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COMPUTATION OF GENERATING FUNCTIONS FOR 
BIOLOGICAL MOLECULES* 

J .  A. HOWELL.+ T. F. SMITHS AND M. S. WATERMANC 

Abstract. The object of this paper is to give algorithms and techniques for computing generating 
functions of certain RNA configurations. Combinatorics and symbolic computation are utilized to calculate 
the generating functions for small RNA molecules. From these generating functions, it is possible to obtain 
information about the bonding and structure of the molecules. Specific examples of interest to biology are 

I given and discussed. 

1. Introduction. Our interest in this paper is in describing the intra-molecular 
bonding that takes place within a single-stranded RNA in solution. This problem is of 
significant importance in biology and has been the subject of several previous studies 
(see [SI for references). The approach we take is unique and a description of the 
approach is given after a discussion of the bonding of interest. 

The linear sequence of bases of an RNA is said to be its primary structure. These 
bases are adenine (A) ,  guanine (G), cytosine (C), and uracil ( U ) .  The primary structure 
of an RNA, then, is a word over an alphabet of four letters. When the only bonds of an 
RNA are those of the primary structure, the RNA is said to be a random coil. 

An RNA does not usually remain a random coil. Instead, it folds back on itself and 
forms new bonds, creating helical regions. The usual pairing (or bonding) rules to create 
these helical regions are: An A can bond with a c/ and a G with a C forming what are 
known as Watson-Crick base pairs. This bonded folding of the RNA primary structure 
is referred to by biologists as secondary structure. Other less restrictive, non-Watson- 
Crick, bonding interactions result in what are referred to as tertiary foldings. Our 
concern here is to describe and explore the secondary structure folding only. We now 
give a mathematical definition of secondary structure. Let s = s1 s2 - - - s. be the RNA 
sequence. In addition to the requirement that adjacent bases are bonded (primary 
structure), secondary structure requires that (i) each base can be bonded to at most one 
other non-adjacent base and (ii) si and si form a bond only if they satisfy the 
Watson-Crick pairing rules and (iii) if s, and s, are bonded, then any bonding of sk, 

i < k < j ,  must be with SI, i 1 < j .  This last condition prohibits certain unobserved knot 
structures [SI. 

For an example, consider s = AACGGGCGGGACCCUUCAACCCUU. A 
secondary structure for this word is given in Fig. 1. The unpaired regions I1 and I are, 
together, called an interior loop, and the unpaired A near 111 is calIed a hairpin loop. 

Our approach to the problem of secondary structure is to utilize generating 
functions. Our generating functions correspond to the partition functions of statistical 
mechanics. The partition or generating functions for simpler situations, such as con- 
sidered by Poland and Scheraga [7], have required much effort to extract the infroma- 
tion of interest. Here, we utilize combinatorics and symbolic computation to obtain the 
generating functions of small molecules. Then the desired information can be read 
directly from the generating function. Even for the simplest molecules of interest, this is 
the first time such calculations have been performed. As will become evident, a 
computer is essential in performing the analysis. 
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I 1  
A-U 

FIG. 1. A secondary structure for AACGGGCGGGACCCUUCAACCCUU. 

2. Combinatorics. In this section, we consider the number of secondary structures 
of various types. Our aim is to introduce concepts and techniques useful for the 
generating function and to indicate the large number of possible structures. For 
simplicity, we will not handle a specific RNA with associated pairing rules. Instead, all 
bondings will be considered possible. (In the next section this assumption will be 
dropped.) Algorithms based on the same ideas as this section have been independently 
developed for secondary structure prediction [lo]. 

THEOREM 1. Let R(n)  be the number of secondary structures for a molecule of length 
n. Then 

n-1 

j - 1  
R(n + 1) =R(n)+  R ( j -  l )R(n  - j )  

where n 2 2 and R(0) = R(1) = R (2) = 1. 
Proof. The only secondarystructure for n = 1 or 2 is the random coil. Assume R(k)  

is known for 1 d k S n. For a molecule of length n + 1, either n + 1 is not paired or it is 
paired with j where 1 S j  5 n - 1. This implies 

n - I  

j - 1  
R(n + 1) = R ( n ) +  1 R ( j -  1)R(n - j ) ,  

- ( j  - 1) and ( j  + 1) - ( j  + 2) -. since the strings 1 - 2 -. 
secondary structure. (See Fig. 2.) 

- n are free to form any 

n - 1 n+l  

1 '  

FIG. 2. The configurarions of 1 - 2 -. . . - ( n  + 1 ). 

For our next result, we examine R ( n )  in more detail. Our interest is in how many 
members of R ( n )  have i bonds (or pairs). Let 

S" = (s;, s;, . . .) 
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where 

if i = 0. 
number of secondary structures with i bonds 

for a molecule of length n, if i > O .  

Also define a shift operator 
product of a and b by c = a * b where 

by [ (ao ,  u t ,  a2,. . - 1  = (0, UO,  a t , .  . and the Cauchy 

m 

c, = 2 sib,-,. 
i =O 

THEOREM 2. We have 

so = s1 = s2 = (1,0,0, . . .) 
and for n 2 2. 

The form of Theorem 2 is similar to Theorem 1. This result can be considered a 

Proof. The only structure for n = 1,2  is the unpaired string, so S' = S' = (1.0, . .). 
In general, n + 1 is unpaired or n + 1 is paired with j ,  1 S j  5 n - 1. If n + 1 is 

unpaired, s:+, structures exist with i + 1 bonds. Otherwise, n + 1 is paired with j ,  and i 
additional bonds are needed. If there are k bonds in the structure for 1 - 2 - -  . 
- ( j - l ) ,  then there must b e i - k  bonds in the structure for ( j +  1 ) - ( j + 2 ) - -  . * - n .  
Thus 

vector generalization of the Catalan numbers. 

The term in parentheses is the ith coordinate of Si-' * Sn-' and the result follows. 
AS illustration, we calculate s", SI, - . ,s6. 

* 
so = s' = s2 = (1,0,0,0, . * .), 

s3 = ( 1 , ~  0, 0, . . .), 
S4=(1,3,0,0; . . ) ,  

Ss = (1.6, 1,0, * *), 

and 

S6, for example, indicates 1 unpaired structure, 10 structures with one bond, and 6 
structures with two bonds. Also, 

R(6)=  1 s p = 1 + 1 0 + 6 = 1 7 .  
I PO 

The corresponding structures for S" are shown in Fig. 3. 
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( a )  (b) (c) 

FIG. 3.  Secondary structureson 1-2-3-4-5-6.4a) Random coil, (b) rhe 10 single-bond structures, (c) rhe 6 
double-bond srrucrures. 

3. Generating functions. In this section we wish to consider the computation of 
generating functions of a given molecule of small or moderate size. We treat configura- 
tions possible for a given molecule by imposing specific pairing rules. The generating 
function is a polynomial whose terms indicate the number of possible structures with 
certain configurations. As mentioned above, the concept of generating function in 
mathematics corresponds to the concept of partition function in statistical mechanics. 

To begin with, we consider AU and GC pairs but other structural components 
(such as adjacent bonds, bulges and loops) are ignored. No loops of length less than m 
are allowed. (This is the only structural constraint imposed.) Let s = sls2 . * sN be the 
given RNA of length N and define 

a, if {si, si}  = {A, U}, 
Pi, = PI if {sa. si) = {C, GI, 

This definition reflects the pairing rules given in the introduction. Sometimes GU bonds 
are included but we have omitted them for speed of computation. Conceptually, they 
are easily included. 

i 0, otherwise. 

Next we define the generating function, ZI.N, for s = sls2 . . . sN by 

z1.N = E a i k a i B k ,  

where a j k  is the number of secondary structures for s with j A U ( a )  bonds and k GC(P) 
bonds. 

In order to illustrate the concept of the generating function, consider s = 
AUA UADTA. The nine possible secondary structures are shown in Fig. 4. There is one 
structure with no bonds, six structures with one a-bond, and two structures with two 
a -bonds. Consequently, the generating function, Zl.7, is 

2 1 . 7  = 1 +6a +2a', 

j . k Z 0  

where m = 1. 

slsl+l - . sn with i bonds (1 5 I < n SN). Of course, 
For calculation purposes, it is useful to define Z;,, to be the generating function for 
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(a) (b) A (4 
FIG. 4. Secondary strucrures on AUAUAUA. (a) Random coil, (b) the 6 single-bond structures. (c) rhe 2 

double-bond structures. 

THEOREM 3. The function Z;, ,  satisfies 

where m is the minimum loop size. 
Proof. To establish Equation (3). note that s . + ~  is either bonded or unbonded. (See 

Fig. 2.) If sn+l is unbonded, the contribution to the generating function is Z;.'I'. 
Otherwise, s,,+~ is bonded with s,(f S j S n  - m ) .  If k bonds are formed in SI - s,-1, 

then, in order to form a total of i + 1 bonds, i - k bonds must be formed in s,+~ - s.. 
The relevant term of Z;.'Iyl is then 

z?/- lZ;i:.nP/,n + 1 * 

The last term of the product, is to include the contribution from an s, s , , + ~  bond. 
Equation (3) then follows. 

Next, we generalize to include nearest neighbor effects. To do this we 
introduce a variable q which is to be included any time adjacent bonds occur. The 
variable q is to be interpreted as the statistical weight associated with the so called 
stacking energy resulting from nearest neighbor pairs of Watson-Crick bonds. In 
general, there are 16 possible stacked pairs of bonds and the stacking energies are not 
all equivalent. The implied differences are small compared with the differences in a and 
f l  (resulting from the differences in AU and GC bond formation). In addition, the 
inclusion of 16 different qs is not difficult in principle but makes these calculations 
impractical. Thus a single statistical weight q is included here as a first approximation. 
No work other than [9] rigorously allows such an approximation. For example, the 
generating function for A UA UA UA becomes 

2 1 , 7 =  1+6a+2a2q.  

(See Fig. 4.) 
To generalize Equation (3). Z;,:',, must be decomposed into two components: 

(4) z;.'I',1 =x;.'IL + y;.:',,, 
where X;.:!+l is the generating function for i + 1 bonds on al . . . a n c l  and a1 does not 
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bond with a,+l. and where Y;.:!+, is the generating function for the same string but al 
does bond a, + 

The formula for Yi.i'+l is easily obtained: 

However, 
( 5 )  is also established in the proof of Theorem 4.) 

is more complicated and we include the result as a theorem. (Equation 
. 

THEOREM 4. The term Xi., satisfies 

i n - m  

i i -o  n-m-I , ..-m 

Proof. To justify Equation (5) for YG:,, note that YE'+, = 0 unless SI bonds sn+l .  

In any case PI,,+1 is multiplied by an appropriate term for s ~ + l *  * * sn. If  SI+^ does not 
bond s,, then multiply by Xf+l.,. If s1+1 bonds s,, then multiply by r) Y:+l.,, to account 
for the formation of a nearest neighbor. 

In order to establish Equation (6) for XEyl, four cases must be considered. Each 
case corresponds to a term of Equation (6). 

Case (i).Both st and s.+1 are not bonded. In this case, the generating function is the 
generating function for ~ t + 1  * sn, Z f z : . n  = X t + l . n  + Ylz:,n- 

Case (ii). sl is unbonded and s,,+~ is bonded. For this case, Sn+l must be bonded to sj 
( I  + 1 C, j B n - m). If k bonds are formed on s1+1 - - - +-I,  then i - k bonds must be 
formed on si+l - * s,,. If sj+l bonds s,, a nearest neighbor is formed, so that the term of 

is 

i + l  

k Pj.n+l(X/+l.j-l + Y;+l.j-l ) (X i ; : .n  + vYi;!.n). 

Case (iii). sI is bonded and s,,+~ is not bonded. This case is similar to case (ii) and we 
omit these details. 

Case (iv). sl is bonded, s,,+~ is bonded, and st is not bonded to snCl. To have this 
situation, sI must bond s, ( m  + I +  1 S j S  n - m ) .  s,,+~ must bond sk  ( j +  I S k I 
n - m  - 1). The remaining bonds must be for the center structure si+l * * - sk-1. There- 
fore a typical term has the form 

We remark that, if 11 and Yi.:tl is equal to .Zj.;y1 of the 
earlier discussion (Equation (3)). 

The complexity of the recursive functions X and Y makes obvious the need of a 
computer for their evaluation. Since the function values are symbolic expressions rather 
than numerical values, we use a symbolic manipulation language (MACSYMA) rather 
than a numeric language, such as FORTRAN. The next section describes the computer 
program. 

1, then the sum of 
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4. A program implementation. This section describes a computer program written 
to compute the functions X i . ,  and Y;.i. These generating functions are computed using 
the algebraic manipulation system MACSYMA [6 ] .  MACSYMA runs on a DEC 
KL-10 at MIT. The configuration at the time of these runs was 0.5 million words 
of high-speed memory and a CPU speed of 1.5 million instructions per second 
(about & the speed of a CDC 7600). Since MACSYMA is not presently portable, 
we used the MIT computer via dialup lines. As with most algebraic systems, all 
expressions are computed exactly. One of the features we exploit is the Algol-60- 
like syntax. 

There are five recursive functions defined using thissyntax: X, Y, F1. F2, and F3. 
In addition to these we use three functions which are built into MACSYMA: ENTIER, 
EXPAND, and SUM. The function ENTIER ( R / S )  computes the greatest integer less 
than or equal to the rational number R / S .  EXPAND (exp) returns an expression in 
which all terms in the algebraic expression exp have been multipled out, that is, 
expanded. SUM (exp, I, L. LI) returns an expression equivalent to 

In the following, N is the length of the molecule, M is the minimum loop size, and P 

We define the functions X and Y as follows: 

if I = 0 then 1 else 

is the matrix in Q 3. 

X[I ,  K,  J] := 

if J - K  $ M +  1 then 0 else 
if I > ENTIER ( (J  - K - M)/2) then 0 else 

EXPAND (X(1, K + 1, J - 13 + Y(1, K + 1, J - 13 +Flfl, K. J] 
+F2[1, K, J]+F3[1, K, J]); 

Y[I, K ,  J] := 
if I = 0 then 0 else 

if J - K 5 M then 0 else 
if PK,J = 0 then 0 else 

if I > ENTIER ( f J  - K + 1 - M ) / 2 )  then 0 else 
EXPAND (PKJ (ETA * Y [ I  - 1. K + 1, J - 11 

+ X [ I - l , K + l , J - l ] ) ) ;  

We assume the initial conditions X i , ,  = 1 and Yi.J =O. The second condition 
tested in both X and Y is related to the amount of bending that can occur in bonding 
together the Kth and J t h  elements of the molecule. Condition three in X (four in Y) is 
related to the number of bonds possible with loop size M. Functions F1 ,  F2, and F 3  
correspond to the second, third, and fourth terms of Equation (6). Thus, we have 

Fl[f, K,  J ]  := 
if J -M - K  < 2 then 0 else 

SUM(SUM(if PT.J = 0 then 0 else 
if X [ L ,  K + 1, T- I ]+  Y[L ,  K +  1, T- 1]=0 then Oelse 

PTJ - ( X [ L ,  K + 1, T- 13 
+ Y[L,  K +  1, T- 13) * ( X [ I -  1 -L ,  T +  1,J-  11 

+ E T A .  Y[I-l-L, T + l , J - l ] ) ,  ' 

T, K + 1, J - 1 -M), L,  0, I - 1); 
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F2[I,  K, J ]  := 
if J - M  - K C 2 then 0 else 

SUM(SUM(if P K . 7 .  = 0 then 0 else 
if X[L, T +  1,  J- 11 + Y[L,  T +  1. J - 1]=0 then 0 else 

PK.7..(X[Lr T + l , J - l ]  
+ Y[L,  T +  1.J- 11) * ( X [ I -  1-L, K + 1, T- 11 

T, K + M +  1.J- l), L, 0, f - 1); 
+ETA * YII - 1 -L, K + 1, T - 11). 

F Y I ,  K, J J  := 
if J - 2  M - K  < 3 then 0 else 

SUM(if PT., = 0 then 0 else 
SUM(SUM(SUM(if PK.L = 0 then 0 else Y[S, K, L ]  - 

YII - S - 0, T, J ]  * (X[Q,  L + 1, T - 11 + Y[Q, L + 1, T - I]), 
T, L +  1, J - M -  l), L, M + K +  1, J-M-2), 

Q, 0, I - 1 -S), S, 1, I - 1); 

It is frequently the case that certain function values must be computed more than 
once in the solution of a problem. Therefore, we have chosen the array function which is 
a form of the function in MACSYMA that stores function values in an array once they 
have been computed. Thus, we write X [ I ,  K, J ]  instead of X(I,  K, J ) .  For the examples 
discussed here this appears to produce a savings of approximately 20% in both time and 
memory. 

Examples produced using this program are discussed in B 5 .  The primary limitation 
of this program is the size of the problem we can solve. The problems discussed here are 
among the largest we feel we can successfully handle. A larger memory would allow the 
solution of larger problems. In all the examples shown here, all of memory was used. 

5. Examples. Calculation of generating functions is performed for various reasons. 
As we discuss below, our main interest is in coefficients of Z ~ , N  for larger i such that 
ZIsN # 0. Then we present three segments of RNA molecules that are of interest in 
molecular biology. The leading terms of the generating function Z 1 . ~  are given, and, in 
two cases, the most favorable structures are drawn. We have developed an algorithm to 
produce the structures of interest which is presented in the next section. In addition, the 
form of the generating function gives valuable clues as to the structures. 

The structure of an RNA or  of an RNA segment has important biological 
functions. For example, transfer RNA (tRNA) functions in the assembly of amino acids 
into a linear sequence (word) called a protein. The role of tRNA is to move (transfer) 
amino acids from their free state in the cell to the assembly point (ribosome) for the 
protein. Its ability to perform this function requires a unique three-dimensional 
structure which arises from its secondary structure. Other important biological 
functions, such as the rate of protein synthesis, may be controlled by the secondary 
structure of the leading end of messenger RNA (mRNA) [3]. 

The next problem is to determine secondary structure from the primary structure 
(or word). Thermodynamic considerations suggest that those structures with the lowest 
free-energy will be the most probable structures. Roughly speaking, the low free- 
energy structures are those with the most bonds and nearest neighbors. If the terms of 
Zt ,N are of the form k ~ ' ~ " p ' " ,  the terms with the larger values of I + rn and n represent 
the more probable or  more stable structures. That is, we wish the largest i such that 
2 I . N  # 0. 
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i 1  2 3 4 5 6 7  

Ci 57 607 1717 1553 550 83 

As our first example, consider UACCA UAAGCCUAA UGGAGCGAA VU, 
which is the leader of the Gal operon mRNA in the bacterium €.coli [SI. For our 
calculation, N = 25 and we let M = 4. We obtained 

2 

7 7 

where 

X L S  = 1 ;  

x:.25 = 198 +38a;  

X:,25 =3q@2+61p2+2aqP+293a@ +7a2q+241a2; 

x:.2s = 11 qp3 + 44p3 + q 2 p 2  + 54aqP’ + 449ap2 

+a2q28 +62a2v@ +726a2/3 +a3v2 
+59a3q +309a3; 

X:.25 = 9 ~ 7 8 ~  + 2p4 + 91avfl’ i- 187aP 

+ a 2q ’8 + 16a 2q282 + 186a ’q/3 ‘ + 430a 28 
+ 13a3q2@ + 164a3q@ +316a3P +7a4q2 

+67a4q +64a4; 
X:.2s = 37aqp4+8ap4+6a 2 2 3  q 8 +9fa2qf13 

+22a2P3+9a3v3B2+42a 3 2 2  q /3 + 126a3qP2 

+66a3B2+20a4q2/3 +98a4q/3 + 14a4/3 

+ 2a ’ q 2  + 7a5q +2a5; 
Xt.25 = 4 a 2 q @ 4 + 3 a 3 q 2 ~ 3 + 3 a 3 ~ P . ’ +  15a 4 3 2  q /3 

xi.25 = 2 a  q 8 ; 
= 0, i 2 8 ;  

Y1.25 = 0, i 20. 

+22a4q282+28a4q$2+2asq2$ +6a5q/3; 
5 3 2  

In the table which follows, Ci denotes the sum of coefficients of These sums 
indicate the number of possible secondary structures that can be assumed by the 
molecule. 

As can be seen from the polynomials there are a large number of possible 
structures. Those of interest are x7.25 and X:.2s. As the largest number of bonds and 
the highest power of q both occur in those two structures are very likely to occur 
in solution. The example X7.25 required about 5 minutes of CPU time. 

I 
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The second sequence considered is the leader of the Lac i-gene mRNA from the 

ACCGUUUCCCGCGUGGUGA A CCA GGCCA GC 

bacterium E. coli 121: 

CA CGUUUCUGCGAAAA CGCGGGA A A A A G UG. 

A proposed structure [2] resulting in a large loop containing the actual initiation site 
ACG is shown: 

G U G A A C C A G G C C  
A C C G U U U C C C G C G U G  A G  
‘ I  I I I I I I I I I I  

G U G A A A A A G G G C G C A A  
A A G C G U C U U U G C A C  

The length (N = 60) of this molecule presents us with a new problem. For a loop size of 
reasonable length ( M  = 5 ,  say), the problem is too large to handle. Since the structure 
proposed in the literature has a large loop size, for comparison we used M = 30. The 
largest i such that zi.60 # 0 was i = 12 and 

Z:~~O=X::~O=(Y 5 10 @ 7 +8a 5 9 7  @ +1601 5 8 7  q 0 
4 9 8  4 1 3 8  q + 7 a  q 0 

4 7 8  4 6 8 .  +3a q @ . 
While 60 structures occur in Xif60, the “best” structure is that corresponding to 
a 9 0 , and this structure in fact corresponds to the proposed structure shown above. 
This example required 3.2 minutes of CPU time. 

Finally, we consider the promoter site segment for the start of the E. coli tRNA,, 
precursor RNA [2]. 

+9a 11 

5 10 7 

GCGGGGCGCA UCA UA UCAAA UGACGCGCCGC. 

For this calculation, N = 3 1 and M = 5 .  Since the ends bond, we have some Y1.31 # 0. In 
fact, the largest i such that Zi.31 f 0 is i = 11 and 

3 a a  3 7 8  
/3 +6a 7 0 . Z:,\1 = Y;,$I =4a 

This calculation required 7.1 minutes of CPU time. As these ten structures are very 
close in terms of bonds and nearest neighbors, we present them in Figure 5 .  It would be 
difficult to chose a “best structure” from these ten, and we feel this illustrates the need 
for a rigorous examination of secondary structure. That is, simply exhibiting a structure 
that looks “good” is not adequate for a determination of optimal structures. 

6. Structure determiartion. In the discussion which follows we outline an 
algorithm for deducing the structures of interest. While this a!gorithm is not rigorous in 
a familiar sense [ 5 ,  p. 3571, we feel that the concepts are intuitive enough to be 
understood in this form. A complete ALGOL-like program takes several pages to list 
and would surely convey less information. 

Our algorithm produces a tree from which we can directly read the secondary 
structures of an RNA associated with a term of the generating function. In order to 
describe the algorithm, we need to define certain terms. These terms are familiar in the 
theory of languages [4]. 

First there is a syntactic category from which the structures of our RNA molecule 
are derived. This category consists of ”nonterminals” or “variables’:. These are the X’s, 
Y’s, Fl’s, F2’s, and F3’s. Secondly, there are the symbols which carry the structural 
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FIG. 5 .  n e  10 strucrures corresponding to 2:!,1. 

information themselves. These are called “terminals” and are the Pib (Recall that Pij 
tells us if base i bonds with base j . )  

The third concept is the relation that exists between the variables and terminals. 
These relationships are called “rewrite rules.” These may be read almost directly from 
the equations (5) and (6). We write them as follows: 

x;.j * Xi+l.j-l + y k + l . j - l  i + F 1 i,i+ F2 i.i+ F3 

Y:,j - p k . j , ’  (q * Y~~’l . j -1  +xiT1l,j-l ), 

1-0 r - k + m + l  

i -1  i-1-s j - m - 2  j -m-1  

F3i.j- 1 Yi., * Y;,;’-“(XP+1.r-1 + YP+l,r-l ) *  
1 - 1  q-0  f = m + k + l  t = I + l  
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The fourth concept is that of a “start symbol”. This is just the variable whose 
structures we wish to determine. In our example which follows it is XT.2s from the first 
problem in 8 5 .  

Thus, what we have defined here is a “grammar”, ( V,,, VI, R, S), where V,, is the set 
of nonterminals, VI is the set of terminals, R is the set of rewrite rules, and S is the start 
symbol. In accordance with the grammar, our algorithm will construct a tree from which 
we can directly read the structural information. The relationship between trees and 
certain types of grammars is well known [ 11 and will be made clear here by our example. 
We present a single example here and follow it with the algorithm itself. Most of the tree 
structure nomenclature used here can be found in [5 ] .  

We begin constructing the tree by placing x 1 . 2 5  at the root of the tree. 

x:, 

Next, we append to this node a subtree associated with the rewrite rule for this variable. 

Because the values of ail of these variables are stored in memory after computing the 
polynomial generating function X:.z5 we know that some of these variables have the 
value 0. In order to construct a tree which is a manageable size we omit these nodes, 
having the following new tree: 

We repeat the above process of appending a subtree, omitting the trivial nodes. At  this 
stage we have: 

FlLs 

x:.*. A P2.25 

Note that we are including in the tree the operators 0 and 0 wherever appropriate. The 
last subtree which was appended came from the rewrite rule 

1-0 1-2 

y6-I 
* ( x ? L i . 2 4  -k . r+1.24 ). 

The only nontrivial terms in this double summation were x 2 . 2 4  and P2.25. 
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Since P2.25 is a terminal symbol we are finished with thatpart of the tree. We shall 
continue appending subtrees to all variables on the tree until we have a tree whose 
leaves are all of the form Pii. At this stage in this example we have the tree in Fig. 6. 

X L  

x:24 P2.w 

P3.*7 P18.2. 

FIG. 6.  Tree structure representing X:.2s from the first example in 0 5 

To read the molecular structures from this tree we read the leaves as if they were 
part of an arithmetic expression, assuming the usual precedence of 0 over 0. In this 
example we read: 

p8.12 ' p6.14 p5.15 p4.16 * p3.17 * p18.24 . p2.25 
+p7.12 ' p6.13 * pS.15 p4.16 ' p3.17 . p18.24 * p2.25- 

Thus we have two structures having the following bonding: 

(1) 8-12,6-14,5-15,4-16,3-17,18-24,2-25 

(2) 7-12,6-13,5-15,4-16,3-17,18-24,2-25 
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These are the two secondary structures associated with =2a 5 3 2  q p in our 

The following rules define the construction of a subtree associated with a given 

(i) the root of the subtree corresponds to the left-hand side of a rewrite rule; 
(ii) the remaining nodes correspond to the right-hand side of a rewrite rule; 

(iii) the subtree structure corresponds to the arithmetic interpretation of the 
rewrite rule; each operation . or + corresponds to a nonterminal node of the 
tree, and arcs originating from the node lead to the operands. 

(iv) for simplicity omit the symbol 9 and all trivial nodes (those that evaluate to 1 
in the case of a multiply and those that evaluate to 0 in the case of an addition.) 

We use the following notation to mean “attach to node A a subtree corresponding 

example. 

rewrite rule: 

to its rewrite rule in accordance with rules (i) through (iv)”: 

ATTACH(A, R ( A ) ) .  

Our algorithm for generating a tree from which the structures of the RNA 

Step 1. Make the term of interest the root of the tree. 
Step 2. While there are terminal nodes on the tree 

molecule can be read is summarized as follows. 

which are not of the form P,, do 
N is leftmost terminal node not of the form PI,; 
ATTACH (N, R ( N ) )  

end. 

nodes. 
Step 3. Write the algebraic expression corresponding to the tree and its terminal 

An alternate and simpler method of computing the structures would be to change 
the program described in § 4 so that the matrix P is defined as follows: 

if {SI, S,) = {A, W or {G, C), 
pll ={ :,, otherwise. 

That is, there are no a’s 01 P’s in the expression being computed, just the terminal 
symbols P,,. We can then read the structures directly from the generating function. The 
advantage of this method is that the programming is simple, requiring only a 
modification of the program in § 4. The disadvantage is that more memory is required 
due to the storage of many zero valued array elements. 
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