICKEN HEMOGLOBIN 
A study of sequence alignment sensitivity to weights and the 
use of multiple insertion/deletions has been carried out by Fitch 
and Smith (6) and was discussed earlier in this paper. The se- 
quences displayed below are chicken hemoglobin mRNA se- 
quences, nucleotides 115-171 from the p chain (upper se- 
quence) and 118-156 from the a chain (lower sequence). 

U-U-U-G-C-G-U-C-C-U-U-U-G-G-G-A-A-C -C-U- 
U-U-U-C-C-C -C -A-C -U-U-C-G A-U-C-U- 

C-U-C -C -A-G-C -C-C -C -A -C -U-G-C-C-A-U-C-C - 
U-U-G-U-C-A -C-A -C 

G-G-C-A -A-C-C-C-C -A -U-G-G-U-C 
G-G-C-U-C-C-G-C-U-C-A-A -A-U-C 

This alignment is presumed correct from an analysis of the many 
known amino acid sequences for which such RNA sequences 
code. 

While the algorithm for sequence alignment presented above 
included only single-base insertion/deletions, longer inser- 
tion/deletions, such as displayed in the alignment above, are 
unlikely to be the “sum” of single-base events. The Sellers’ al- 
gorithm was extended by Waterman et al. (4) to include these 
events and allows the user to choose weights for each insertion/ 
deletion event of length 1,2,3,. . .; Fitch and Smith (6) show, 
for the example of this section, that the correct alignment can- 
not be obtained without this capability. 

By using a mismatch weight of 1 and a multiple insertion/ 
deletion function of 2.5 + k, where k is the insertion/deletion 
length, the correct alignment is found among the 14 optimal 
alignments. (This is region Q of the Fitch-Smith paper.) To in- 
dicate the size of neighborhoods in this example, there are 14 
alignments within 0% of the optimum, 14 within 1%, 35 within 
2%, 157 within 3%, 579 within 4%, and 1,317 within 5%. 

A mismatch weight of 1 and a multiple insertion/deletion 
function of 2.5 + 0.5 k is in region P of Fitch and Smith; ac- 
cordingly, the correct alignment is not in the list of two optimal 
alignments. It is necessary to go to the list of 31 alignments with 
4% of optimal alignment to find the correct alignment. This ex- 
ample illustrates the sensitivity of alignment to weighting func- 
tions and illustrates the utility of the method presented in this 
paper. 
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