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Homology and distance measures have been routinely used to compare two 
biological sequences, such as proteins or nucleic acids. The homology measure of 
Needleman and Wunsch is shown, under general conditions, to be equivalent to the 
distance measure of Sellers. A new algorithm is given to find similar pairs of 
segments, one segment from each sequence. The new algorithm, based on homology 
measures, is compared to an earlier one due to Sellers. 

1. DISTANCE AND SIMILARITY 

Both distance and similarity measures have been designed for the com- 
parison of pairs of biological molecules. The basis of such comparisons is 
the information from the biochemist as to the linear sequence of elements 
comprising such macromolecules, as the DNA of the gene. These distance 
and/or similarity measures have been used by the biologist to obtain 
information about processes of molecular evolution. The simplest and most 
fundamental of these are the point mutation (the conversion of one se- 
quence element into another) and the insertion or deletion of sequence 
elements. 

In 1970 Needleman and Wunsch [l] introduced their homology (similar- 
ity) algorithm. From a mathematical viewpoint, their work lacks rigor and 
clarity. But their algorithm has become widely used by the biological 
community for sequence comparisons. 

The two molecules under consideration will be denoted by a = a l a 2 . .  . a, 
and b = b,b2.  . . b,,,. The basic problem is to find the alignment of a and b 
with the highest similarity. To be specific, we define an alignment of a and b 
by A(a,b) = [(a,,, b,,),(ai2, b,2),. . . : 1 I i,c i,  <. . ~ n ,  1 s j , < j , <  . . .I 
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m]. Each ak ( b k )  not appearing in the subsequence ui,ai , .  . . ( bi,bjZ.. . ) Will 
be considered an insertion or deletion, depending on the pomt of view. 
For display of an alignment, the null element A will be inserted in the 

I sequences to indicate insertions/deletions. Thus, the alignment A = 
{ ( a , ,  b 3 ) , ( ~ 2 ,  b4 ) , (a4 ,  b , ) }  for a = a1a2a3a4 and b = b,b2b3b4b, is dis- 
played 

Frequently, insertions/deletions of length greater than one are used. Then 
the display becomes 

A a, (12 a3 0 4  0 b ,  b2 b3 b4 A bs 

Similarity measures are based on two weight functions. The first, s( a,, bj), 
measures the degree of “similarity” between two elements a,,  bj. For ease of 
notation, let (ai, bj)  be known as a match of type k if it is assigned weight 
a k  : 

s(ai,  b j )  = ak.  

The other function necessary is w k 2  0, the weight assigned to an 
insertion/deletion of length k.  Now let h k  be the number of matches of type 
k and Ak be the number of insertions/deletions of length k. The similarity 
measure between a and b is then 

The first theorem provides an algorithm to calculate S. The statement in 
Needleman and Wunsch [l] is less general, unclearly stated, and does. not 
have a proof. 

THEOREM 1. Let S O i  = -wj, Sio= -wi,O I j  I m,O I i I n .  
If Sij= S(a ,a  ,... a,,  b ,b  ,... bj), then 

-/- s(a, ,  bj ) ,  max{Si , j -k-  k? 1 wk},  

Proof. Let A be an optimal alignment for a , .  . . a,, 6 , .  . . bj. There are 
three cases: (i) a, is matched with bj. Then the remaining sequences 
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a,  . . . a,- ,, b ,  . . . bJ- , must be optimally aligned and SI, equals 

s l - l , J - I + s ( a I ,  4 ) .  
(ii) a, is a member of an insertion/deletion of length k and SI, equals 

‘8-  k , J - w k *  

(iii) bJ is a member of an insertion/deletion of length I and SIJ equals 

‘ 1 ,  J - 1 -  wl* 

T. F. Smith and S. M. Ulam realized that for the purposes of taxonomic 
tree construction, it would be appropriate to have a metric D defined for 
biological sequences. The mathematical community was made aware of this 
problem by Ulam. P. H. Sellers learned of this problem and solved it in 
1972 [2]. 

As in our discussion of similarity we let (a,, b,) be known as a match of 
type k if it is assigned weight 

d(  4 )  = B k *  

Here, d is a “distance” between a, and bJ, and d is required to be a metric on 
the set of sequence elements. Sellers only allowed insertions/deletions of 
length one, but the generalization to insertions/deletions of length k was 
later made by Waterman et al. [6]. Deletions of length k are assigned weight 
x k  L 0. The distance measure between a and b is then 

k 

The next theorem was given in [6] and generalizes the work of Sellers [2]. 
The proof follows the general lines of Theorem 1, but the inclusion of longer 
insertions/deletions is more difficult. 

- and d is a metric on the set of sequence 
elements, then D is a metric on the set of sequences. Let Dio = x i  and Doj = xi 
for 0 I i I n,O I j I m. If Dij=  D(a ,a , . .  . ai, b,b , .  . . bj), then 

THEOREM 2. If x ,  I x 2  I 

D i - , , j - , + d ( a i , b , ) , ~ { D i , j - k + ~ k } ,  

min { Di-l, + x , }  ) . 
I 

Until recently [5], it was not known whether the Needleman-Wunsch 
algorithm and the Sellers algorithm were equivalent or not. This was largely 
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due to the differences in the way the algorithms were formulated and to the 
question not being clearly stated. Here the two algorithms are defined to be 
equivalent if given the weights for one algorithm there is a choice of weights 
for the second algorithm such that the set of alignments achieving the 
maximum value for Needleman-Wunsch is equal to the set of alignments 
achieving the minimum value for Sellers. The following theorem is con- 
tained in [SI. 

The Needleman- Wunsch similarity algorithm is equivalent to 
the Sellers algorithhz. The equivalence is established by setting 

THEOREM 3. 

Bz = max {a,} - a, 
J 

and 

xk= k/2max {aj}  + wk. 
i 

Proof. As above, let X i  = the number of matches of type i and Ak = the 
number of deletions of length k. The proof is based on the observation 
that 

n + In= 2 x X i +  x k h k .  
i k 

To be specific, suppose a Needleman- Wunsch algorithm is given. Let 

a,,, = maxai 
i 

and 

8. , = a,,,- ai.  

Then, 

=max a M x A i -  z/3,Xi- 
A ‘ i  i k 

But 
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n + m  
- a , T - m i n  z f i ,~ ,+x  - 

A { , ( . 2  
- 

Therefore, the algorithms are equivalent if 

f i .  = 
i a ~ - a i  

and 

Of course, not all choices of similarity ai will induce a metric d on the 
sequence alphabet. But the cases of interest are all included. For example, 
the simplest cases have 

s ( a , b ) =  0 if a # b ,  

= 1  if a = b  

and 

d ( a , b )  = 1 if a # b ,  
= O  if a = b .  

While d = 1 - s, we still must use x k  = k / 2  + w k .  

2. MAXIMUM SIMILARITY SEGMENTS 

Frequently two sequences which are, overall, no closer together than 
expected by random will have segments which are quite similar. For a 
sequence a = a ,a2 . .  . a,, a segment is defined to be a subsequence 
a,a,+, . . . aj where 1 c: i S j  5 n. After these similar segments are located, it 
is the task of a biologist to access their significance. 

This problem of locating similar patterns within two sequences has been 
worked on by Sellers [3]. His approach is via distance measures and is quite 
involved. Our own approach makes use of similarity measures and is 
simpler. See [4] for an announcement of this result. The connection between 
these two approaches is discussed in the section following this one. 
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As before, a = a l a 2 . .  . a, and b = b1b2. . . b,,, are two biological se- 
quences. We are given a similarity measure s(a, b) between two sequence 
elements and a deletion weight wk for deletions of length k. Define Hij to be 
the maximum similarity of two segments that end in a, and bj, or zero, 
whichever is larger. 

H i j =  max(0, S(a,a,+, ... a,, byby+, . .. b j ) :  1 I x I i and 1 s y  s j } .  

Zero arises from the view that negative values of Hij  represent less similar 
alignments than no association between the segments. 

THEOREM 4. Set Hi, = Hoj = 0 for 1 I i I n and 1 5 j  I m. Then 

Proof. The proof is similar to that of Theorem 1. If the best segments 
have an alignment with a, and bj matched, the value of Hij must be 

H i - l ,  j - 1 +  s(a;, b j ) .  

If ai is a member of an insertion/deletion of length, k, Hij must be equal to 

The case of bJ a member of an insertion/deletion is similar. Finally, HzJ 
equals zero if none of the above situations result in positive similarity. 

The pair of segments with maximum similarity is found by first locating 
the maximum element of H. The other matrix elements leading to this 
maximum value are then sequentially determined with a traceback proce- 
dure ending with an element of H equal to zero. This procedure both 
identifies the segments and produces the corresponding alignment. The pair 
of segments with the next best similarity is found by applying the traceback 
procedure to the second largest element of H which is not associated with 
the first traceback and which has an alignment ending in a match. 

Table 1 gives the matrix H for sequences AAUGCCAUUGACGG and 
CAGCCUCGCUUAG. Here s(a, b) = 1 if a = b, s(a, b )  = - 3 if a # b, 
and wk= 1 + k/3. The maximum element is HI0,*= 3.33 and the corre- 
sponding members of the alignment are indicated by underlined traceback. 
The maximum similar segments are 

- G C C A U U G -  
- G C C A U C G -  . 

which has five matches, one mismatch, and one deletion. 
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TABLE I 
Maximum Similarity Calculation 

A C A G C C U C G C U U A G  

A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
A 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 
A 0.00 0.00 1.00 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.66 
U 0.00 0.00 0.00 0.66 0.33 0.00 1.00 0.00 0.00 0.00 1.00 1.00 0.00 0.66 
G 0.00 0.00 0.00 1.00 0.33 0.00 0.00 0.66 1.00 0.00 0.00 0.66 0.66 1.00 

C 0.00 1.00 0.00 0.00 2.00 1.33 0.33 1.00 0.33 2.00 0.66 0.33 0.33 0.33 

c 0.00 1.00 
A 0.00 0.00 
u 0.00 0.00 
u 0.00 0.00 

G 0.00 0.00 
A 0.00 0.00 
c 0.00 1.00 
G 0.00 0.00 
G 0.00 0.00 

0.66 0.00 1.00 
2.00 0.66 0.33 
0.66 1.66 0.33 
0.33 0.33 1.33 

0.00 1.33 0.00 
1.00 0.00 1.00 
0.00 0.66 1.00 
0.66 1.00 0.33 
0.00 1.66 0.66 

3.00 1.66 
1.66 2.66 
1.33 2.66 
1.00 2.33 

1.00 1.00 
0.33 0.66 
2.00 0.66 
0.66 1.66 
0.33 0.33 

- 1.33 1.00 
1.33 1.00 
2.33 1.00 
2.33 2.00 

2.00 3.33 
0.66 2.00 
1.66 1.66 
0.33 2.66 
1.33 1.33 

- 

1.33 
0.66 
0.66 
0.66 

2.00 
3.00 
3 .00 
1.66 
2.33 

1.66 0.33 0.00 0.00 
1.00 1.33 1.33 0.00 
1.66 2.00 1.00 1.00 
1.66 2.66 1.66 1.00 

1.66 1.33 2.33 2.66 
1.66 1.33 2.33 2.00 
2.66 1.33 1.00 2.00 
2.66 2.33 1.00 2.00 
1.33 2.33 2.00 2.00 

3. CONCLUSION 

The problem of locating segments of maximum similarity is that of 
finding segments Io and Jo satisfying 

when I is a segment of a and J is a segment of b. The proof of Theorem 3 
shows 

S(a, b) + D(a, b) = aM(n  + m ) / 2 .  

From this it might seem that the problem of segments of maximum 
similarity is equivalent to finding min,,,D(I, J) but, if a and b have any 
elements in common, this minimum must be zero. 

From this discussion, it is clear that the problem is more difficult to 
approach through the distance measures. This is the approach taken by 
Sellers [3]. He first defines a mosr resembles a segment I of b locally if 

d(a,  I )  I d(a, L )  

and 

d(a, I )  5 d(a, J )  
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for all segment L and J satisfying L C Z C J C b. One of his algorithms 
gives all segments Z C b most resembling a locally. 

The final algorithm in [3] finds all segments I C a and J C b such that Z 
most resembles J locally. Applying the equality S + D = a,,,,n + m / 2 ,  it 
can be seen that maximum similarity segments are found by this algorithm. 
However, the algorithm for maximum similarity segments runs in half the 
steps and is a great deal easier to implement. In addition, the Sellers 
algorithm does not contain an intrinsic optimality criterion for choosing 
segments Z and J. Our algorithm orders the segments by the value of the 
similarity measure S. 

! 
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