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ABSTRACT 
Cross-association is a standard correlation technique. It is valid for theoretically complete stratigraphic 

sequences, but not for stratigraphic sequences as they commonly occur. A major problem is its inability to 
include correlations across gaps caused by local nondeposition or eroded strata. The methods proposed in 
this paper do include correlations across gaps and allow for completely general measurements of strata 
similarity. In addition, they are extended to include correlation of a fragmentary sequence with a longer 
complete sequence and to include correlations of more than two sequences. Using these techniques, most 
problems can be handled by hand calculation. 

Correlation of stratigraphic sequences is an 
important problem. (In this paper, correlation 
is always used in the geological sense, not the 
statistical.) Stratigraphic sequences can be ob- 
tained from drill holes, outcroppings, or even 
road cuts. The data, in the simplest cases, are 
stratigraphic sequences of lithologic units, but 
may include much additional information such 
as strata thickness, geochemical or mineral 
assay, fossil occurrence and abundance, and 
electric, gamma, or gamma-gamma logs. A few 
elementary automated correlation techniques 
have been developed to utilize this information. 
The main one currently in use seems to  have 
originated with Sackin, Sneath, and Merriam 
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(1965). This technique is called cross- 
association (Harbaugh and Merriam 1968; 
Merriam 1971; Davis 1973). In this paper, 
correlation techniques are presented which 
overcome some of the shortcomings of 
cross-associat ion. 

Cross-association is applied to pairs of seq- 
uences. The two sequences are “slid” by one 
another to  locate the maximum of the ratio of 
matches to  the number of comparisons (Davis 
1973). The position ofthis maximum defines the 
correlation between the sequences. For theor- 
etically complete stratigraphic sequences the 
method is valid, but it is inadequate for strati- 
graphic sequences as they commonly occur. 
The method is inadequatfbecause of its inabi- 
lity to  include correlations across gaps (caused 
by local nondeposition or eroded strata) or to  
include correlations of repetitive or missing 
sequences (caused by faulting or folding). All 
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gaps in the stratigraphic record are equivalent 
in their effect on the information content of the 
record. Thus the first problem is locate the gaps 
themselves and leave the study oftheir causes to  
a later time. Cross-association and other 
methods have been applied to  cases where 
multiple parameters of each strata are known 
(Sackin et al. 1965; Sneath 1974, 1975) but the 
same limitations hold. 

A variety of correlation techniquts have been 
presented but none overcomes the difficulties 
mentioned above (Gill 1970; Matuszak 1972; 
Neidell 1969; Preston and Henderson 1964; 
Rudman and Lankston 1973). However, a 
related gap problem has been successfully 
treated in studies of evolution of genetic seq- 
uences in molecular biology (Sellers 1974; 
Waterman et al. 1976). Such studies form the 
basis of all molecular taxonomy and these 
efforts motivate the algorithms of this paper. 

Let s = s s2 . . . s, and r = r1 r2 . . . r, be two 
stratigraphic sequences where si and rj repre- 
sent lithologic characteristics of strata i and j .  
The basic problem is to  find the best alignment 
or correlation between any two such sequences. 
We define an alignment between s and r by 
a(s, r) = {(sil, rjl), (s i * ,  rj2), . . . where i l  < i 2  < 
...; jl < j 2  < ... and the pair (si,, rjl) indicates 
correlation between sil and Til}. For display of 
an alignment, we include the null element A to 
indicate gaps. For example, 

can be written as a(s, r) = {(sl. r3), (sz, r4), 
(s4, rs)} and means s1 is correlated with r3, s1 
with r4 and s4 with rs . 

While the methods we present can include 
general measurements of strata similarity, we 
begin with a discussion of a simpler situation. 
Here, the object is to  find the alignment with the 
maximum number of perfect matches. Also, 
gaps here will denote single missing strata. 
Now, notice that, with sequences of length n and 
m, the number of gaps is given by 

gaps = n + m - 2 (correlated pairs). (1) 

The factor of two comes in because each 
correlated pair involve two strata elements, 
while gaps involve only one. If all correlated 

pairs represent perfect matches, we obtain the 
relations hip 

n + m  1 . 
2 2  

max (matches) = ~ - - min (gaps) (2) 

In this case, obtaining the maximum number of 
matches is equivalent to minimizing the number 
of gaps. In the more general case of allowing 
mismatching (correlation, e.g., where lithologic 
types are identical but thicknesses are not) 
among the correlated pairs, we obtain 

max (matches) 

n + m  1 
2 2  

- min (gaps + 2 mismatches). (3) 

The minimum of the number of gaps plus twice 
the number of mismatches is a measure of 
distance between the sequences. Equation (3) 
shows the equivalence of maximizing the 
matches (or homology) and minimizing the 
distance. 

The above analysis is the basis for our 
approach to  a correlation which finds the 
minimum distance between sequences. In 
simple situations, such as considered above, the 
minimum distance approach is equivalent to  
the maximum homology approach. More gen- 
erally, minimum distance is a (mathematical) 
metric and has the advantage of understood 
properties. If D(r, s) is the minimum distance 
between two sequences, then 

D(r, s) = D(s, r) 

D(r, s) = 0 if and only if r = s (4) 

D(r, s) I D(r, t) + D(t, s) for any sequence t. 

Use of distance correlation has the advantage 
that it allows the direct inclusion of degree of 
mismatch between the correlated pairs in an 
alignment. This is clearly necessary as different 
strata seldom are perfect matches and the 
degree of mismatch should be included in any 
general analysis. We accomplish this by intro- 
ducing two distance (or weighting) functions. 
First, let di j  be the distance between strata siand 
strata rj. Also, let g, be the distance associated 
with a gap opposite the strata 1. The distances 
themselves should obey the properties given in 
Equation (4). 

-. 
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An algorithm (or method) for computing 
distance correlation is now presented. To begin, 
let D,j  be the distance D(s1s2 ... s i ,  r I  r2 ... r j )  
between the initial segments ofs and r, ending at 
i and j .  The following equation gives the algor- 
ithm for obtaining the D i j  values from earlier 
computed values (Sellers 1974), 

Dij=min {Di , j - l  + g j , D , - , . , - ,  + d i j .  

Di-1,  j -t si). (5)  

The algorithm is initialized by setting 
DOk = Dko = k for all k 2 0. Equation (5) f01- 
lows from the fact that either (1) r j  is associated 
with a gap where the distance is 

Dt.j-1 + S j ,  

or (2) si  matches r j  where the distance is 

Di-1.j-I  +dij ,  

or, finally, (3) s i  is associated with a gap and the 
distance is 

Di-1.j + gt 

To illustrate this algorithm we consider an 
example from Harbaugh and Merriam (1968, 
p. 173). Two sequences from Kansas roadcuts 
are analyzed in figure 1 where the entire matrix 
of D i j  values are given. For this example, the 
values of d i j  and gi  are given by 

p if si = rj 
I' 13 if s, # r j  

d . .  = 

and 

g i  = 1 for all strata t i .  

We note that any value of d i j  > 2 prevents the 
inclusion of mismatches in the alignments. 

As the matrix in figure 1 shows, D(s, r) = 
DI4,  13  = 5. The optimal alignment associated 
with DI4,  1 3  = 5 is obtained by tracing back 
through the matrix to obtain the set a(s, r) of 
correlated pairs. This traceback procedure is 
shown in figure 1 and results in the alignment 

E F A B F E F B A A A B F E F B  
E F A B F E F B E F A B F E A A 

The alignment A2 should be compared with the 
two alignments that might result from a cross- 
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association analysis. Each of these two align- 
ments have six matches: 

E F A B F E F B A B F E F B  
E F  B F  E F  B E  F A B F  E (A3)  

and 

E F A B F E F B A B F E F B  
(A4) E F B F E F B E F A B F E  

The second of these alignments, A4,  would be 
preferred under the assumption that record 
gaps are rare. Near the end ofthis paper wegive 
evidence based on another Kansas sequence 
that A 2  should be prepared. 

An extension of the above algorithm to 
include contiguous gaps of length greater than 
one can easily be made (Waterman et al. 1976). 
This algorithm is given by 

Here denotes a gap of length m - 1 + 1 
associated with sequence elements 1 through m.  
If gaps of length k are given weight 
1 + O.l(k - I), then the above two sequences 
have distance 0 1 4 ,  = 3.2 and the alignment is 

E F A B F E F B  A A B F E F B  
E F A B F E F B ( E F ) A B F E (  A 1' 
There are three gaps: one of length oneand two 
of length two. 

Often stratigraphic sequences are rather frag- 
mentary and the problem is to identify the 
correlation of a shorter fragment with a longer 
complete sequence. The proper task is not to 
find the minimum distance between the frag- 
ment and the complete sequence, but rather to 
find the segments ofthe long sequence which are 
the minimum distance from the fragment (Sel- 
lers in press). The idea is that regions preceding 
and following a potential correlation should not 
be weighted as geological gaps, but as gaps in 
our information. This can be accomplished in 
the matrix by initializing the first row associated 
with the longer sequence with zeros. 
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Wynandotte County Roadcut 
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FIG. 1 .-Calculation of distance or correlation between a stratigraphic sequence EFABFEFBABFEFB from 
a WynandotteCounty, Kansas roadcut with the sequence EFBFEFBEFABFE from an Osage County, Kansas 
roadcut. The letter code is F = limestone, E = marine shale, D = coal, C = underclay, B = non-marine shale, 
and A = sandstone (Harbaugh and Merriam 1968; p. 173). The traceback to determinealignment is the path 
shown by arrows in the figure. 

An example of correlation of a shorter seq- 
uence with a long sequence occurs in Davis 
(1973, p. 255). The example has a mine section 
(the long sequence) from central England and a 

and 

24563453145345345453 24534531454563 

quarry section six miles away. Our analysis with 453454532 1245 3 (A71 

the traceback is given in figure 2. The two 
optimal alignments are Obtaining correlations between more than 

two sequences is of considerable interest and is 
245634531453453454532 4534531454563 our last topic. While no automated techniques 

have been developed, attempts have been made 
4534545321245 3 (A,) by considering all pairs of sequences. While 
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pairwise correlations may have several optimal 
alignments, it is assumed that additional pairs 
will reduce these degeneracies. Attempts have 
been made on this problem by using the pair- 
wise correlations in a dendrographic analysis 
but the approach has not been too satisfactory 
(Merriam and Sneath 1966; Harbaugh and 
Merriam 1968). 

Fortunately, these problems have been con- 
sidered for molecular sequences and can be 
adapted for geological use (Waterman et al. 
1976). The algorithm is an extension of Equa- 
tion (5 ) .  As computation time grows rapidly 
with the number of sequences, we only present 
the algorithm for correlation ofthree sequences. 
To present this algorithm we need to define a 
new set of lithology unit weighting functions 
d(a, b, c )  analogous to the d i j s  and gk used for 
pairwise correlations. One can think of the d(a, 
b, c)’s as the “distance” among three stratigra- 
phic elements (including gaps). For example, we 
might choose 

d(a, A, A )  = d(A, a, A )  = d(A, A, a )  = 1 

d(a, a, A )  = d(a, A,  a )  = d(A, a, a )  = 1 

d(a, a, a )  = 0 (7) 
d(a, b, c )  > 3 for no two elements equal 

where the proposed values are just a count of 
the number of elements which would have to  be 
replaced to result in three identical elements. If 
we restrict our considerations, as before, to only 
perfect matches and/or gaps, the value for d(a, b, 
c )  in the last line must be set greater than three. 
For these sequences, s = sls2 ... s,, r = r l r2  
... r,, t = t l  t2  t l ,  the algorithm is given by 

For an instructive application, we add a 
Crawford County, Kansas open pit sequence to  
the pair of Kansas sequences considered in 

figure 1. Let Di,  j ,  k be the 3-distance among the 
first i strata from Osage County, the first jstrata 
from Wynandotte County, and the first k strata 
from Crawford County. As the Crawford 
County sequence is longer and not too closely 
related to  the other two sequences, we solve the 
problem of best correlation of the two shorter 
sequences with a segment ofthe longer one. This 
is handled by choosing 

Do,o,k = 0, D o . j , o  = j ,  and Di ,o .o  = i. 

Applying Equation (8) yields the values 
mink D13, 14. = 11 with three alignments. One 
of the alignments is 

BDBFBDCBDCAFABFDCAFBAA ABFECDFBD 

EFABFAAEFBMABFEAAFB 

EFABFAAEFBEFABFE, 

(AB) 

while the other two can be obtained by easy 
rearrangements. Notice that this alignment is 
consentaneous with the earlier distance correla- 
tion alignment A2 for the two shorter sequences. 

These algorithms should make automated 
correlation much more practical and include 
gaps in that analysis. In addition, these algor- 
ithms can be performed by hand for the size 
problems presented in this paper. Of course, 
only the simplest of geological transformations 
have been used here. To include transforma- 
tions such as folding much more work needs to  
be done to develop algorithms. The values ofd 
and g can only be assigned by utilizing geologi- 
cal experience and information. If maximum 
homology is desired rather than minimum 
distance, then, by changing minimum to maxi- 
mum, the above algorithms are easily adapted. 

Finally, the potential of the proposed 
methods is apparent in the agreement noted 
between the alignment of As of three sequences 
and the pairwise alignment At .  Alignment A2 
now seems more probable than the cross- 
association alignment A4 which might have 
been preferred in the absence of AB. Full 
validation awaits application by geologists to 
the wide variety of existing data. 
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TOPOLOGIC ASYMMETRY OF DRAINAGE NETWORKS: 
THE L INDEX AND ITS APPLICATIONS’ 

R. I. FERGUSON 
Department of Earth & Environmental Science, University of Stirling, Scotland FK9 4LA 

ABSTRACT 

Most drainage networks are right- or left-handed to some extent, but extreme or widespread asymmetry 
may indicate systematic distortion of local or regional drainage patterns by geologic or geomorphic complica- 
tions. The maximum excess of interior over exterior links as a network is scanned in clockwise maze order 
provides a simple topologic index of asymmetry, low for right-handed and high for left-handed networks. Its 
sampling distribution under Shreve’s random-topology model is known, allowing assessment of the unusu- 
alness of individual asymmetric networks or the significance of regional departures from randomness. Scottish 
examples of both types of application are given. Glaciation can lead to significant asymmetry. 

INTRODUCTION 

demonstrated that HortonYs (1945) “laws” of 

been explained by extensions of Shreve’s basic 
~ a pioneering paper Shreve (1966) model (see Smart 1973 for a review), and several 

workers have tested it directly by classifying 
drainage composition can be explained by 
assuming that drainage networks are topolo- 
gically random. Many other observed regula& 
ties of drainage basin morphology have since tests have that 

mapped drainage networks according to  t o p -  
logic criteria and comparing observed with 
expected frequencies. With fewexceptionsthae 

random topology model correctly describes 
drainage networks in a wide variety of lithologi- 
cal, structural, and climatic regions” (Werritty 
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expressed concern at the apparent insensitivity 
of topologic indices to geological controls. 


