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Summary. The sequence alignment algorithms of Needle- 
man and Wunsch (1970) and Sellers (1974) are com- 
pared. Although the former maximizes similarity and 
the latter minimizes differences, the two procedures are 
proven to be equivalent. The equivalence relations 
necessary for each procedure to give the same result 
are: 1, the weight assigned to gaps in the Sellers algo- 
rithm exceed that in the Needleman-Wunsch algorithm 
by exactly half the length of the gap times the maximum 
match value; and 2, for any pair of aligned elements, the 
degree of similarity assigned by the Needleman-Wunsch 
algorithm plus the degree of dissimilarity assigned by the 
Sellers algorithm equal a constant. The utility of the 
algorithms is independent of the nature of the elements 
in the sequence and could include anything from geo- 
logical sequences to the amino acid sequences of pro- 
teins. Examples are provided using known nucleotide 
sequences, one of which shows two sequences to be 
analogous rather than homologous. 
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Introduction 

Currently there are two major algorithms in the litera- 
ture directly applicable to comparing unaligned macro- 
molecular sequences. These are the algorithms of Needle- 
man and Wunsch (1970) and of Sellers (1974), the latter 
as generalized by Waterman, Smith and Beyer (1976). 
Both are designed to produce an optimum measure be- 
tween any two sequences as a function of the minimum 
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number of changes required to convert one into the 
other. 

Both may be viewed as an extension of the original 
Hamming (1950) sequence metric idea. The extension 
includes deletions and insertions as allowed changes in 
sequence elements, in addition to a change in the char- 
acter state of an element. Still excluded from analysis 
are duplication and inversion events. Fortunately, these 
latter two types of events, while well known for inter- 
gene or inter-chromosomal events, are rare for the intra- 
gene mutational histories so far investigated (see Fitch 
1977 for a documented epxption; intervening sequences 
within genes may also prove to be an exception). 

There are two major differences between the Needle- 
man-Wunsch and the Sellers algorithms. The most 
obvious is that the Needleman-Wunsch algorithm results 
in alignments having a maximum similarity measure, 
while the Sellers algorithm results in alignments having 
a minimal distance or metric measure of dissimilarity. 
The second major difference between them is in their 
origin. The first was the result of a heuristic approach 
to an important biological problem, while the second 
was the result of a search for a rigorous mathematical 
solution for the problem. 

It is the main purpose of the present study to dem- 
onstrate the distinctive as well as similar characteristics 
of these two methods for comparative analysis and, 
in particular, to note the existence of a set of condi- 
tions resulting in their equivalence. The conditions for 
equivalence are of great importance in understanding 
the applicability of these tools to various problems 
currently under investigation in molecular biology. 

The Measures 

In order to facilitate the comparisons between the two 
algorithms we will describe them rigorously using com- 

0022-2844/81/0018/0038/$ 01.80 



39 

patible notation. The actual matrix procedures used to 
implement these algorithms on modern computers is 
given in the next section. 

Consider two sequences, nucleotide sequences for 
simplicity, A and B of length n and m respectively, 
where A= al a2 a3 ... an and B = b, b, b, ... bm. An 
alignm&t between two such s6uences is defined as an 
ordered sequence of pairs, each pair containing one ele- 
ment from each sequence or an element from either se- 
quence and the null element, with the order of the orig- 
inal sequences preserved. Deletions or insertions (gaps)’ 
are indicated by alignment pairs containing a null ele- 
ment A. For example, the alignment: 

C A U G A A A C A A  A 
(‘41 1 C C U G U C C C A U U  

between two short nucleotide sequences contains two 
gaps, one of length three and one of length two. It also 
has five matching elements shown by underlining. 

Now for a given alignment, let X be the number of 
pairs containing identical or matched elements, p be the 
number of pairs containing non-identical or mismatched 
elements (excluding the null element) and % be the 
number of gaps of length k. Each match and each mis- 
match involves two elements one from each sequence, 
while each gap of length k involves only k elements from 
one sequence. Now since there are a total of n plus m 
elements in the two sequences, 

It must be noted that any unmatched terminal sub- 
sequence is always associated with a gap in the above 
definition of an alignment. This was not explicitly as- 
sumed in the original Needleman-Wunsch algorithm, but 
will initially be assumed here for simplicity. We will 
return to the less restrictive case later. Under this restric- 
tion the Needleman-Wunsch algorithm results in the 
alignment(s) given by a similarity measure, s, where 

s = maximum [X - C Wk %] 
k 

where wk is the weight or “penalty” associated with a 
gap of length k and the maximum is over all possible 
alignments. The quantity, s, is thus a measure of maxi- 
mum similarity minus gap penalties. 

The Sellers algorithm on the other hand results in the 
alignment(s) given by a distance measure, d, where 

1 While the term deletion might be mathematically preferable 
to describe a subsequence of k null elements, it is not deter- 
minable from a single pair of sequences whether the gap was 
produced by the insertion of k elements in one sequence or 
the deletion of k elements from the other. Thus we shall em- 
ploy the indifferent term, gap 

d = minimum [p t C wlk %] . (3) 
k 

Here wlk is a gap weight analogous to wk and d is a 
proper distance obeying the required metric properties. 
These are: for any two sequences A and B: 

0 d d(A, B) for all sequences A and €3 and zero if and 
only if sequenc; A isldentical to - B; 

d(A, B) = d(B, A) for all sequences A and B; 

d(A, B) < d(A, C) + d(C, B) for any third sequence - C. 
The last relation, the triangle inequality, appears critical 
if comparative sequence distances are to be used for 
taxonomic reconstructions. 

An equivalence between the Needleman-Wunsch and 
the Sellers algorithms is established via equation (1). 
Using equation (1) the maximization given in (2) can be 
rewritten as 

- - -  - -  - -  
“ - -  - N  

1 s = maximum { ‘9 - I-( - z (k + 2wk) Ak )14a) 

The alignment independent term may be moved outside 
the maximum to give 

n t m  s=- t maximum {-p - C (k/2 + wk) Ak 1 .(4b) 

Next, the maximum of a quantity can be replaced by 
the negative of the minimum of its negative to give 

s=- n + m  
- minimum {p + C (k/2 t wk) Ak }. (4c) 

Thus the alignments obtained for the Needleman- 
Wunsch maximum similarity, s, are identical to those ob- 
tained from the minimization of the quantity 

This is identical to the quantity minimized by the Sel- 
lers algorithm if the Sellers’ gap weight W‘k is equated 
to the Needleman-Wunsch gap weight plus half the gap 
length2. 

If the gap weight for the similarity measure were a con- 
stant independent of gap length, the gap weight for the 
equivalent distance measure would contain a term equal 
to half the gap length. 

The logic leading to relationship (5) can be general- 
ized to include matches and mismatches of varying 
degree3. Equation 1 can be written as 

2 Equation ( 5 )  would require, for some values of w‘k, the equi- 
valent p to become negative for large k. This, in fact, sets a 
lower bound on w’k as a function of k, namely, W’k 2 k/2 for 
all k 
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n t m = 2 Z q i +  Z k %  
i k 

i 

L 

where vi is the number of matches of degree i in an 
alignment. Here we consider each pair of associated 
elements to “match”, but to various degrees, q. Let- 
ting a perfect match have a maximum similarity of 
%ax and others a lesser degree down to a complete 
mismatch having a similarity of zero, one has 0 < 
ai < a,,,ax. The Needleman-Wunsch similarity measure 
can still be shown equivalent to the Sellers metric. If, 
in equation 2, we assign a weight ai to each match of 
degree i, then the similarity measure becomes 

s = max {Z ai vi - Z wkAk } . ( 6 4  

In a similar manner a weight or distance Pj can be as- 
signed measuring the degree of mismatch in the Sellers 
distance for any degree of match. 

d = m i n  (2P .s .  t Z W ’ ~ A ~ }  
J J  

Here 0. is just a distance measure between paired ele- 
ments in the alignment. Letting the relationship between 
ai and pi be 

J 

(7) 

will yield an equivalence between the optimal alignments 
produced by the two algorithms provided that the gap 
weights are related, as before, by 

w ’ ~  = wk + k am ax12 

Consider the case where the sequence lengths are 
equal (m = n) and wk > 0 (hence w ” ~  2 kamax/2). The 
minimum and maximum values of s are 0 and nomax. 
The corresponding values of d are 0 and nPFaX. If the 
weights have been chosen to make the algonthms equi- 
valent, they have the same bounds and for any given 
alignment, s t d = “amax. If the sequences are not of the 
same length, the lower bound of s is - (m - n)wmmn 
where m is the larger of the two lengths. This can be 
seen in an example of aligning poly Am to poly Tn 
where there must be n A-T mismatches and m-n A’s 
paired with the null element. The same phenomomon 
will raise the upper bound of d by the same amount to 

3 In protein sequences for example, the amino acids glycine and 
alanine could be considered to have a match value of 2 or a 
mismatch value of 1 based on the genetic code. Any basis (be 
it chemical or structural) could be used to generate values. 
Integral values are not required. Recognizing that transition 
mutations (A-G, C M )  are about twice as common as trans- 
versions relative to their expected frequencies, one could con- 
sider AG or CU mismatches at  a value of 0.75 while all others 
were set at 1.5 so that the sum of the mismatches has the 
same expectation 

nPmaX + (m-n)w’m-n. Thus, if the weights are equi- 
valent, s f d remains equal to “amax. 

The Algorithms 

, 

Both the Sellers metric and the Needleman-Wunsch 
similarity measure have simple iterative algorithms, 
particularly easy to adapt to computer analysis. As in 
the last section, both will initially be presented for the 
simplest case in whch any unmatched terminal sub- 
sequence is associated with a gap. 

The calculation of the Needleman-Wunsch similarity 
measure between two sequences A and B of length n 
and m require an n + 1 by m t 1 matrix, S .  The fol- 
lowing equation gives the algorithm for calculating 
element S. .  4 

Here a (ai, b.) is one of ai values reflecting the degree 
to which the Jith element of sequence A matches the jth 
element of B. The algorithm is initialized by setting 
so, = SkO = - Wk. Equation (8) follows from the fact 
that in any alignment, ai is either associated with b. 

J ’  

or a null element in a gap; 

s . .  - w  1,J-k k 

with weight wk, and finally element b. is either associ- 
J ated with ai or a null element in a gap, 

s. . - w  l-k,J k . 

The maximum similarity measure, with weighted un- 
matched end sequences is just the value in the last cal- 
culated element Sn m .  

The original Nkedleman-Wunsch measure did not 
weight any unpaired terminal subsequences, in other 
words they were not associated with a terminal gap in 
the other sequence. This original measure is obtainable 
from equation (8) if the matrix is initialized to So, = 
Sko = 0 rather than to -wk. Under these conditions the 
measure is the maximum valued matrix border element 
from Sm and S. . , .  The relationship of this measure 
to the Sellers metric will be discussed below. 

In a manner analogous to the definition of the 
similarity matrix S, Sellers defined a distance matrix 
D. The algorithm for its generation is given by 
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The algorithm is initialized by setting Do, = Dko = Wk’. 
Equation (9) follows from logic identical to that for 
equation (8). And as in the similarity measure algo- 
rithm, the Sellers metric distance is given by the last 
calculated element Dnm . 

Sellers (1979) noted, as in the original Needleman- 
Wunsch case, that the distance matrix can be initialized 
with all zeroes or zeroes associated only with the longer 
of the two sequences under analysis. This latter sug- 
gestion is important, for the proper question may not be 
to find the minimum distance between a short fragment 
and a long sequence, but rather to find a segment of 
the longer sequence which is minimum distance from 
the fragment. This, Sellers (1979) showed, was ac- 
complished by initializing Do* = 0 for all P associated 
with the longer sequence and DkO = wk’ for k associ- 
ated with the shorter fragment. The distance is then 
given by the minimum Dn Q value . 

The alignments associated with any of the above 
measures are obtained by tracing back through the S 
(or D) matrix to obtain the correlated pairs. Algorith- 
mically, this can be done simply by calculating a second 
matrix simultaneously with the first. The elements 
of the second matrix record which terms in equations 
(8) (or (9)) contributed to the calculation of Sij (or 
D..). In particular, if this is done on a computer with 
“packed words” the length of the involved deletion(s) 
can be recorded as well. 

Before leaving this discussion of the algorithms, it 
is important to note the mathematical consequences 
of not weighting unpaired terminal subsequences. Sup- 
pose three short sequences of equal length, A, B, and C, 
have optimal alignments associated with Sell& aistances 
D(A,B), D(A,C) and D(B,C) that require no deletions. 
Consider two longer sequences A’ and B’ containing as 
end sequences the A and B seque?;ces reGectively. Now 
given the triangle-inequality holds for 4, Iz, and C, 
and the unpaired terminal sequences among A’, B’, 
and C’ go unweighted, one could have 

4 

1J 

- -  
5 

D(A: C) = D(A, C), 
D(B’, C) = D(B, C), 

and 

D (A’, B‘) > D (A, B), 

which permits 

D (A’, B’) > D (A’, C) + D (B’, C). 

This possible violation of the triangle inequality raises 

4 Setting both boundaries to zeroes and identifying the distance 
measure with the last calculated element Dnm, gives a non- 
weighting to unmatched terminal subsequences only at the 
beginning of the sequences 

some question as to the mathematical interpretation of 
measures that do not weight unmatched terminal sub- 
sequences. 

The dependence of the optimal alignment on the 
value assigned to wk (and hence to w’k) is illustrated 
in the following example. Consider the sequences 
GCAGAGCACU and GCUGGAAGGCAU. If unpaired 
terminal subsequences are weighted (associated with null 
elements), then, for all wk 2 1 .O, the alignment 

G C A G A A A G C A C U  

G C U G G A A G G C A U  - - -  - - -  

is obtained. This alignment contains six matches and 
an internal gap of length two. The traceback giving 
this alignment is identified in Fig. 1 which displays 
the equation 8, D matrix for this example. If unpaired 
terminal subsequences are not weighted, not associated 
with a gap, then the alignment, 

G C A G A G C A C U  

G C U G G A A G G C A U  , - - - - -  

A 

G 

C 

U 

c 

G 

A 

A 

ti 

G 

C 

A 

U 

A G c A G A G c A c u 

0 1.6 2 . 2  2 .8  3 . 4  4.0 4.6 5.2 5 .8  6 . 4  7 . 0  

1 .b20  1 . 6  2.2 2 .8  3.4 4 . 0  4 . 6  5.2 5.8 6 . 4  

2 .2  1.6\0 1 . 6  2 .2  2 .8  3 . 4  4 .0  4 . 6  5.2 5.8 

2 . 8  2 . 2  1 . 6  1 .0  2 .6  3.2 3 .8  4 . 4  5 . 0  5.6 5 . 2  

3 .4  2 . 8  2 .2  2.6\1.0 2 .6  3.2 3 . 8  4 . 4  5.0 5 .6  

4 . 0  3.4 2.8 3 . 2  2 . 6 1 : :  2 .6  4 .2  4 .8  5 .4  6 . 0  

4 . 6  4.0 3 .4  2.8 3.2 3.0 3 .6  4.2 5 .8  6 . 4  

5 . 2  4 . 6  4.0 3 . 4  3 .8  3.2 3 .6  4 . 0  3.6 5 . 2  5.8 

5 . 8  5 . 2  4 .6 5 .0  3 . 4  4 . 8  3 .2  4 . 6  5.0 4 . 6  6.2 

6 . 4  5 .8  5 .2  5.6 5.0 4 . 4  4.8\4.2 5.6 6 .0  5.6 

7.0 6 .4  5 .8  6 . 2  5.6 6 .0  5.4 4 . 8  5 .2  5.6 7.0 

7 .6  7 . 0  6 .4  5 .8  6 .2  5 .6  6 .0  6 . 4  4.8 6.2 6.6 

8.2 7.6 1.0 1 .4  6 . 8  7.2 6 . 6  7 . 0  6.4 5.8 6 .2  

2 

\ 

% 

2 
\ 

Fig. 1. An example D matrix for sequences GCAGAGCACU and 
GCUGGAAGGCAU showing traceback for optimal alignment 
A2. The values for 0 and wk’ used here were, P = 1.0 if ai + bj 
and zero otherwise and wk‘ = 1.0 + 0.6 k. Since we are weighting 
gaps at the ends of the sequence, the traceback begins in the 
lower right-hand cell which contains the distance measure (6.2). 
The traceback follows the c o m e  shown by the arrows. Although 
an algorithm is easily written that would find this path from 
these values, that is computationally very inefficient compared 
to storing, as the D matrix is created, the cell(s) whose Dij 
value contributes to  the value of  an ensuing D value 
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which contains only five matching element pairs is ob- 
tained for all wk > 1 .O. 

If the gap wk is equal to (or just less than) unity, 
alignment A2 is obtained regardless of whether un- 
matched terminal subsequences are weighted. If wk 
is much less than unity for k < 2, the optimal align- 
ment has eight matches 

G C A A G A A A G C A C U  

G C U G G A A G G C A A U  644) 

This latter alignment represents the degenerate case 
where gaps have been inserted “at will” to maximize 
matches. This procedure, which has been used in the 
past, is of questionable value if genetic history is being 
investigated. Its most glaring fault is the frequent in- 
troduction of two gaps to attain only one extra match. 

Finally, before looking at any particular biological 
applications, the statistical behavior of these measures 
should be noted. To begin with, there is no known 
analytical means of calculating the probability of a 
given number of matches produced by these measures 
as a function of composition and wk. Only between 
infinitely long sequences in which gaps are not con- 
sidered can we state the expected matching probabilities 
as simple functions of sequence element composition. 
Thus Monte Carlo methods seem the best. For ex- 
ample, the distribution of matches among twenty 
random comparisons between two sequences of length 
twelve of uniform nucleotide composition calculated 
for two different gap weightings are given in Table 1. 

Applications 

Assigning gap weights and deciding whether or not to 
weight unpaired terminal subsequences are important 
considerations in the application of these algorithms. 
There are two general rules. First, if one is attempting 
to obtain a measure of genetic distance between two 
equivalently defined sequences (presumably homol- 
ogous), all unpaired elements should be weighted as 
gaps. 

The second general rule arises from the following 
considerations. The evolutionarily effective substitution 
of one nucleotide for another is considerably more 
common than the successful insertion or deletion of 
one or more nucleotides. Thus the “penalty” for a gap 
should be greater than the value of an added match 
achieved or a single mismatch avoided. The same ratio- 
nale also requires, for the same degree of matching, 
that a single gap of k residues should be preferred to 
multiple gaps with a total of k null elements. The 
second general rule then is to make wk > amax. How- 
ever, beyond these two rules there are no obvious fixed 
and hard rules for assigning these weights. 

A good example of an analysis requiring additional 
nonsequence information to resolve these problems is 

Table 1 .  Distribution of Sellers metric as a function of 
gap weight 

A B 

wk’ = 0.9 + 0.5 k 

freq distance freq distance 

wkP = 1.0 + 0.6 k 

1 
1 
4 
3 
2 
2 
3 
1 
1 
2 

8.8 
8.0 
7.8 
7.7 
7.6 
7.0 
6.8 
6.7 
6.6 
6.0 

1 
1 
1 
1 
3 
3 
1 
3 
1 
1 
3 
1 

~~ 

10.6 
9.8 
9.4 
9.2 
9.0 
8.4 
8.2 
8.0 
7.6 
7.2 
7 .O 
6.4 

meancstd. div. 7.3k0.8 8.3cl. l  

These distances were calculated by equation (9) for 
the two weighting functions given, between the sequence 
ATCGATCGATCG and twenty random shufflings of the 
same. The average distance increases with wk’as expeo 
ted. The large deviations here are in part a result of the 
shortness of  the sequences used, but as noted in the text, 
the sigmas for longer sequences, up to one hundred, still 
have vahes near ten percent. Equivalent wk values are 0.9 
and 1.0 + 0.1 k for A and B respectively 

found in the recent work on the cytochrome’s c by 
Dickerson (1980a, 1980b). Direct application of the 
Sellers or Needleman-Wunsch algorithms to the broad 
range of taxonomic units analyzed results in little con- 
sistency and low homology. This is, perhaps, to be ex- 
pected considering the time since divergence of the 
various lines of descent. However, if the various struc- 
turally equivalent sites within these functionally equi- 
valent molecules are identified and the sequence com- 
parisons constrained within them, considerable inter- 
pretable homology is observed. For example, there is a 
cysteine-histidine amino acid pair in the first third of 
all cytochromes and an associated methionine in the 
last third. These sites are absolutely functionally equi- 
valent as the heme-binding side-chain amino acids. 

The incorporation of such functionally prealigned 
sequence elements is rather straightforward. For ex- 
ample, the cytochrome sequences studied by Dickerson 
can be expressed as 

X, ... Xn-l Xn CHYIY, ... Ym-l Ym M ZlZ2 ... Z, 

three subsequences separated by the cysteine-histidine 
pair and the methionine, heme binding amino acids. 
A sequence comparison between any pair of cyto- 
chromes, C and C‘, thus reduces to three shorter se- 
quence comparisons: a “Y” or mid sequence com- 
parison in which the D or S matrix boundaries are set 
to weight unpaired terminal subsequences as deletions 
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5 ‘  

5 ’  

A A T C T C A A[27 NUCLEOTIDESIG A A C A C G C C G C C T C T T C T 

G C G G T C A G[NO NUCLEOTIDESIA A A T C C G C C G A C T C T A A A 
3’  

3 ’  
(A51 

- - - - -  - - _ _  - -  

5’ 

5’ 

T C T C[27 NUCLEOTIDESIG A A C A C G C C G C C T C T T C T 

G C A A[NO NUCLEOTIDESIG G T C A G T C C G C C G A C T C T 

3’  

3’  (A61 
- - - - -  - - -  - - - -  

or gaps, the value of the measure is given by D m , ~  or 
Sm?&; a “X” or leading subsequence comparison in 
whch the D or S matrix boundaries are set to zeroes 
but where the measure is still given by the Dn,; or 
S,,; matrix element (this has the effect of not weight- 
ing as gaps unpaired initial elements but weighting any 
trailing gaps between the “X” region, and the fmed CH 
amino acid pair.); finally a “Z” terminal subsequence 
comparison in which the D or S matrix is initialized 
to weight all initial unpaired elements as gaps but where 
the measure is the minimum (as a function of Q) Dk,g 
or DQ k matrix element, thus not weighting the trailing 
unpaired elements. 

The cytochrome-c studies of Dickerson also demon- 
strate a second problem in the choice of algorithm 
parameters. This is in choosing the distance measure 
0 between sequence elements and its corresponding 
similarity a given in equation (7). Initially one is tempt- 
ed to measure the distance between the amino acids 
in terms of the underlying genetic code. However, with 
the additional information on the molecule’s three 
dimensional structure and the relative high probability 
(over the taxonomic range from blue green algae to 
tuna) of multiple nucleotide substitutions at any given 
site in the cytochrome gene, a measure of amino acid 
distance in terms of their physical-chemical similarity 
proved rather useful (Dickerson 1980b). This is no 
doubt a result of the fact that the structural require- 
ments of the various protein regions constrains, to 
some degree, the acceptable amino acid replacements. 
One might therefore well use a measure of distance 
obtained by subtracting the values of the log-odds 
matrix (Fig. 84, Dayhoff et al. 1978) from 17 to get a 
set of values ranging from zero to 25 that are related 
(exponentially) to the likelihood of finding a particular 
pairing of amino acids, if they indeed had had a common 
ancestor. 

In a recent comparison of phage DNA replication 
initiation regions (Sims et al. 1979), an alignment was 
obtained by keying three nucleotide positions. These 
were the actual replication origin, a 5’ adjacent gene 
terminator and a 3‘ adjacent AUG initiation codon. 
Unfortunately, the alignment procedure used was stated 

~ 

, as “inserting occasional gaps to maximize homology5 .” 

I 5 The word homology here refers only to matches and therefore 
is in a strict sense not used as a measure of total similarity as 
measured by the S matrix given by equation (8) 

Such a procedure is capable in the extreme of maximiz- 
ing the number matches. However, even this goal can 
rarely be optimized by hand. For example, the align- 
ment, A5, proposed by Sims et al. (1979, Fig. 9) for a 
region of the H gene of st-1 (upper row) and G4 (lower 
row) phase, contains 4 gaps and 11 matches. Using the 
Sellers D metric and not weighting as gaps unpaired 
terminal subsequences at the 3’ (rightward) end one 
obtains the alignment, A6, which contains 12 matches 
and only one internal gap which was weighted rather 
heavily at W’k equal to 1 .OO t 1.10 k. Thus the simple 
“looks reasonable” approach is clearly unacceptable. 

Finally there is the recent study by Rosenberg and 
Court (1979) aligning 46 antisense strand promotor 
regions with no gaps or deletions. Here again an attempt 
was made to key the alignment to an invariant position, 
the “invariant T” in the sixth position of the so called 
“Pribnow box”, TATAATG (Pribnow 1975). While 
these alignments are approximately correlated with a 
function site, that of mRNA initiation, the presumed 
start site is not always clearly known and there was 
permitted to be anywhere from four to eight nucleotides 
between the invariant T and the first nucleotide tran- 
scribed. A number of the proposed alignments show 
only two additional matches in the Pribnow heptamer 
given the ‘invariant T’, although over the entire data set 
analyzed by Rosenberg and Court, the alignment on this 
position leads to a high overall correlation with other 
Pribnow positions. 

Such statistics do not imply directly any significance 
or lack thereof to the “Pribnow box” but do point out 
difficulties of keying an alignment on a site of uncertain 
functional equivalence. A number of alignments ob- 
tainable from among the known 46 promotor regions 
studied by Rosenberg and Court (1 979) demonstrate 
the problems of alignments without reference to well 
fixed ‘key’ positions. For example, the A PRE region 
(Rosenberg et al. 1978) contains three potential Pribnow 
sequences, each with four matches (see alignment A7). 
None of these “Pribnow” sequences with underlined 
matches corresponds to the proposed (Rosenberg and 
Court 1979) subsequence which is overlined, and con- 
tains only three matches. This overlined subsequence 
is preferred by Rosenberg and Court by virtue of its 
position relative to* the starred mRNA transcription 
initiation site(s), A8, which is not unambiguously 
defined. Moreover, even if the initiation site is unam- 
biguously defined, its placement relative to the “in- 
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** . . . .AACCATATGTAAGTATTTCCTTAGATAACAATTG . . 
TATAATG 

* . . . . . TTTGTTATGCTATGGTTAT. . . . . 
TATAATG 

ACACTTTATGCTTCCGGCTCGTATGTTGTGTGGTATTGTGAGCGGATAACAATTTCA 

ACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGT~AATTGTGAGCGG _______-------------------------- _-__---____ 

variant T” is not. In the case of GalP,, Rosenberg and 
Court propose that the Pribnow box is as shown in 
alignment A8 by the overlining. But there is a second 
Pribnow heptamer shown below the gap2 sequence 
having one additional matched nucleotide, including 
the “invariant T”. The only drawback to this alterna- 
tive would appear to be that there are 9 nucleotides 
between the “invariant T” and the transcription initia- 
tion site (shown by the * in A8) while all the other 
45 alignments have at most 8 nucleotides between them. 
We know of no reason, however, that the range of these 
two sites must be limited to that range and Rosenberg 
and Court do not claim that that limited range was an 
a priori assumption in their alignment procedure. 

The total promotor regions can be examined for op- 
timal alignments without requiring that there be a T 
five to nine nucleotides 5’ of a presumed initiation 
site. For example, q5Xl74D and q5X174B promotor 
regions give an optimum alignment, A9, with a Wk of 
1.0 t 0.6 k and the unpaired ends not weighted. This 
gives 32 matches, a Sellers’ d of 29.6 and a Needleman- 

The proposed alignment of Rosenberg and Court, which 
does not contain any deletions, has 15 matches, almost 
exactly what is expected for the random case, for the 
given base composition. This in fact is the rule among 
both the proposed alignments as well as among three 
hundred optimal alignments obtained using equation 8. 
In fact much higher homologies were found among 
many of the random shuffled sequences! 

There are exceptions within this data set of 46 pro- 
motor regions to this near pairwise comparison random- 
ness. In particular two Lac promoters contain a contig- 
uous sequence of, length 45 with 44 matches. This align- 
ment, A10, is obtained for any gap weighting, Wk greater 
than or equal to unity. This alignment and its associated 
Sellers’ distance of one is more than ten standard devia- 
tions away from the mean value of 22.0 among compari- 
sons between shufflings of these two sequences! Thus 
while the proposed alignment, A1 1, keys on the “in- 
variant Pribnow T” and/or the mRNA initiation site, the 
19 matches are only what would be expected at random. 

Wunsch measure s of 24.4. Neither of these values are 
more than 0.8 standard deviations away from the mean 
of measures between the q5X174D and twenty random 
shufflings of q5Xl74B. Note both the proposed Pribnow 
sequences have a T associated with the “invariant T”. 

This last example points out the fact that even the 
use of keyed positions of functional equivalence (here 
the mRNA initiation site) cannot be used to define an 
optimal alignment without investigating the non-keyed 
similarity statistics first. 
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Discussion 

The procedures described here are general in that they 
apply to any pair of linear sequences whose elements 
must remain in their original order but must otherwise 
be optimally aligned. For example, geological strata 
from different localities may be aligned to determine 
which strata are equivalent (Smith and Waterman 
1980). 

The procedures are also generalizable to higher 
dimensions, that is, it is possible to  align three or more 
sequences simultaneously. This would seem desirable 
in view of the fact that the three optimal alignments of 
three sequences examined in all possible pairs need not 
give a set of mutually consistent gap placements. Our 
experience suggests, however, that even sequences of 
moderate length (< 100) require large amounts of com- 
puting space and time when done three dimensionally. 

The procedures are further generalizable in that wk 
need not be a linear but simply a monotonically in- 
creasing function of k. We generally use the form wk = 
w t kwQ where w is a gap penalty regardless of lengths 
and wQ is a penalty on the length (k) of the gap, but one 
could use wk = w t wQ f(k) where f(k) is a polynomial 
in k. For alignments involving multiple sequences, this 
may involve gaps of different lengths (k and k’) opposite 
each other (see Fitch and Yasunobu 1975), in which 
case the positive difference between wk and wlk should 
be used for the value of the gap. 

Finally, one can generalize the weights by the addi- 
tion of other weights. It has been observed that tandem 
repeats are frequently associated with the need for gaps 
as if tandem repeats facilitated unequal crossing over. 
One might therefore wish to reduce the value of wk by 
some function of k (for example by kw, where w, 
was a constant less than WQ) so that Wk = wg + kw, - 
kwr where w, = 0 unless a tandem repeat is present. 

Optimality is necessarily achieved by the algorithm 
but that should not mislead the user into thinking that 
the resulting alignment (or its significance) corresponds 
to some external reality independent of the weight 
assigned to the gap. Alignments A2, A3 and A4 are all 
optimal and make clear that a judicious choice of gap 
weights is required. One is constrained by the fact, 
for protein and nucleotide sequences, that the more 
distantly related the sequences are, the greater the 
distance between gaps must be to provide a sufficient 
number of paired elements to make that alignment 
significantly more similar than an equal number of pairs 
of randomly chosen elements. This suggests that one 
should then have a high gap weight to prevent an over- 
abundance of gaps. On the other hand, the more distant 
two homologous sequences are, the more gaps its true 
history is likely to require and the smaller the likely 
interval between legitimate gaps on the average. This 
suggests a low gap weight. It is thus necessary to make a 
compromise between competing desiderata, a com- 
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promise that appears to be an uncertain function of the 
distance between the two sequences being, compared. 
Apart from the two general rules given in the applica- 
tions section, our experience suggests that for amino 
acid sequences, whose similarities are the maximum 
possible nucleotide matches for optimally chosen 
codons for the paired amino acid elements, a gap weight 
of wk -3 appears reasonable. For nucleotide sequences, 
a wk -1 .I appears reasonable. 

It is not possible to avoid a decision on an ap- 
propriate gap weight. All alignments that are optimal 
by some objective criterion require a gap weight. To 
ignore gaps in determining the similarity (or distance) 
measure is in fact a decision to  set wk = 0. 

There are values of w’k that imply a negative value 
of wk. If the gap weight for the distance measure were 
a constant, independent of gap length, the gap weight 
for the equivalent similarity measure would contain a 
term that decreased as a function of gap length, going 
negative for values of Wk for k > 2w’k. 

This curious, counter-intuitive relationship can be 
made to seem more reasonable if one considers the 
example of an alignment in which the m elements 
of the first sequence are aligned to a single gap of m 
null elements and, following the last element of the first 
sequence there is a second gap of n elements to which 
the elements of the second sequence are aligned. It 
would seem undesirable for such an alignment of two 
sequences to have any similarity, even if one is com- 
pletely indifferent to the presence of gaps. If there 
is no deletion weight in a Needleman-Wunsch com- 
putation, wk = 0, then the bracketed term of (4c) 
equals (n + m)/2 and the similarity takes the reasonable 
value of zero. That wk should equal zero is not un- 
reasonable since no amount of judicious gapping can 
increase the similarity beyond (n t m)/2 because the 
bracketed term of 4c is subtracted therefrom. 

Now if wk = 0 can be viewed as indifference to the 
presence of gaps, equation (5) implies that W’k = k/2 
is also indifferent. This value, used in equation (3) 
leads, for the alignment in the previous paragraph, to a 
distance d = m t n, again a reasonable value. Note that 
W’k = 0 leads to a distance of zero for the same align- 
ment, a most unreasonable result and indicates that 
values  of^'^ < k/2 will tend to promote the introduc- 
tion of gaps into an alignment. 

These algorithms give two results, an alignment, 
with its measure, and, through scrambling of the se- 
quences, an estimate of the significance of that align- 
ment. A high significance only states that the resultant 
alignment is far from random, not that the proposed 
alignment is biologically meaningful. For example, 
setting wk = 0 in a comparison of human alpha and beta 
hemoglobins gives a result of great significance. How- 
ever, the alignment has many gaps in it with many 
amino acids in one sequence paired with amino acids 
in the other that no molecular biologist would agree 
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were pairs sharing a common ancestral codon. If wk = 3 
however, we get the presumably correct gaps in their 
correct places including, if terminal gaps are weighted, 
the gap of one residue between the first and second 
residue of the alpha hemoglobin. The significance of 
this alignment is also higher, but the point is that while 
a high significance implies that the sequences are similar, 
it does not, by itself, indicate that resultant alignment 
is itself optimal in some biological sense. 

The problem of the interpretation of a significant 
similarity is more profound than a simple concern for 
a possible alternative alignment with still greater signif- 
icance. It is a commonplace for investigators to conclude 
that significantly similar sequences are honiologous 
which, since before Darwin’s time, has meant that the 
two features (sequences in this case) shared a common 
ancestor. This ignores the possibility that the sequences 
are analogous and thus possess their similarity as a result 
of convergence. This latter alternative seemed unlikely 
in the past, but the present results on the lac promoter 
show it to be quite possible. 

There is no way, in the face of alignment A10, that 
Rosenberg and Court’s alignment A l l ,  of two Lac 
promoters, can be said to be an homologous alignment. 
Nevertheless, there is reason to believe in the functional 
equivalence of the region from the proposed Pribnow 
box to the initiation site in the two sequences. Aligning 
them on that basis, in opposition to the more favorable 
alignment indicated in A10, gives 9 matches in the 13 
nucleotides over that region, a rather significant result. 
There are only 10 additional matches in the remaining 
44 nucleotides. To some degree, the result may be an 
accident in that the same sequence has two neighboring 
regions that are very promoter-like, A-T rich. But there 
is no evidence that either of these genes has two pro- 
moters operating and the T-A difference in the A10 
homologous alignment is a change necessary to get the 
ninth nucleotide match in the A1 1 functional alignment. 
Thus, it appears that the significant sequence similarity 
shown in these promoter sites must be analogy, not 
homology. Clearly the observation of similarity and the 
inference of homology from that observed similarity 
should not be confounded by using homology to mean 

both the observation and the inference. It is equally 
clear from the lac promoter case that similarity is not 
per se sufficient to prove homology vis-a-vis analogy 
and that both homology and analogy occur in biol- 
ogical sequences, even in the same sequence. Worse 
yet, one cannot generally expect that the truly homol- 
ogous sequence will be located near the analogous se- 
quence and thereby rescue the investigator from a 
false inference. 

It frequently arises that there is more than one 
alignment that yields the same optimal s or d value. 
These alignments usually have regions common to all 
alternatives as well as regions whose alignment is not 
unique. We are currently modifying our algorithm 
so as to identify these “locked” regions. 
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