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Modeling and Optimizing a Gas-Water Reservoir: 
I Enhanced Recovery with waterflooding' 
*- 

Mark E. Johnson,2 Ellis A. Mona&: and Michael S.  Watermad 

Accepted practice dictates that waterflooding of gas reservoirs should commence, if ever. only when 
the reservoir pressure has declined to the minimum production pressure. Analytical proof of this 
hypothesis has yet to appear in the literature however. This paper considers a model for agas-water 
reservoir with a variable production rate and enhanced recovery with WaterpOOding and, using an 
initial dynamic programming approach, conJrms the above hypothesis. KEY WORDS: gas reser- 
voirs, watdooding, dynamic programming. 

Nomenclature 

gas entrapment factor (dimensionless) 
initial amount of gas in the reservoir in moles 
moles of gas in the reservoir at time t 
moles of gas produced up to time t 
moles of gas entrapped up to time t 
cutoff pressure in psia 
initial pressure of gas in psia 
pressure of gas in psia at time t 
constant production rate of gas in moles per year 
production rate at time t in moles per year 
ideal gas constant 
constant rate of water injection in cubic feet per year 
rate of water injection at time t in cubic feet per year 
temperature in "K 
volume of the reservoir in cubic feet, below which gas production ceases 
initial reservoir volume in cubic feet 
reservoir volume at time t in cubic feet 
reservoir volume of trapped gas at time t in cubic feet 
reservoir volume of invaded water at time t in cubic feet 
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INTRODUCTION 

Enhanced recovery of oil and gas from existing and depleted reservoirs is now 
recognized as an important energy strategy. This is due, in part, to increased 
demand for petroleum products, an evolving international situation, and the 
fact that production from newly discovered reserves may not yield as much 
petroleum as was anticipated. In spite of the importance of maximizing 
recovery, many models of oil and gas reservoirs remain largely descriptive and 
are not used to analytically obtain optimal production strategies. 

The reservoir model uses volume and mass balances with the ideal gas law 
to obtain a simple, nonstochastic set of differential equations; the problem of 
enhanced recovery of natural gas from such a reservoir is then addressed. The 
objective is to maximize total recovery with respect to two control functions: 
the rate of gas withdrawal and the rate of water injection. A discrete, dynamic 
programming formulation of the problem is presented which explores the 
optimal production strategy. Essentially, this strategy is to refrain from 
waterflooding until the minimum production pressure is reached. Then water- 
flooding should begin with production keyed to maintain the reservoir at this 
minimum pressure. Finally, an analytical proof is given which shows this 
production strategy to be optimal. 

THE GAS-WATERFLOOD RESERVOIR MODEL 

The mathematical details of the gas-waterflood reservoir per se model are 
discussed, and the closed form solutions to the differential equations of the 
state variables of the system are obtained. In a gas-waterflood reservoir 
system, water is injected into the gas reservoir at the rate of s ft3/yr so that 
additional amounts of gas can be recovered from the “exhausted” reservoir. 
Gas is withdrawn from the reservoir at the rate of r moles/yr. As the water is 
injected into the reservoir, the gas is “pushed” ahead of it. Some of the water 
will entrap pockets of gas that become unavailable for production. The gas 
entrapment factor g represents the “strength” of the trapping process. Specifi- 
cally, if V ,  ft3 of water is injected into the reservoir, then g.Vw ft3 of gas is 
entrapped by the water. Initially the gas reservoir has a volume VO, a pressure 
PO, and a quantity of material NO at a temperature TO. Production of gas ceases 
when the volume or pressure of gas falls below some low value. 

The physical model describes only the reservoir per se. The assumptions 
used in this basic model are listed below. 

- 

T 

1. The gas obeys the ideal gas law. 
2. The reservoir is homogeneous with respect to pressure. 
3. The reservoir is isothermal and nonadiabatic. 
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4. Water can be injected at a variable rate. 
5 .  The gas withdrawal rate can be constant or variable. 
6. The ratio g of the volume of gas entrapped behind the injected water to the 

volume of the injected water is constant in time. 
7 .  Gas is entrapped behind the injected water at the current pressure in the 

reservoir and, after entrapment, has no effect on the reservoir. 
8. Production ceases when the pressure becomes some low pressure or the 

volume becomes some low volume, whichever occurs first. 

While these assumptions could preclude application of this model to any real 
reservoirs, the model should be useful in making technical assessments as to 
the nature and magnitude of ultimate recovery of gas from a gas reservoir- 
waterflood model. 

The gas-waterflood reservoir per se model is described by a set of 
first-order linear differential equations for the state variables. In this section, 
the differential equations will be obtained. Consider the volume balance 
equation for the gas-waterflood system: 

Vo = V(t) + Vw(t) + V7(t) (1) 

where VO is the initial volume of gas in the reservoir at time 0, V(t) is the 
volume of gas in the reservoir at time t ,  Vw(t) is the volume of water injected 
into the reservoir up to time t ,  V7(t) is the volume of gas that has been trapped 
behind the encroaching water. 

The rate at which water is injected into the reservoir is given by 

dVW(t)/dt = s(t) ( 2 )  

(3) 

and the rate at which the volume of gas is entrapped is 

dV,( t)/dt = gdVw( t)/dt = gs( t )  

0 = (dV(t)/dt)  + (d  Vw( t) /dt)  + (dV7( t ) /d f )  

dV( t)/dt = - ( 1 + g)s( t )  

No = N( t )  + N7( t )  + Np( t )  

Differentiating Equation (1) with respect to t yields 

(4) 

( 5 )  

(6) 

where NO is the initial amount of gas in the reservoir, N(t )  is the amount of gas 
in the reservoir at time t ,  N,(t) is the amount of gas that has been entrapped 
behind the encroaching water at time t ,  Np(t)  is the amount of gas production 
up to time t. 

Substituting equations ( 2 )  and (3) into equation (4) yields 

. 
Now consider the mass balance relation 
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The rate at which gas is withdrawn from the reservoir is 

dN,( t)/dt = r( t )  

dN,(t)/dt = (P(t)/RTo)(dK(r)/dt) + (K(t)/RTo)(dP(t)/dt) 

(7) 

and the rate at which the gas is being entrapped is 

(8) 

(P(O/RTo) (dV,(t)/dt) 

where P(t)  is the pressure at time t, Tois the reservoir temperature, and R is the 
universal gas constant. The second equation is due to assumption 7. Substitut- 
ing equation (3) into equation (8) yields 

dNr(t)/dt= (gs(t)/RTo) P( t )  (9) 

(10) 

(1 1) 

P(t)=RToN(t)/V(t)  (12) 

Differentiating equation (6) with respect to time t ,  

0 = (dN(t)/df) + (dNr(t)/dt) + (dNp(t)/dt) 

dN( t)/dt = - r(t) - (gs( t ) / R  To) P( t )  

By substituting equations (7) and (9) into equation (lo), 

The ideal equation of state, relating pressure to quantity and volume, is 

The reservoir model is thus given by equations (9, (1 l), and (1 2). 

follows: 
In subsequent sections, the reservoir model is equivalently given as 

(13) 

(14) 

(15) 

dV(t)/dt= -s ( t )  * (1 +g) 

dP(t)/df = ( - r(t)R TO + P( t)s( t )  )/ V( t )  

N( r )  = P( t )  V( t)/RTo 
By differentiating equation (1 2) with respect to time, it can be shown that this 
model is equivalent to the earlier representation as given in equations (5) ,  (1 l), 
and (1 2). 

The solutions to the differential equations (1 3 )4  15) are now obtained. 
Consider the volume equation: 

dV(t)/dt= -(I +g)s(t) 

with the initial value condition 

V(O)= VO 

Separation of variables leads to the solution 
I 

v(t)= vo-(l +g)Js(t)dt 
0 
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Now consider equation (1 1) and substitutions from equation (12) and equa- 
tion (1 6). 

dN(t)/dt = -r(t)-gs(t)(RToN(t)/(RToV(t))  

Thus, 

dN( t)/dr + a( t)N( t) = - r( t )  (18) 
where 

a(t)=gs(t)/(Vo-(l +g)js(t)dt) 0 

Equation (1 8) is a linear differential equation of the first order. Equation (1 8) 
is solved using the “integrating factor” 

I= efa(t)dr (19) 

(20) 

In this paper the special case s( t) = s = constant and r( t) = r = constant is 
particularly important. Making these substitutions and performing the alge- 
braic simplications yields the following closed-form solution to the model: 

Multiplying equation (18) by equation (19) and integrating yields: 

N(t )  = e-fa(l)dfJ - r(t)elK(I)dtdt + Ke-ja(lWt 

V(t)= Vo-s(l + g ) t  (21) 

N(t)=(r/s)[Vo-s(1 +g)t]+[No-(4s) VO] [l -(s(1 +g)/Vo) t] @”+g) (22) 

(23) I ‘ ( ~ ) = ~ P o V O / ( ~ N O )  +[Po-(rPoVo/(sNo))] [l  -(s(l +g)/Vo)t]-‘”’+g) 

I DYNAMIC PROGRAMMING APPROACH 
In this section we formally state the optimization problem-maximize ulti- 
mate recovery subject to the production rate and water injection rate controls. 
This problem is formulated in a general framework, as follows: - 

max J r( t)dt 
r.s 

subject to the constraints 

dV(t)/dt= - s ( t ) .  (1 +g) 

dP(t)/dt = [-r(t)RTo+P(t)s(t)]/V(t)  
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N(t)=P(t)V(t)/RTo 

for all t 
P( t )  2 Pc > 0 
V ( t ) 2  VC>O 

where g 2 0, P(0) = PO, V(0) = VO, N(0) = NO, r(t); s(t) 2 0 are continuous for all 
except a finite number of t  2 0, and Pc and Vc are pressure and volume cutoffs, 
respectively. 

The controls in this formulation are continuous functions of time so that 
the optimization problem as stated is infinite dimensional. Our initial 
approach in addressing this dimensionality difficulty is to discretize the opti- 
mization problem. This means that we restrict the controls in the sense that we 
assume that they are piecewise constant functions. Discretizing allows us to 
apply powerful dynamic programming solution methods, as described below. 

Traditional approaches would discretize the range of values of the con- 
trols. However, for this problem it is more convenient to discretize on the 
values of pressure and volume, since these variables are nonnegative and 
bounded above (i.e., the set of admissible values is contained in a finite 
interval). Working in the volume-pressure space (henceforth, V-P space) is 
convenient since trajectories between two points in V-P space that require a 
fixed time uniquely determine corresponding constant production and water 
injection rates. From the previous section, the solutions for volume and 
pressure with r and s constant are 

c 

V(f)= Vo-s.t*(l +g) (24) 

P(t)=rPoVo/(sNo) +[Po-(rPoVo/(sNo))] [l -(s(1 +g)/Vo)t]-(”’+g) (25) 

Consider the trajectory in V-P space from the point (V0,Po) to the point (VI,  
PI). From equation (24), we must have the constant water injection rate 

s=(Vo- VI)/t.(l + g )  

Equation (25), which is linear in r, implies that we also must have the constant 
production rate 

The recovery corresponding to this trajectory is 

u=rt 

Given a sequence of points in V-P space, say (VOJO), (VI,PI), . . ., 
( Vn,Pn), the corresponding ultimate recovery is 
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i =  I 

where ui is the recovery from point (Vi- I ,  Pi- 1 )  to point ( Vi,Pi). Maximizing 
ultimate recovery is therefore a matter of selecting the optimal set of points on 
the path in V-P space. 

Figure 1 illustrates a sample discretizing or gridding of the V-P space. 
Our approach is to consider the set of paths through this grid of points and to 
select that path (Le., a collection of points in Fig. 1) which yields the maximum 
ultimate recovery. It is unnecessary to consider all possible paths for the grid 
as in Figure 1. We use dynamic programming to examine these paths impli- 
citly and to determine the one that is optimal. 

For the dynamic programming formulation, we consider an 
(n+ 1) x (n+ 1) grid of points. Suppose we have V02 VI 2 . . . 2 V,, and 
Po2 PI 2 . . . 2 P,,. The point ( i , j )  in the grid corresponds to (Vi, Pi) in V-P 
space. The dynamic programming approach is to solve the following problem: 

where R ( ( i* j*) ,  (ij])is the recovery from point ( i * j * )  to point ( i j ] ,  and 

P 

* . . . . . . . . 
* . . . . . . . . 
* . . . . . . . . 
* . . . . . . . . 
* . . . . . . . . 

pc .. . . * ........................................................................ 1 ;  
I 
I - v  

I vc 

Figure 1 .  Discretizing V-P space where (V0,Po) is the initial state of the 
reservoir and V, and Pc are volume and pressure cutoffs (terminal), respect- 
ively. 
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R* ((l,l), ( i*j*))  is the optimal recovery from the starting point to the point 
(i* j* ) .  

This dynamic programming formulation induces an algorithm for com- 
puting the maximum recovery over this grid of points. This algorithm is, as 
follows: 

0. 
1. 

Initialize an (n + 1) x (n + 1) array A to zeroes. 
Proceed through the grid by considering the points in the order: ( l , l ) ,  
(m.. . ,  (1, n + l ) ,  (2,1), (2,2),. . . , ,(2, n+l),. . . , (n+ l , l ) ,  
(n+1,2) , .  . . , ( n + l , n + l ) .  

2. For each successive point ( i j ) ,  compute 
A ( i j ]  = max {R ((i*j*), ( i j ) )  +A( i* j*) }  

i*=1,2,. . ., i 
jb= 1,2,. . ., j 

3. The maximum recovery is the largest value in the matrix A. 

A simple FORTRAN program was written on a LASL 6600 CDC 
machine to implement this algorithm. Figure 2 illustrates the optimal path we 
obtained for all trial combinations of initial values, time increments, entrap- 
ment factors, and so forth. We also noted that if the starting point were ( Vi,Pi), 

P 

* v  
v c  vo 

Figure 2. Optimal path where (V0,Po) is the initial state of the reservoir 
and V, and Pc are volume and pressure cutoffs (terminal), respectively. 
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then the resulting optimal path would follow the path from (Vi,Pi) to ( Vi,P,) to 
(Vc,Pc). In terms of the gas production from the reservoir, this leads to the 
following optimal production strategy: 

Withdraw gas from the reservoir without waterflooding until the pressure declines to the 
cutoff pressure. Then withdraw gas with waterflooding so as to maintain the pressure (at the 
cutoff pressure) until the volume declines to the cutoff volume. 

In the next section this result is established by means of a rigorous 
analytical proof. The dynamic programming approach, however, was valu- 
able for two reasons: it led to an interesting result that we could then prove 
analytically, and it helped us to formulate the problem in V-P space, an 
essential aspect of the proof. 

THE OPTIMAL CONTROLS 

The goal of this section is to prove a theorem describing the controls that give 
the maximum recovery of gas from a gas-water reservoir. The physical 
intuition associated with the optimal path is that water should never be 
injected into the reservoir if gas can be removed without water injection. This 
intuition is shown to be correct at several stages of the proof. 

Recall that our system is determined for t 2 0 by 

dV(t)/dt = [ - s ( t )  (1 + g )  

dP(t)/dr =[-r(r)RTo+P(t)s(t)l/V(f) 

P( t )  V( t )  = N( t)R To 

where P(0)  = PO, V(0) = VO, N(0) = NO, g 2 0, and 

for all t 
V(r) 2 V, > 0 

We restrict (r.s) to be members of 

Y = { ( r , s ) :  r( t ) ,  s(t)>,O are continuous for all except a finite number of t 20 ,  
P(t)  3 Pc and V(t) 2 V, forall t} 

* Let tc=maximum {t: P ( t ) 2  Pc and V ( t ) 3  V,} ( t c=  00 is possible) for a 
given (r.s) = S E Y .  Then, define the recovery associated with S ,  R(S), by 

IC 

0 
R(S) = jrCt)dt (27) 

The problem is to find S M Y  such that 

R(sM)=E$x R(S) 
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Our solution of this problem is given in the following theorem which explicitly 
gives all such SM. 

Theorem: For all SEY, 

R(S) < R(SM) 

where SM =(r,s)  satisfies 

s(t)=O, O G t G t l  

Jr(t)dt = vo(p0 - P , ) / R T ~  
11 

0 

f2 

J s(t)dt=(Vo- V M l  +g) 
ti 

r(t)=Pcs(t)/(RTo), t l  < t < t 2  

and 

r(t)  =s(t) = 0, t2 < t < co 

where 

O < t l  < t 2 <  co 
The path that SM induces in V-P space is sketched in Figure 2. Before 

outlining a proof of the theorem, we recall some results of the previous section. 
Let s=s(t) and r = r ( t )  be constant for t€[ti-i,ti] where V(ti-l)= Vi-1, 
P(ti-,)=Pi-I, V(ti)= Vi, and P(ti)=Pi. Then, if s>O, 

Vi= Vj-1 -s(l +g)At ( 2 8 )  
and 

Pi =(rRTo/s) +[Pi- I -(rRTo/s)] [ 1 - (s( 1 +g)At/Vi- +E) (29) 
whereAt=tj-ti-I. Ifs=O, 

and 
Vi = Vi-, (30) 

(31) Pi=( - rRToAt/ Vi- I )  + Pi- I 

Next we outline the proof of the theorem: 

A. 

B. 

Approximate an arbitrary (r*,s*)EYby (r,s)EY where r(t)  and s( t )  are 
piecewise constant. 
Establish inequalities indicated by Figure 3. This will allow replacing the 
(V,P) path of A by horizontal and vertical segments. 
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P 
t 

P 
t 

( 0 )  (b) 

Figure 3. Paths (a) in V-P space for constant (r,s) which have recoveries 
less than or equal to the paths (81 +B2). (R(u) <R(81)+R(82)). 

C. 
D. 

Complete the proof by applying B to the general case. 
Derive the form of SM from the shape of the optimal (V,P)  path. 

The details in proving A through D are lengthy and are available from the 
authors in a technical report (Johnson, Waterman, and Monash, 1978). 

We instead present an elegant proof of this theorem which was obtained 
by W. Fleming (personal communication, 1977). His argument is now stated. 
Consider any curve V =  V( t )  and P = P ( t )  which lies in the admissible region 
V >  V, and P 2  P, with dV/dt = - ( I  +g)s. The total differential of PV is 

d(P V)/dt = d( NR To)/dt 

= -rRTo-gsP 

= -rRTo-(g/ l  + g )  (1 +g)sP 

= -rRTo +cP(dV/dt) 

\ where c=g( l  +g) - ' .  Since S[d(PV)/dt] dt depends only on the endpoints of a 
curve, maximizing Jrdt is equivalent to maximizing JP(dV/dt) dt .  However, 
j(PdV/dt) dt is equal to SPdV(t), which is the negative of the area under the 
curve given in Figure 2. This curve obviously has the minimum area of all 
curves satisfying the constraints. Hence, the proof is complete. 

' 
* 

CONCLUSIONS 

This paper has given the details of modeling and optimizing a gas-water 
reservoir with a variable production rate and enhanced recovery with water- 
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flooding. The dynamic programming empirical solutions were verified analy- 
tically. The optimal two control (production rate and water injection rate) 
strategy for maximizing recovery is to produce without water injection 
until the attainment of a pressure cutoff, and then to waterflood so as to 
maintain the pressure until attainment of the volume cutoff. This strategy 
concurs with the industry practice of not waterflooding gas reservoirs due to 
the entrapment problem. A study by Johnson, McFarland, Monash, and 
Lohrenz (1977) has also suggested that even in the absence of entrapment (i.e., 
g = 0), waterflooding appears to be economically infeasible. 

In an extension of our results, Mantini and Beyer (1977) have shown that 
the same set of controls are optimal for four other situations. For example, 
they consider maximizing the present value of net revenues and the internal 
rate of return. Their techniques are similar to those of this paper. 

An obvious modification of this work is to consider optimizing gas 
reservoirs with “natural” water influx. For this situation, water from the 
surrounding aquifer will invade the reservoir as gas is withdrawn. Water 
invasion helps to maintain reservoir pressure which can assist in production, 
but the water also traps gas. Hence, an interesting tradeoff in these properties 
occurs. The primary advantage of modeling and optimizing these natural 
water-drive reservoirs is that real data is available. Thus, the efficacy of this 
approach can be examined. 

Also, we have an interest in adding a stochastic component to the above 
model and in extending our results to the much more difficult problem of 
waterflooding gas-oil reservoirs. 
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